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Abstract—Kingdomino is introduced as an interesting game for
studying game playing: the game is multiplayer (4 independent
players per game); it has a limited game depth (13 moves per
player); and it has limited but not insignificant interaction among
players.

Several strategies based on locally greedy players, Monte Carlo
Evaluation (MCE), and Monte Carlo Tree Search (MCTS) are
presented with variants. We examine a variation of UCT called
progressive win bias and a playout policy (Player-greedy) focused
on selecting good moves for the player. A thorough evaluation
is done showing how the strategies perform and how to choose
parameters given specific time constraints. The evaluation shows
that surprisingly MCE is stronger than MCTS for a game like
Kingdomino.

All experiments use a cloud-native design, with a game server
in a Docker container, and agents communicating using a REST-
style JSON protocol. This enables a multi-language approach to
separating the game state, the strategy implementations, and the
coordination layer.

Index Terms—Artificial intelligence, games, Monte Carlo,
probabilistic computation, heuristics design.

I. INTRODUCTION

Implementations and heuristics for computer players in clas-
sical board games such as Chess, Go and Othello have been
studied extensively in various contexts. These types of games
are typically two-player, deterministic, zero sum, perfect infor-
mation games. Historically, game theoretic approaches such as
Minimax and similar variants such as Alpha-Beta pruning have
been used for these kinds of games, dating back to Shannon
in 1950 [1]. Recently more advanced techniques utilizing
Monte Carlo methods [2] have become popular, many of them
outperforming the classical game theoretic approaches [3], [4],
[5].

The characteristics of the Monte Carlo-based methods also
make them viable candidates for games with more complex
characteristics such as multiplayer, nondeterministic elements,
and hidden information [6]. With the recent emergence of more
modern board games (also called eurogames), which often
exhibit these characteristics, we naturally see more and more
research successfully applying Monte Carlo-based methods to
such games [7], [8], [9], [10].

Among the most common Monte Carlo-based methods we
have Monte Carlo Evaluation (MCE) (also called flat Monte
Carlo) [3] and Monte Carlo Tree Search (MCTS) [11], [12].
Flat Monte Carlo has shown some success [4] but is generally
considered too slow for games with deep game trees [13].
MCTS has come to address the problems of MCE and become
a popular strategy for modern board games. A plethora of

enhancements have been presented for MCTS, both general
and domain-dependent, increasing its performance even further
for various games [14], [15], [16], [17], [18]. For shallow game
trees it is still unclear which Monte Carlo method performs
best since available recommendations only concern games
with deep trees.

Kingdomino [19] is a new board game which won the
prestigious Spiel des Jahres award 2017. Like many other
eurogames it has a high branching factor but differs from
the general eurogame with its shallow game tree (only 13
rounds). It has frequent elements of nondeterminism and
differs from zero sum games in that the choices a player makes
generally have limited effect on its opponents. The game state
of each round can be quantified to get a good assessment
of how well each player is doing which facilitates strong
static evaluators. The difference in characteristics compared
to previously examined eurogames can potentially render
previous recommendations misleading.

We examine static evaluators, Monte Carlo Evaluation
(MCE) and Monte Carlo Tree Search using the Upper Con-
fidence Bound for Trees algorithm (UCT). Vanilla imple-
mentations of MCE and UCT are compared with various
enhancements such as heuristics for more realistic playout
simulations and an improvement to UCT which initially steers
the selection towards more promising moves. All variants are
thoroughly evaluated showing how to select good parameters.

The experimental focus is on heuristic design rather than
building efficient competitive agents, i.e., the implementations
are meant to be comparative rather than relying on low-level
optimization tweaks. All agents are independent processes
communicating with a game server using a JSON protocol.

II. KINGDOMINO

Kingdomino [19] is a modern board game for 2-4 players
released in 2016 where the aim of each player is to expand
a kingdom by consecutively placing dominoes provided in a
semi-stochastic manner. A domino contains two tiles, each
representing a terrain type and can have up to three crowns
contributing to the score for its area. The goal is to place the
dominoes in a 5x5 grid with large areas connecting terrains of
the same type (using 4-connectivity) containing many crowns
to score points.

