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Abstract—In complex scenarios where a model of other actors
is necessary to predict and interpret their actions, it is often
desirable that the model works well with a wide variety of
previously unknown actors. Hanabi is a card game that brings
the problem of modeling other players to the forefront, but there
is no agreement on how to best generate a pool of agents to
use as partners in ad-hoc cooperation evaluation. This paper
proposes Quality Diversity algorithms as a promising class of
algorithms to generate populations for this purpose and shows
an initial implementation of an agent generator based on this
idea. We also discuss what metrics can be used to compare such
generators, and how the proposed generator could be leveraged
to help build adaptive agents for the game.

I. INTRODUCTION

Traditionally, research into Artificial Intelligence agents for
playing games has focused on competitive, perfect information
games, such as Checkers [1], Chess [2] and Go [3]. Coop-
erative games with imperfect information are an interesting
research topic not only due to the added challenges posed
to researchers, but also because many modern industrial and
commercial applications can be seen as examples of coop-
eration between humans and machines in order to achieve a
mutual goal in an uncertain environment. In previous work [4],
we surveyed metrics and open problems relating to co-creative
and mixed initiative systems, and argued that games, especially
cooperative games, are an ideal research platform to address
some of these issues.

Agent modeling is one of the main features of co-creative
and mixed initiative systems identified in this survey, and
cooperative games face, to a larger extent than competitive
games, the problem of modelling other agents (human players
or another AI agents). Usually, the main challenge in agent
modeling is about predicting the future actions of other agents,
but in our chosen domain it is also important to interpret
observed actions and infer what they might imply about hidden
features of the world. In essence, our agents should be able
to represent the mental state of other actors and see the world
from their perspective. This ability has also been referred to
as having a theory of mind [5].

In this context, interacting with agents for which a model is
known in advance is a very different problem than interacting
agents for which no such model is known. When playing
with known agents, a number of assumptions, or conventions,
can be taken for granted, but when playing with Ad-Hoc

teammates [6]–[8], we need either adaptive strategies that learn
and leverage a model of the other players on the fly or non-
adaptive strategies that play well with a wide range of partners,
despite using the same policy for all of them.

One issue that emerges when dealing with Ad-Hoc coop-
eration scenarios is how to evaluate agents that play in such
a setting. A typical approach is to specify a pool of agents
that we want to be able to play well with. However, if this
pool is known in advance, then challenger agents can be
over specialized towards this specific pool, leading to behavior
that might not generalize to other teammates. This typically
requires the pool to be kept secret, which can lead to issues
of reproducibility.

Another alternative, which we favor, is to use some stochas-
tic method to generate a pool where agents display enough
variety that different strategies are needed to play well with
all of them. It is also desirable that the method produces agents
with enough variety each time it is run, so it can be reused for
multiple experiments without relying on secrecy and without
making it too easy to over specialize agents towards it.

In this paper we discuss characteristics that would be
desirable in a method for generating pools of agents that can be
used to evaluate other agents in ad-hoc cooperation settings.
We propose metrics that can be used to characterize these
generators and implement a generator of agents using MAP-
Elites [9], a Quality Diversity algorithm that optimizes towards
a set of behaviorally diverse, high quality individuals, using
a rule-based representation of Hanabi agents. We hope this
method will help us better evaluate the challenger agents we
want to develop in the future and help others to better evaluate
their own agents.

II. RELATED WORK
A. Hanabi: the game

Hanabi is a cooperative card game designed by Antoine
Bauza and has won the prestigious Spiel des Jahres award
for tabletop games in 2013. It is played by groups of 2-5
players who try to play stacks of cards in correct order of
rank or value (from 1 to 5) for each of the five colors in the
game (B, R, Y, W and G). Players play with the contents of
their hands facing outwards, so that each player sees the cards
every other player has, but not their own cards. The group
can only communicate through information (or hint) actions,
which allow the current player to select another player and
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point to all cards of a chosen rank or color in their hand, at
the expense of an information token from a shared pool. When
a card is played to the tableau, the group scores a point if it
is the next card in its color stack, or loses a life otherwise. A
player can also discard a card from their hand, which recovers
one information token.

The game ends with a victory for the group if all five stacks
are complete with cards ranked 1 to 5 of that color. Whenever
a card is played or discarded, players must draw back to their
hand limit from a draw deck. If the draw deck is exhausted,
every player gets one last turn to take an action, after which the
game ends in defeat if not all stacks are complete. The game
also ends with defeat if the group loses three lives by playing
three invalid cards. The score of the game is the number of
cards successfully played by the group, that is, 25 in case of
victory or from 0 to 24 in case of defeat.