A. Rules (3-4 Players)

You begin with your castle tile placed as the starting point of
your kingdom and a meeple representing your king. In the first
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Fig. 1. Kingdomino in-game setup

round, the same number of dominoes as there are kings in play
are drawn from the draw pile and added to the current draft.
Each player then chooses one domino each from the current
draft by placing their king on the chosen domino. When all
dominoes in the draft have been chosen, the game moves on
to the second round by drawing a new current draft from the
draw pile. The previous current draft (the one that now has a
king on each domino) becomes the previous draft.

In round two, and every consecutive round up until the
last, the player with the king placed on the first domino in
the previous draft adds the chosen domino to their territory,
according to the connection rules, and chooses a new domino
from the current draft by placing the king on the chosen
domino. The other players then do the same placement-
selection move in the order their kings are positioned in the
previous draft. A placed domino must either connect to the
castle tile or another domino matching at least one of its
terrains (horizontally or vertically only). If you cannot add
a domino to your kingdom, the domino will be discarded.

The last round works the same as the previous rounds with
the exception that there are no more dominoes to draw from
the draw pile and therefore there will be no current draft from
which to choose any new dominoes.

The final score is the sum of the scores for each 4-connected
area of the same terrain type. The score for each area is the
number of tiles multiplied by the total number of crowns on
the area. Note that for an area with no crowns, the score is
zero. There are also two additional rules used in this paper
(both part of the official game rules). The first is the Middle
Kingdom rule, which states that you get an additional 10 points
if your castle is in the center of the 5x5 grid. The second is the
Harmony rule, which states that you get an additional 5 points
if your territory is complete (i.e., no discarded dominoes).

For a complete description of the rules, including rules for
2 players, we refer to [19].

B. Game characteristics

Kingdomino is classified as a non-deterministic game since
the dominoes are drawn randomly from the draw pile. All
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Fig. 2. Average branching factor per round for a random player when playing
against three random opponents (1000 games). The error bars show the 95%
confidence interval.

players have a similar goal and all players have complete
information of the game state at all times, which means that
it is also a symmetric perfect information game.

The number of possible draws from the deck is defined by
the following formula.

∏11
i=0

(
48−4i

4

)
≈ 3.4 · 1044 The most

interesting thing about the number of possible draws is that
it is significantly less than the total number of shuffles of the
deck (around a factor of 3.6 · 1016).

Fig. 2 shows the branching factor for each round. This
is computed experimentally using 4-player games with the
players choosing moves randomly (see Section V-A). Assum-
ing that the branching factor for player p in round r is an
independent stochastic variable Bpr, multiplying the expected
value for the branching factor each round gives the expected
value for the game tree size given a predetermined deck shuffle.
Using the experimentally determined values for Bpr, the game
tree size is approximately

E

[
4∏
p=1

13∏
r=1

Bpr

]
=

4∏
p=1

13∏
r=1

E[Bpr] ≈ 3.74 · 1061

When accounting for the number of possible draws from the
deck, the number of Kingdomino games is around 1.27·10106.
This puts Kingdomino at a game tree complexity between Hex
and Chess when accounting for all shuffles, and similar to
Reversi/Othello for a pre-determined shuffle [20].

III. STRATEGIES FOR KINGDOMINO

Agents can be implemented using a wide range of strategies.
Here we focus on statistical evaluators such as Monte Carlo
Evaluation and Monte Carlo Tree Search together with various
enhancements. We also include some static evaluators to
analyse game characteristics and use as reference agents when
evaluating the statistical strategies.

A. Static Evaluators

Kingdomino generally has a solid score progression which
makes it feasible to implement strong static evaluators by



computing the score of each player at every state of the game,
unlike, e.g., the game of Go which has to rely heavily on sta-
tistical methods since domain-dependent move generators are
very difficult to improve [4]. Also, considering Kingdomino is
a perfect information game, any static evaluator with a greedy
approach could potentially be competitive. We define two
static evaluators, Greedy Placement Random Draft (GPRD)
and Full Greedy (FG). GPRD places each domino in a greedy
manner (to get maximum point increase) but selects dominoes
randomly from the current draft while FG uses both greedy
placement and selects greedily from the current draft. Both
evaluators avoid moves that break the Middle Kingdom rule
or result in single-tile holes. The FG evaluator is likely to act
similar to an above average human player since it incorporates
the visible domain knowledge to make realistic moves without
using any search strategies.

B. Monte Carlo Methods

Monte Carlo methods such as Monte Carlo Evaluation
(MCE) [3] and Monte Carlo Tree Search (MCTS) [11],
[12] have recently been used successfully for building com-
puter players in both classical two-player deterministic board
games, such as Go [4], and more modern multiplayer non-
deterministic board games, such as Settlers of Catan [7],
Scotland Yard [8], and 7 Wonders [9].