Hints provide grounded information by disclosing the rank
of color of cards. Examples of hints are “your first, second and
fourth card are 1’s”, “your middle card is a 5” and “your two
rightmost cards are yellow”. But in addition to this grounded
layer of meaning, players try to glimpse additional implicit
meaning from each hint by taking into account a model of
the other player. For example, if the 1’s of some (but not
all) colors have been played, most players who receive a hint
of “your leftmost card is a two” would assume that that it
refers to a playable card, even though nothing was said of its
color. The player giving the hint should therefore predict how
the receiving player would act in different scenarios and the
receiving player must in turn interpret what each hint (and
other actions) says about the state of the game.

Over time, conventions can either emerge organically or be
formally agreed to in a group. Conventions provide a guideline
of how hints ought to be interpreted and which hints should
be given in each situation. Examples of conventions are “hints
should, if possible, identify playable cards rather than un-
playable ones” and “players should discard unidentified cards
from oldest to newest”. But these can easily backfire if all
players are not on the same page. For AI research, this makes
the problem of self-play, where all agents are known to be
following the same strategies and conventions, fundamentally
different from the problem of ad-hoc cooperation.

B. Hanabi-Playing agents and the competition

Many of the early approaches [10]–[12] for playing Hanabi
with AI were variations of a simple strategy for self-play
which prioritizes playing cards that are believed to be playable,
followed by giving hints that identify playable cards in other
player’s hands, followed by discarding cards that are believed
to not be necessary.

Walton-Rivers et al. [13] are the first to address the problem
of playing with a diverse population of agents with different
strategies in Hanabi. First, they reimplemented many previ-
ously published agents under a rule-based paradigm, where
agents are defined by an ordered sequence of human-crafted
rules. Each rule takes a game state and, if a certain condition
is true, returns an action. A rule-based agent simply evaluates

each rule in order, until it finds a rule that is applicable and
executes the corresponding action. They then created a fixed
pool of baseline agents using some of these reimplementations,
plus some new agents following similar strategies, an agent
that takes actions at random, and a “flawed” that has risky
Play actions and gives random hints. Finally, they evaluated
each of these agents, plus some tree search agents, based on
how well they score on average when successively paired with
all agents from the fixed pool.

The 2019 Hanabi CoG competition is based on this work. It
first took place at the 2018 CIG conference, where participants
submitted agents both for a self-play (or “mirror”) track and
a mixed play track. In the mixed play track, the agents had
to play with a pool similar to the one used in [13], but the
exact agents were not made public before the competition. The
winner of the competition was a variant of Monte Carlo Tree
Search [14] by Goodman [15] designed to deal with problems
of strategy fusion and nonlocality that arise from executing
tree search in a hidden information environment. They also
use neural networks to model a pool of other sample agents,
and bayesian updates keep track of which agent in this pool
best approximates the current partner. It achieved a score of
13.28 in the mixed track and 20.57 in the mirror track [16].

Our 2018 competition entry, which took second place, is
described in [17]. We implemented an evolutionary algorithm
to make rule-based agents by searching for a well-performing
sequence of rules both for self-play and mixed play, using the
same pool as [13] for mixed play. It achieved a score of 12.85
in the mixed track and 17.52 in the mirror track. While the
current paper is based on that previous work, here we ignore
the standard pool used in [13] and [17] and procedurally create
our own pool, whose agents are evaluated by how well they
fare on self-play and when paired with each other.

The 2019 competition also features a mirror and mixed
track, plus a new learning track where agents can adapt to
repeated play with the same partners. While this paper does not
aim directly to develop agents to compete, we hope the pools
of ad-hoc partners we are generating can help in evaluating
future agents, and in better understanding what types of play
work better with agents exhibiting a variety of behaviors.

Other than the CoG competition and its related agents,
another work on ad-hoc teamplay using Hanabi is by Bard
et al. [18], who independently trained reinforcement learning
agents that scored 20 to 22 points in self-play, but only 0 to
5 when paired with one another. They also proposed an ad-
hoc setting where self-play playtraces of the partner agent are
provided prior to gameplay for learning, but no agent currently
takes advantage of this feature.