1) Monte Carlo Evaluation: In flat Monte Carlo search
(which we in this paper refer to as Monte Carlo Evaluation),
each game state is represented by a node in a tree structure and
the edges represent possible moves. The root node represents
the current game state and its children represent the game
states produced by each available move. The evaluation selects
a child node randomly (using uniform sampling) and simulates
a complete game from that node (referred to as a playout),
using some playout policy, until termination. The selection-
playout procedure is done repeatedly until either a maximum
number of playouts have been reached or the time runs out.
Each child node stores the average result from all its playouts,
and the the max child is selected as the best move. Evaluators
based on MCE have shown to be strong players in small
classical games, such as 3x3 Tic-Tac-Toe, and play on par
with standard evaluators on larger games [3].

The high exponential cost of searching trees with high
branching factors makes global tree search impossible, espe-
cially under tight time constraints. However, the search depth
of Kingdomino is shallow enough for MCE to potentially
be a viable option since a shallow game tree facilitates high
termination frequencies even at early stages in the game.

2) Monte Carlo Tree Search: Monte Carlo Tree Search
expands on the functionality of Monte Carlo Evaluation by
expanding the search tree asymmetrically in a best-first manner
guided by statistics. A commonly used Monte Carlo Tree
search algorithm for game play is UCT [11], which guides
the search by computing the Upper Confidence Bound (UCB)
for each node and select moves for which the UCB is maximal.

The UCB is defined as

UCB = X̄i + C

√
lnT

Ti
, (1)

where X̄i is the average payoff of move i, T is the number
of times the parent of i has been visited, Ti is the number of
times i has been sampled, and C is the exploration constant.
For a full description of the UCT algorithm we refer to [11].
UCT, with enhancements such as domain-specific heuristics
in the playout policies, has been shown to perform well for
games with high branching factors [6].

C. Playout Policy Enhancements

The playout policy in its standard form uses random move
selection throughout the playout. A common enhancement is
to incorporate, potentially time expensive, domain-dependent
heuristics to get more realistic playouts. We examine four
different playout policies. The true random playout policy
(TR) which chooses all moves randomly in the playout. The
ε-greedy policy (εG) [6] which chooses moves randomly with
ε probability and greedily with probability (1 − ε). The full
greedy policy (FG) which chooses all moves greedily. And
finally we use a playout policy we call the player-greedy
policy (PG). It chooses the player’s move greedily and all
opponent moves randomly. Random opponent modelling has
recently been applied successfully in multi-player tracks of
General Video Game Playing (GVGP) AI competitions [21]
but has, to our knowledge, not previously been applied to AI in
board games. The player-greedy policy should be favourable
in Kingdomino since the actions of the opponents generally
have limited (but not insignificant) impact on the player. Its
success in the GVGP setting can likely be attributed to the
tight time constraints for opponent modelling in GVGP.

The ε-greedy and player-greedy strategies combine the
advantage of domain knowledge with the speed provided by
random move selection. With a low branching factor, there
is a reasonable chance that good moves will be made with
some frequency in random sampling. But games with large
branching factors, such as Kingdomino, generally have many
irrelevant, or even detrimental, moves. In these games the
probability of playing out good moves during random playouts
is relatively small, so there should be a large benefit to using
informed simulation strategies.

D. Scoring Functions

The scoring function defines how the result of a playout is
measured. The basic scoring function is the Win Draw Loss
function (WDL) which simply gives a winning playout the
score 1, a playout where the player is tied with an opponent
for first place (a draw) the score 0.5, and a playout which
is not a win or a draw the score 0. The reward model in
Monte Carlo Evaluation facilitates more sophisticated scoring
functions. One such function, which we refer to as the Relative
scoring function (R), takes the player’s score relative to the
score of the highest scoring opponent f = ps/(ps+qs), where
ps is the player score and qs is the opponent score. A third



third scoring function, which we refer to as the Player scoring
function (P), simply uses the player’s score. This function does
not care whether the player wins or loses and only tries to
maximize the player’s own score.

E. MCTS Selection Enhancements

Among the popular enhancements for MCTS there are
learning enhancements such as RAVE [16] and the history
heuristic [14], [15]. They use offline information from pre-
vious games to guide the selection toward moves that have
been successful in past games. Kingdomino has a low n-ply
variance which means it could potentially benefit from learning
enhancements [6]. However, in Kingdomino the reward of a
single move is dependent on the game state, so the game state
has to be incorporated in the offline information for each move.
This has the effect of drastically decreasing the hit probability
of a move while increasing lookup time.

A popular online enhancement is progressive bias [17]
which guides the selection towards promising moves by us-
ing a – potentially time consuming – heuristic value which
diminishes with increasing visits to the node. Here we use
a selection enhancement which we call progressive win bias
which combines progressive bias with a tweak that makes the
heuristic value diminish with the number of node losses in-
stead of the number of node visits. The tweak has successively
been applied to the game Lines of Action [22] but has never
been evaluated in a systematic fashion as presented here. We
define progressive win bias as

W
Hi

Ti
(
1 − X̄i

)
+ 1

,

where Hi is the heuristic value, X̄i is the average reward for
the node, Ti is the number of node visits, and W is a positive
constant which controls the impact of the bias. In this paper
we use Hi = Si − Si−1 as heuristic, where Sγ is the player’s
score after move γ. The formula is simply added to the regular
UCB in 1.

IV. IMPLEMENTATION

The implementation for the game is based on a server-client
architecture. The server maintains all current, future, and past
games, while a client agent can play in one or more games. A
game is initiated with a set number of players, putting it in the
list of future games. An agent can join a game, on which it
receives a secret token enabling it to make moves for a player
in the game. After enough players join the game, it is started.
The game server has a graphical front-end showing all current
and past games with full history for analysis and inspection.

Agents poll the server for the current game state: the
kingdoms and their scores; the current and next draft; the
current player; all possible moves; and all previously used
dominoes. To make a move, the agent for the current player
chooses one of the possible moves. The communication is
based on a HTTP REST JSON API. The protocol gives enough
information to enable stateless agents that only need remember
their secret token. When joining a game, it is possible for an

agent to register an HTTP callback endpoint that the server
uses to notify the agent that its player is the current player.

The game server is implemented in Scala, and is packaged
as a Docker container. This simplifies running the server in any
setting, either on a remote server or locally. In particular, the
choice of using standard web technologies for communication
leads to a clean and simple separation of agents and the server.

At a one-day hackathon, 7 programmers could without
preparation build rudimentary game playing agents in a variety
of languages (Java, Scala, Python, Rust, and Haskell). The
state representation and the full valid move list make it simple
to implement static evaluators, without having to implement
the full game logic. Naturally, for a more competitive client
the full game logic needs to be implemented also in the client.

V. EXPERIMENTS

Our experiments are intended to give insights into the game,
to give guidance on what strategies and algorithms are useful,
and how to tune parameters for the strategies. To compare
strategies, we have made the choice to use static time limits
per ply to study how well different strategies can make use of
a specific time allotment without introducing the complexities
of full time management.

Note that all games in these experiments are 4-player
games (unless otherwise stated), so a when a strategy plays
equally well as its opponent it will result in a 25% win rate.
All intervals (in both figures and tables) represent the 95%
confidence interval.

In board games the number of victories alone can be con-
sidered insufficient to determine the strength of a player. This
is supported by the USOA (United States Othello Association)
which uses the margin of victory as the single most important
feature in determining a player’s rating [3]. Therefore, most
of our experiments use the victory margin to determine player
strength.

A. Setup

All agents used in the experiments are written in Java and
run on a single threaded 3.2 GHz Intel Core i7 with 12 GB
RAM that is also running the game server. While the agents
are not written to be the fastest possible, some care has been
taken to keep the implementation reasonably fast. The goal is
to facilitate comparison between the agents, not to implement
a certain algorithm optimally.

B. Agents

We use three different static evaluator agents: the True
Random (TR) agent, the Greedy Placement Random Draft
(GPRD) agent, and the Full Greedy (FG) agent. The FG agent
is used as reference player against which we evaluate all
statistical players.

Each Monte Carlo Evaluation agent is implemented using
flat Monte Carlo search and characterized by a playout pol-
icy/scoring function combination. We denote them by MCE-
X/Y where X is the playout policy and Y is the scoring
function.
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The Monte Carlo Tree Search agents all use the WDL scor-
ing function and are therefore only characterized by playout
policy and selection enhancements. The MCTS agents lack
the possibility of using a relative scoring function but use
maximum score increase as tie breaker for moves of equal
win rate. We denote the standard MCTS agents by UCT-X ,
the MCTS agents using progressive bias by UCTB-X , and
progressive win bias by UCTW-X , where X is the playout
policy.