While this paper focuses on ad-hoc play, the best-
performing self-play agents we are aware of are BAD by
Foerster et al. [8] and WTFWThat by Wu [19]. BAD, or
Bayesian Action Decoder, uses reinforcement learning to
learn a deterministic partial policy shared by two agents, and
achieves a score of 23.9 (out of 25) with 2 players. WTFWThat
is based on a sophisticated convention called hat-guessing first
proposed by Cox et al. [20] and expanded on by Bouzy [21]



to achieve self-play scores above 24 with 3 or more players.

C. Quality Diversity and MAP-Elites

Quality Diversity [22] (QD) algorithms are a class of
population-based search algorithms that aim to generate a
large number of behaviorally diverse, high-quality solutions.
Diversity of behavior can be pursued either as desirable target
in its own right or as an intermediate step to high-quality solu-
tions, as showcased by novelty search, which can outperform
traditional optimization in deceptive environments even though
it abandons the notion of an objective function [23]. QD differs
from novelty search, however, because it does not optimize
for novelty alone, but searches for both behavioral diversity
and high fitness at once. QD also differs from Multi-Objective
Optimization [24], which searches for trade-offs between one
or more objectives, because QD actively attempts to find high-
quality solutions in all regions of the behavior space, not just
those with good trade-offs.

MAP-Elites [9] is an example of QD algorithm that attempts
to “illuminate” the behavior space by mapping each individual
to behavioral “niche”, while maintaining an archive of the
best individual (an elite) in each niche. MAP-Elites was first
proposed to pre-compute a variety of effective gaits for a six-
legged robot, so that, when the robot suffers damage, it can
quickly search for a gait that adapts to the damage and allows
it to keep moving at a decent pace [25].

QD algorithms are a promising approach to our goal of
generating pools of partner agents to use in ad-hoc cooperation
evaluation for at least three reasons: first, by actively searching
for variety, we minimize the risk of coming up with a
population of extremely similar agents, that a single narrow
strategy can successfully play with. Second, we hope to better
model human gameplay, which we expect to exhibit large
behavioral diversity. Lastly, by still maintaining a notion of
quality, we minimize the risk of coming up with a population
of diverse agents which are still very bad at the game, and
thus not interesting to play with.

III. DEFINITIONS AND METRICS

A. Definitions

Ad-hoc Cooperation is the problem of cooperating with
arbitrary, previously unknown ad-hoc teammates (human or
AI agents). While the general problem of ad-hoc cooperation
has been addressed at least since [6], for the rest of this paper
we will focus on ad-hoc cooperation applied to Hanabi. For a
more recent survey on the topic, see [7].

Naturally, performance in an ad-hoc cooperation setting
cannot be properly measured without having a set of ad-hoc
teammates in mind. Performance with an agent that takes
random actions will be different than performance with a
rule-based agent employing very simple heuristics, which will
differ from performance with a neural network controller that
has implicitly learned very sophisticated conventions.

To differentiate between the agent whose performance is
being measured in an experiment, and the agents it is being
paired with to measure performance, we define a pool of

agents to be the set of agents that a challenger agent needs to
play well with. We assume that the exact agents in the pool
are not known in advance by the designers of the challenger
agent. We define Ad-hoc performance to be the challenger’s
average score when paired with all agents in a pool. All the
experiments in this paper were done in a two player setting,
either pairing two different agents or two copies of the same
agent.

Finally, we define a generator to be an algorithm that can
output a pool of agents. A stochastic generator might produce a
different pool every time it is invoked, so we will call a run the
act of generating a pool from the generator. Ultimately, being
able to produce meaningfully different pools from multiple
runs on each invocation is what we expect to make a generator
reusable for many different experiments without relying on
secrecy of the underlying algorithm.

B. Metrics

The metrics below can be applied to individuals in a pool
and their generators.

The first metric we are interested in is the self-play perfor-
mance of the individuals in our pools. While we are ultimately
more interested in ad-hoc cooperation than self-play, we
believe that self-play scores can give a rough estimation of the
overall quality of an agent. Although counterexamples can be
constructed (imagine a “timid” agent that never gives a hint
until another player “breaks the ice” by giving a hint), we
expect that in most cases, agents that score very low in self-
play will also score low in ad-hoc settings. Agents that score
very highly on self-play, however, could have either high or
low ad-hoc performance, depending on whether their strategies
make strong assumptions about the behavior of other players.

While we do not prescribe an ideal self-play score range
for agents in a pool, we believe the self-play performance is
a factor in deciding what kind of experiment one wants to
run, and what kinds of adaptations a challenger is expected
to accomplish. A pool where fairly simple heuristic agents
are mixed with intentionally bad agents as seen in [13] might
encourage challengers to identify the bad agents and guard
against their bad behaviors, while avoiding strategies that re-
quire many assumptions when paired with the regular heuristic
agents. On the other hand, a pool of very high-performing self-
play agents with sophisticated conventions (such as the ones
developed in [20], [21] or learned by Reinforcement Learning
in [8], [18]) might resemble more a puzzle-solving challenge
where the exact convention in use must be identified to achieve
good performance.

Consider a generator that generates a pool of agents with
high self-play performance, but where agents exhibit only
minimal variation from each other. This generator would be
ill-suited for use as benchmark of ad-hoc cooperation since
a single non-adaptive strategy could likely play well with all
agents in the pool. We define intra-run diversity metrics as
metrics that capture how much agents in a pool generated by
a single run of the generator differ from each other. Agents
might differ either in their underlying representation, such as



chromosomes in an evolutionary algorithm or weights in a
neural network, or in their observed behavior, which can be
captured by how often agents would take the same action in
a given game state or other game-specific behavior metrics.

Imagine now an experiment where a generator outputs a
pool of very diverse agents, but repeating the experiment
always yields the same agents. In this case, if a challenger
agent could identify which agent they are playing with, they
could effortlessly choose a pre-computed strategy that is
effective with that partner. If we want to avoid this, we need
variety not only within agents of a single run, but also between
agents of different runs. We call this cross-run diversity. In
this paper, we are especially concerned with diversity between
agents in the same niche, but different runs of the algorithm.
We call these agents corresponding agents.

Note that a static pool of agents could possibly have high
intra-run diversity, but will necessarily have no cross-run
diversity and has to be kept secret between evaluations. A
generator with high cross-run diversity, on the other hand,
could potentially be challenging to play with even if the
method is open to the public.

Besides variety, given a set of agents we can also measure
how well they play when paired with each other, that is,
their average pairwise performance. Comparing the numeric
value of this metric with self-play performance can lead to
interesting insights about the agents involved. For example,
two agents that score higher when playing with each other
than either agent does on self-play might have found a pair
of synergistic strategies. Agents in pool with high self-play
performances but low pairwise performances could be using
strategies that are very effective if shared by both players, but
are not suited for ad-hoc play, as is the case in [18].

Although producing a competition entry is not our main goal
in this paper, high pairwise performance might indicate good
candidates for the mixed track, and could also be later used as
the basis for an ensemble (or hyper-heuristic) agent that first
characterizes the behavior of another agent, then selects the
policy that is known to work best with agents in that niche.

IV. MAP-ELITES IMPLEMENTATION

Below, we describe how MAP-Elites was implemented to
generate populations of diverse Hanabi-playing agents. The
implementation will be made public after the competition at
our github repository 1.

A. Definition of the feature space

MAP-Elites requires us to select one or more dimensions
of variation of behavior that are of interest, which defines a
feature space. We then need to discretize this feature space,
which defines niches of behavior occupied by agents that
exhibit each dimension at a certain range. This allows us to
then search for the fittest individual in each niche, also called
an elite, as detailed in the next subsection.

We chose the following behavioral metrics as dimensions
of the feature space:

1https://github.com/rocanaan/Hanabi-Map-Elites

• Risk Aversion: the average probability that a card is
playable, from the perspective of the agent, account-
ing only for grounded information (and thus no player
model), over all game instances where a card was played
by the agent. An agent scoring 1 in this dimension would
only play cards that are certain to be playable, thus being
completely risk averse, while an agent scoring 0 would
only purposely play cards that are known to be unplayable
(and so would never score a point through its own play).

• Communicativeness: the fraction of time an agent will
choose to give a hint, given that it has a hint token
available. An agent scoring 1 in this dimension would
always give a hint if possible, being fully communicative,
while an agent scoring 0 would never give any hints.

These dimensions were chosen because they are easy to
measure and we believe that they are strategically meaningful,
requiring different strategies to play with at different points in
the feature space. We also suspected that the highest-scoring
behavior in self-play would fall at some value much greater
than 0, but lower than 1 for both dimensions: a 0 in either
dimension leads to obviously degenerate play, but good play
likely requires playing cards under some uncertainty (implying
risk aversion < 1) and sometimes passing up the opportunity
to give a hint so that another player can better utilize the hint
token (communicativeness < 1).