C. Impact of Domain Knowledge

In the first experiment we wanted to quantify how basic
domain knowledge affects strategies based on static evaluators.
We did this by playing a True Random player (TR), a Greedy
Placement Random Draft player (GPRD), and a Full Greedy
player (FG) 1000 games each against three TR opponents and
registered the number of wins, draws, and losses. We also
registered the score after each round in every game to see the
general score progression of each strategy.

The average score progression for the three different strate-
gies over is shown in Fig. 3. All players start with 10p since
the castle is within three tiles distance from the tile furthest
away, thus fulfilling the Middle Kingdom rule. We can clearly
see that the TR player had trouble increasing its score and
even dipped around Round 5-6 due to breaking the Middle
Kingdom rule. The GPRD player did a better job, showing
that it is of great importance to select good positions for the
placed domino. However, the score progression of the FG
player indicates that it is of equal importance to also select
a good domino from the current draft (the score for FG is
approximately twice the score of GPRD when corrected for
the scores of random moves).

The number of wins, losses, and draws for each strategy
are shown in Table I. Here we see that the FG player truly
outplayed the TR opponents, which was anticipated. More
interesting is that the GPRD player only has approximately
79% win rate against the TR opponents. So while carefully
selecting placements, making an uninformed selection from
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TABLE I
WIN PERCENTAGES FOR 1000 GAMES AGAINST THREE TR OPPONENTS.

Player Strategy Opponent Strategy
TR

Wins (%) Draws (%) Losses (%)

TR 223 (22.3) 29 (2.9) 748 (74.8)
GPRD 794 (79.4) 22 (2.2) 184 (18.4)
FG 977 (97.7) 2 (0.2) 21 (2.1)

the current draft has a noticeable impact when played against
random opponents.

D. Static vs Statistical Evaluators

In this experiment we investigated how simple statistical
evaluation performs compared to the best static evaluator-
based strategy. We also look at how different scoring functions
affect the performance of the statistical evaluators. We did this
by playing three Monte Carlo Evaluation players, each using a
different scoring function and random selection playout policy,
500 games each against three FG opponents and compared
the results to the same number of games played by a FG
player against three FG opponents. The time limit was set
to 5s per ply. The three Monte Carlo players were MCE-
TR/WDL, which only counts the number of wins/draws/losses
and chooses the move that maximises the number of wins,
MCE-TR/P, which tries to maximise the player’s final score,
and MCE-TR/R, which tries to maximise the victory margin.
The score progressions are shown in Fig. 4 and the final scores
in Table II.

The experiment clearly shows that the statistical evaluators
significantly outperform the FG player. It is interesting to see
how the statistical evaluators select sub-greedy moves in the
middle of the game to enable higher payoffs in the later parts
of the game. It is also clear that MCE-TR/WDL does not reach
as high final score as the other statistical evaluators. This is
most likely a result of the WDL scoring function’s lack of
score information which renders it incapable of discriminating



TABLE II
AVERAGE SCORES FOR 500 GAMES AGAINST THREE FG OPPONENTS.

Player Strategy Avg. Score

FG 51.4 (2.1)
MCE-TR/WDL 55.6 (1.8)
MCE-TR/P 60.6 (1.9)
MCE-TR/R 59.5 (1.8)

between branches where all leaf nodes result in a win while it
is in the lead. Since each node only stores the winning average,
it will not be able to determine which branch will lead to a
higher final score. Also, the R and P scoring functions are
more robust against the recurring stochastic events. There is
no significant difference in performance between the Player
scoring function and Relative scoring function.

E. Enhanced Playout Policies

In this experiment we investigated the effect of different
enhancements to Monte Carlo Evaluation by incorporating
domain knowledge into the playout policies. We did this by
playing Monte Carlo Evaluation players, both with and without
domain knowledge, against three FG opponents and compared
the results. The players we used were MCE-TR/R, which has
no domain knowledge at all and only selects moves randomly
for both the player and opponents in the playouts, MCE-
εG/R with ε = 0.75, which uses random selection in 75%
of the times in the playout and greedy selection 25% of the
times, MCE-PG/R, which uses greedy selection for the player
and random selection for the opponents in the playouts, and
MCE-FG/R, which uses greedy selection for all moves in the
playouts. We used the relative scoring function since its goal
aligns with the measure of player strength and facilitates easier
analysis of the result plots.