Note also that while these dimensions help qualify an
agent’s play, they don’t completely determine it. Risk aversion,
for example, doesn’t tell us whether an agent will decide to
play a card or do something else, only what’s the average
probability that a card is playable once it decides to play it.
And communicativeness doesn’t tell us which hint will be
given, only the likelihood that some hint will be given if a
hint token is available.

Each dimension takes values in the range of [0,1], and
we chose to discretize them at intervals of 0.05, defining 20
intervals in each dimension, which amounts to 400 niches
over all the feature space. And because we are interested in
generating agents with varied gameplay, our algorithm will
produce the best agent it can find in all the niches, not just
the niche that happens to generate the globally optimal agent.

B. Representation and operators

We use a similar representation of individuals as the one we
used in [17]. Each individual is represented by a chromosome
defined by a sequence of 15 integers, each integer representing
one of 135 possible rules. An agent’s behavior is determined
by simply moving through the rules in the order they appear
in the chromosome and selecting the action returned by the
first rule that applies. An agent might have rules that never
fire during gameplay (for example, a rule that says “discard a
random card” would never fire if it comes after “discard your
oldest card”). An agent can also have duplicate rules, in which
case the second instance of the rule will never fire (assuming
the rule either fires or not deterministically, which is true for
the rules we are using). Nevertheless, these unused or repeated
rules are part of an agent’s genetic representation and can be



Fig. 1. Main results of the MAP-Elites experiment after generating 1 million individuals and reevaluating the elite at each niche for 1000 games each. Columns
represent risk aversion (most risk averse on the right side) and rows represent communicativeness (most communicative at the bottom). Values represent the
fitness (score) of the best individual in that niche, with redder entries corresponding to higher scores. The maximum score is 20.51 at niche (0.45,0.8). The
average score is 6.69 across all 400 individuals, or 8.20 when accounting only for the 326 nonzero individuals.

passed on to its offspring. We selected 15 as chromosome
length because our agents from [17] rarely had more than 10
different rules activated.

Mutation is implemented by randomly replacing each rule
in a chromosome with a random rule with probability 0.1.
Crossover happens with probability 0.5 and is implemented by
selecting another individual from the population and randomly
selecting (with probability 0.5) the corresponding gene from
one of the parents for each position.

C. Fitness, feature descriptors and niches

During evolution, each individual is evaluated by playing
100 matches in self-play mode with 2 players, at the end of
which we calculate both its fitness and its feature descriptors.
Its fitness is the average score achieved in these matches,
and its feature descriptor is an ordered pair (c, r), where
0 ≤ c ≤ 1 is its communicativeness and 0 ≤ r ≤ 1 is its
risk aversion. We then map the individual to a niche, which
is a discretization of the behavior space in intervals with size
0.05 in both dimensions. For example, niche (0.4,0.95) has
individuals with 0.4 ≤ c < 0.45 and 0.95 ≤ r ≤ 1.

Then, we recompute the fitness of the the current elite in
the mapped niche by playing another 100 matches in self-
play mode. Since evaluation is noisy, we take this extra step
to guard against the possibility that the current elite could have
had an unusually good run in the previous evaluation. Then a
decision is made to either maintain the current elite or the new
individual, whichever has the highest fitness for that niche.

V. RESULTS

We used Map-Elites to generate and evaluate a total of
106 individuals. The first 104 individuals were initialized with
random chromosomes and were meant to initially populate
as many of the 400 niches in our map as possible. The

remaining individuals were generated by performing mutation
and crossover on the current elite of a randomly selected
niche. Each individual’s fitness and niche were evaluated by
simulating 100 matches, as described previously, after which
its fitness was compared with the reevaluated fitness of the
current elite in the niche.

While during evolution each individual was evaluated by
playing one hundred games, after evolution we reevaluated
each elite by playing a thousand self play games. The average
score in this reevaluation for each niche’s elite is reported in
figure 1. On average, reevaluations had a Standard Deviation
(SD) of 2.83 (with the highest SD of any individual being
7.21), and Standard Error of the Mean (S.E.M) of about 0.09
with 1000 matches played.

Our coverage (number of cells filled with an individual
scoring above zero) was 326. The average score over the
326 covered niches was 8.20. We report the average over
covered niches because only these valid individuals take part
in the intra-run and cross-run metrics. For completeness, the
average score considering all 400 possible niches would be
6.69. These results are summarized in the first entry of table I.
In general, the best agents were found at intermediate levels of
communicativeness and high, but not extreme, risk aversion.