Since all games in the experiment were 4-player games
and ε was set so that greedy selection will be used 25%
of the time, the number of greedy move evaluations would
be the same for both MCE-εG/R and MCE-PG/R and should
result in approximately the same playout frequency for the two
simulation strategies. This will tell us how important accurate
opponent modelling is in Kingdomino.

Fig. 5 shows the victory margin under various time con-
straints for the different strategies (each point represents 200
games). In addition to the Monte Carlo Evaluation game
strategies, the result from playing 200 games with an FG
player against three FG opponents is also shown (the solid
red line with the 95% confidence interval as dotted red lines).
Fig. 6 shows the number of playouts per second for each
playout policy.

The experiment shows that the FG evaluator is competitive
to the statistical evaluators under tight time constraints. It is
comparable to MCE-TR/R, and outperforms all the others,
when the time is capped to 0.1s per move. It also shows
that the best knowledge-based statistical evaluators need ap-
proximately 0.5 − 1s time per move for the extra heuristic
computations to pay off compared to selecting playout moves
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randomly, but they consistently outperform the random playout
policy for move times > 1s. It also shows that it is more
important to model the player’s own move realistically than
the moves of the opponent. This is clear from the difference in
performance between MCE-PG/R and MCE-εG/R when hav-
ing approximately the same playout frequencies. Furthermore,
if we compare MCE-PG/R to MCE-FG/R we see that realistic
opponent modelling is disadvantageous for short ply times
(< 0.2s). This is natural since realistic opponent modelling
is costly and MCE-FG/R will only have time for few playouts
before selecting its move, while MCE-PG/R can produce more
playouts and have a better statistical sample when choosing
its move. However, once the number of playouts go up
(> 0.1s) we see that realistic opponent modelling consistently
outperforms the player-greedy strategy, although not by much.

F. Tree Search

We examined the UCB exploration constant C by playing
an UCT-TR and an UCT-FG player against three FG players
for various values of C. The result is shown in Fig. 7. The
experiment shows that C = 0.6 is a suitable value for players
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with many playouts per ply and C ≥ 1.0 for strategies with
few playouts per ply. A theory is that due to Kingdomino’s
frequent stochastic events, a move requires numerous playouts
to accumulate a representative reward. So there is a risk of
focusing the tree expansion on high-reward moves before
all moves get representative rewards. Therefore, players with
few playouts per ply should perform better with a higher
exploration constant.

We also examined the impact constant W for progressive
bias and progressive win bias by playing a UCTW-TR player
and a UCTW-FG player, both with C = 0.6, against three FG
opponents for various values of W . The result is shown in
Fig. 8. It shows that we get the highest performance impact
for W = 0.1 ∼ 0.2 and after that the performance decreases
with W .

G. Comparing Strategies

Table III shows the performance of all strategies for 200
games played against three FG opponents. The 95% con-
fidence intervals are in the range [3.5, 6.0] for all entries,
with the majority near the lower limit. The highest performer

for each time constraint is marked by a dark blue box.
Performances within 5% (10%) of the best are marked by
a light (lighter) blue box. The UCB exploration constant was
set to C = 0.6 for all UCT strategies and the the bias impact
factor was set to W = 0.1 for UCTB-* and UCTW-*.

The results show that for each time constraint the best
MCE variant consistently outperforms all variants of UCT. A
possible theory is that UCT is hampered by its WDL scoring
function, but further experiments verifying this hypothesis is
outside the scope of this paper. The true random playout policy
variant (MCE-TR/R) excels for short ply times t < 0.5s.
After that the full greedy playout policy variant (MCE-FG/R)
gets enough time each ply to produce rewards representative
enough to reliably select trajectories in the game tree that
outperform the the random playout policy, in spite of the
significantly higher playout frequency of the random playout
policy. The MCE-PG performs almost on par with MCE-FG
which indicates that allocating time for accurate opponent
modelling only has a small gain compared to using random
move selection for the opponents.

The results also show that the UCT enhancements improve
the results for tight time constraints (t < 0.2s), which is
expected due to few playouts, but are otherwise on par with
regular UCT.