The best individual had a score of 20.51 and was found at
niche (0.45,0.8), which corresponds to a communicativeness
between 0.45 and 0.5 and a risk tolerance between 0.8 and
0.85. This lends some evidence to our starting assumption that
neither behavioral metric is optimal at its highest extreme.
This score is also an improvement over our best 2-player
agent (called Mirror Situational) reported in [17], which had
a reported self-play score of 20.07. We verified this result
by doing a new reevaluation of Miror Situational and the
(0.45,0.8) elite obtained by MAP-Elites, with 20000 games
played each. The results suggest that our new agent is indeed



Run # Individuals Max Score Average Score Coverage
Run 1 1000000 20.51 8.20 326
Run 2 750000 20.68 8.27 326
Run 3 147000 20.16 7.85 324

TABLE I
NUMBER OF INDIVIDUALS, MAXIMUM SCORE, AVERAGE SCORE (OVER

COVERED NICHES) AND COVERAGE OF EACH OF THE THREE RUNS.

superior, with a reported score in this additional experiment
of 20.33 and S.E.M of 0.02 for the (0.45,0.8) elite, versus a
score of 20.11 for Mirror situational with the same S.E.M.

Note that 74 niches have a score of zero. This is expected
due to the degeneracy of strategy that happens when one
of the behavioral dimensions is close to zero. An agent
with communicativeness close to zero will almost never give
a hint. Agents with very high or very low risk aversion
will only play cards that have a high probability of being
playable or unplayable, respectively. When paired with a non-
communicative agent, they will never have enough information
to play a card, justifying the scores of zero in both the top-left
and top-right regions of the map.

A. Cross-run evaluations

One of our main goals is that our method can be used
repeatedly to provide pools of agents for ad-hoc cooperation
benchmarking, without relying on secrecy. This requires cor-
responding individuals to be diverse from run to run, so that it
is not easy to predict their actions even if their niche is given
alongside agents from previous runs. To verify whether we
succeeded, we first performed two new runs of the algorithm,
resulting in two new pools of agents. We then paired each
individual in each of the three pools with their corresponding
individual in the other two pools, calculating what score
they achieve when playing together, how similar were their
chromosomes and how similar was their behavior. The results
of these runs are shown in table I.

We then had each individual from each run play 1000 games
paired with the corresponding individual of each other run. The
average score of 8.07 we obtained is very close to the average
self-play performance of the three runs (8.10), indicating that
agents from the same niche, but different runs, play among
themselves about as well as they would in self-play.

We then measured the representation diversity and behavior
diversity of corresponding agents (in the same niche) across
the three runs. To measure representation diversity we com-
puted the Hamming Distance [26] by counting the number of
positions at which the genes of corresponding chromosomes
differ. Each agent was defined by sequence of 15 ordered rules
out of a rule base with 135 rules to choose from. We found the
average Hamming Distance to be 14.24 meaning individuals
shared less than one rule in the same position on average.

We measured behavior diversity by counting how often each
individual takes the same action as their corresponding pair,
when presented with the same game state. We first took the
326 valid agents from our first run and recorded all game states
found over the course of 100 new games for each individual,

for a total of about 140 thousand game states. In these states
there was an average of 13 actions to choose from and we
observed an action similarity of 0.58.

Our results indicate that corresponding agents play quite
well together (comparable to self-play), despite being very
diverse both chromosome-wise and taking the same actions
as each other less than 60% of the time.

B. Intra-run metrics

Intra-run metrics are important to check if individuals in a
single run are varied from each other, and also to generate a
map of which behavioral niches play well with each other. Our
first step was to evaluate pairwise performance of all 326∗326
pairs of valid individuals. We did so by playing 400 games for
each pair, for a total of about 43 million games. We recorded
the average score of each agent when paired with all of the
pool (including itself). Results are shown in figure 2. We also
kept track of which agent was the best partner of each other
agent (and possibly itself) in the population, that is, if we fix
agent (i,j), which agent (m,n) achieves maximum score with
(i.j). The number of times each agent was determined to be
the best partner of some agent in the pool is shown in figure 3.

The results show that, while once again agents with in-
termediate communicativeness and high, but not extreme risk
aversion achieve high scores, agents that were low-performing
in self-play achieve higher average pairwise performance than
their self-play performance. This suggests that weak agents
benefit more from playing with strong agents than from
playing with a mirrored strategy. There is also an interesting
region of the behavior space, from niches (0.1,0.3) to (0.15,
0.35) that not only achieve better scores than their surrounding
neighbors, but were considered best partners for 10 agents.
This is specially curious as there doesn’t seem to be anything
special about this region when looking at the self-play scores.
We suspect that agents with very low risk aversion (which
play only unplayable cards, but require information to do so)
are best paired with low communicativeness agents, as by
withholding information, they cannot play the wrong cards.
We verified that all 10 agents that have agents in this region
as best partners had risk aversion below 0.2 with 9 of them
below 0.1.

The average pairwise fitness, considering only valid indi-
viduals, was 6.64, considerably lower than the average self-
play score of 8.20 among valid individuals in the pool. This
suggests that, for the most part, agents tend to play better with
themselves than with an agent taken randomly from the pool.
To verify whether distance in the feature space played a role,
we also kept track of how average pairwise performance varied
with distance in the feature map. We plotted average pairwise
performance against Manhattan Distance in the feature map.
The results can be seen in figure 4, suggesting that, for the
most part, agents play better with themselves or with nearby
agents than with faraway agents. Note that no pair of valid
individuals had Manhattan Diistance greater than 33.

We also calculated the average intra-run Hamming Distance
and Action Similarity. Because of the way we defined the



Fig. 2. Average pairwise performance of each agent when paired with all 326 valid agents in the pool

Fig. 3. Number of pairings for which each agent in the map is the best partner for the other agent.

feature space, individuals that are far away from each other
will necessarily take different actions and have different chro-
mosomes, but it is still interesting to quantify this diversity.
Hamming distance varied from 9.78 between neighboring
individuals to 15 for individuals at a Manhattan Distance of
33. Action Similarity varied from 0.66 to 0.07, supporting the
assumption that nearby individuals are more genetically and
behaviorally similar than faraway individuals.

VI. FUTURE WORK

Our immediate follow-up work is to create challenger agents
based on our discretization of the behavior space and the intra-
run metrics collected by our experiments. Assuming we can
identify the niche of a given individual in a test pool, knowing
which agents are likely to make the best partners for each other
niche could help us select the most effective policy to play
with it. As part of this project, we will take agents previously

Fig. 4. Average score of each pair of agent versus the Manhattan Distance
of these agents in the behavior space



published in the literature and see which behavior niches they
would fit given our methodology, and investigate whether our
findings extend to those agents.

While in this work we measure ad-hoc performance by
equally weighting all agents in the pool, in practical appli-
cations this might be undesirable either because of the large
size of the pool, because some niches have no agents with
good enough performance or because the strategies that play
well with many might be too similar. The first two issues could
be addressed by reducing the number of niches, discarding the
niches with low self-play performance or using some method
to dynamically adjust the granularity (one of the variations
suggested in [9]). The last issue could be addressed by some
form of evaluation that is invariant to redundant agents, such
as the use off Nash averaging (in the context of 2-player zero-
sum games) in [27].

Finally, the current experiments build on a decision-list-
like representation, which is easy to evolve but somewhat
limited in what policies it can express. We will investigate
other evolvable representations, including neural networks and
hybrid agents incorporating some tree search.

VII. CONCLUSION

We showed that, using MAP-Elites, it is possible to generate
a pool of Hanabi-playing agents that differs in two important
behavioral dimensions: risk aversion and communicativeness.
We could to find well-playing agents within a widely different
range of these metrics, but the best-playing agents have
moderate communicativeness and high but not extreme risk
aversion. The best agent we found in this region had a higher
self-play score in 2-player games than the best self-play agent
from our 2018 entry.

The good agents perform best in self-play, whereas bad
agents perform best when matched with certain well-playing
agents. (Additionally, there is a cluster of agents that are
surprisingly collaborative despite low communicativeness,
medium-low risk aversion, and bad self-play.) These results
hold up across independent replications of the experiment.
Importantly, even though individuals in the same cell in
different replications of the experiment have different geno-
types and play different policies, they play well together,
suggesting that the behavioral features identified are relevant
measures of playstyle. The results of this paper suggests a way
making an ensemble-based (or hyper-heuristic) Hanabi agent
which identifies the playstyle of a team-mate and selects an
appropriate matching playstyle from its own repertoire.
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