VI. CONCLUSIONS AND FUTURE WORK

This paper introduces Kingdomino as an interesting game to
study for game playing. The shallow game tree and relatively
limited interaction between players of Kingdomino combined
with the stochastic nature and possibility to evaluate partial
game states is particularly interesting. The results indicate that
for games such as Kingdomino, MCE is superior to UCT,
which would infer new recommendations on the suitability
of MCE for games of similar complexity. This is especially
interesting, given that an MCE evaluator is significantly easier
to implement correctly and efficiently than full UCT.

The player-greedy playout policy is surprisingly effective,
balancing exploration power with (expensive) local evalua-
tion. Our belief is that this is due to the limited (but not
insignificant) interaction among players in Kingdomino, but
further experiments in other games are needed to verify this
hypothesis. The progressive win bias selection improvement
shows promise as a way to combine a heuristic evaluation
with the current knowledge gained from the exploration, but
further experiments in other settings better suited for the UCT
is needed to analyse its impact.

Our evaluation uses thorough systematic examination of all
constants involved to avoid the presence of magic numbers
which frequently occur without explanation in many similar
papers in the field. It also uses new and illuminating graphs
for showing the impact of different choices. In particular, the
usage of victory margin in favour of win percentages is very
powerful for a multi player score maximization game such as
Kingdomino. These graphs have helped us gain new insights
into both the game and how our strategies perform.



TABLE III
AVERAGE VICTORY MARGINS FOR 200 GAMES AGAINST THREE FG OPPONENTS.

Strategy Time per ply

0.1s 0.2s 0.3s 0.5s 1.0s 2.0s 4.0s 6.0s 8.0s 10.0s

FG -9.0 -9.0 -9.0 -9.0 -9.0 -9.0 -9.0 -9.0 -9.0 -9.0
MCE-TR/R -8.5 -5.9 -4.6 -3.7 -1.5 -2.5 -0.1 -0.3 -1.1 -1.3
MCE-FG/R -15.8 -8.8 -7.0 -3.4 -0.6 4.3 7.0 8.4 9.7 9.6
MCE-PG/R -12.2 -10.9 -7.5 -6.0 -1.7 1.9 5.4 6.8 8.4 9.0
MCE-εG/R -20.6 -16.0 -14.5 -12.2 -10.3 -7.5 -2.2 -0.3 1.9 1.3
UCT-TR -13.5 -6.4 -7.3 -4.9 -5.5 -4.4 -3.5 -5.2 -7.2 -4.4
UCT-FG -38.3 -32.5 -29.4 -21.6 -12.0 -1.5 -0.2 3.5 4.0 3.9
UCT-PG -25.8 -20.7 -15.5 -15.3 -13.9 -10.4 -7.1 -7.4 -6.2 -4.1
UCT-εG -33.3 -24.0 -16.2 -15.7 -9.0 -7.0 -3.1 -4.0 -2.6 -1.3
UCTB-TR -10.1 -7.4 -6.1 -7.9 -4.6 -6.7 -4.8 -4.3 -2.9 -4.5
UCTB-FG -39.8 -30.6 -29.7 -21.6 -11.7 -5.9 -0.1 3.2 3.2 1.4
UCTB-PG -25.5 -20.8 -19.7 -15.4 -13.4 -9.1 -7.6 -6.3 -4.5 -12.4
UCTB-εG -31.5 -25.2 -20.2 -16.3 -10.7 -8.1 -4.1 -2.6 -1.9 -2.9
UCTW-TR -11.4 -6.7 -7.3 -5.9 -4.6 -4.1 -5.8 -5.0 -4.0 -4.5
UCTW-FG -42.6 -33.0 -30.3 -18.4 -13.9 -6.0 -2.5 0.6 1.2 1.4
UCTW-PG -29.2 -24.3 -20.0 -19.7 -15.4 -16.9 -13.1 -12.2 -13.9 -12.4
UCTW-εG -30.5 -23.0 -22.8 -16.6 -13.2 -6.6 -5.4 -3.1 -2.7 -2.9

For future work one MCTS enhancement alternative could
be a learning heuristic that keep offline information on the
success of placement positions for different kingdom patterns.
Experienced human players tend to place dominos in a struc-
tured pattern to avoid single tile holes in the kingdom. It would
also be interesting to implement agents using completely
different strategies such as deep reinforcement learning.

The code for the Kingdomino game server can be down-
loaded from https://github.com/mratin/kdom-ai,
and the AI implementations can be downloaded from
https://github.com/mgedda/kdom-ai.
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