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Abstract—We present Toribash Learning Environment (To-
riLLE), a learning environment for machine learning agents
based on the video game Toribash. Toribash is a MuJoCo-like
environment of two humanoid characters fighting each other
hand-to-hand, controlled by changing actuation modes of the
joints. Competitive nature of Toribash as well its focused domain
provide a platform for evaluating self-play methods, and evalu-
ating machine learning agents against human players. In this
paper we describe the environment with ToriLLE’s capabilities
and limitations, and experimentally show its applicability as a
learning environment with baseline and human experiments. The
source code of the environment and conducted experiments can
be found at https://github.com/Miffyli/ToriLLE.

Index Terms—video game, self-play, deep reinforcement learn-
ing, combat, learning environment

I. INTRODUCTION

Video games provide a rich and complex environments
for training machine learning agents, without limiting them
to real-time progression like with robotics. Popularity of
such learning environments can be seen from the number of
different video games used for such purpose, such as Atari
games [1], Doom [2], Quake [3] and Starcraft [4], [5]. These
environments provide challenges for agents to complete in
single-agent scenarios, which allows comparing performance
of different learning methods, for example. At the same time
there has been research towards super-human agents in various
games, with success in mechanically simpler games like Chess
and Go. However, when it comes to competitive video games,
the complexity of the game itself is already a challenge in on
itself.

For example, ViZDoom does support playing against other
players, but learning to do so is difficult due to many problems
environment presents [6]: The agents must learn to navigate
around map, explore options like shooting at enemies and
re-experience positive feedback many times for learning to
happen. These challenges must be addressed before agents
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Fig. 1. An in-game image of Toribash with two characters fighting each other.
Two players control their respective characters by changing the state of the
joints in the character’s body. These states define how the joint behaves for
the next simulated timesteps. Winner of the game is the one who received
least amount of damage or the one who did not touch the ground with other
than feet or hands.

can start learning tactics against other opponents, who also
try to out-smart their opponents. Especially training super-
human agents in video games requires computer-cluster level
of computing resources and manual tuning of the reward,
actions and observations [7]–[9].

For a more focused environment for competitive gameplay,
we present a learning environment based on the video game
Toribash [10], named Toribash Learning Environment, or
ToriLLE. Toribash is a game of two humanoid-characters
competing against each other in martial-arts style and con-
trolled by multiple individual joints in their bodies. Given its
competitive gameplay mechanics, active player base of ranked
human players and simple action/state space, Toribash ideal
for studying how to learn robust policies against different
opponents.

Toribash, and video games in general, is not designed for
training machine learning opponents. It is designed for human
players to be ran at comfortable frame rate for couple of
hours at a time. To be a useful learning environment, the
game should be fast and lightweight enough to support running
multiple experiments and not crash during long experiments.
To validate Toribash’s applicability as a learning environment,
we run baseline experiments with three reinforcement learning
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methods in the environment. To top this off we include self-
play experiments and benchmarks against human players from
the Toribash community.

Although we present Toribash as a novel environment for
machine learning, this is not the first time Toribash has
been used in this context. A related publication used genetic
algorithms to train an agent to attack an immobile opponent,
and authors then analyzed how learned behaviour changed
over time [11]. Outside academia, users from the Toribash
forums have experimented with similar approaches in same
task by using neuroevolution of augmented topologies [12],
[13]. In fact, our work is inspired by and partly based on a code
using genetic algorithms to successfully damage immobile
opponent [14]. Our baseline experiments continue this trend
by using recent reinforcement learning algorithms and models
that depend on the current state of the game (i.e. see where
the enemy is).

Our contribution can be summarized as such:
• We present a new type of learning environment, espe-

cially suitable for studying reinforcement learning meth-
ods and competitive agents (e.g. self-play, game theory).

• We show the applicability of Toribash as a learning en-
vironment by running baseline experiments and studying
game’s resource use.

• We show that reinforcement learning agents and self-play
can be used to reach performance that of a beginner
human player in Toribash, without a large amount of
training or modifications to existing learning algorithms.

II. TORILLE: TORIBASH LEARNING ENVIRONMENT

Here we briefly describe the video game Toribash, the
ToriLLE environment and its performance as a learning en-
vironment.

A. Video game “Toribash”

Toribash [10] is a free game1, which consists of two
humanoid characters playing against each other in martial-arts
styled scenarios. See Figure 1 for an example. As of writing,
there is an average of one hundred players online at any given
time2. Players have official ranking based on results of their
games, similar to ELO-rating, with occasional tournaments
where groups/clans or individuals compete against each other.

Game progresses in turns. During each turn, both players
set each of their character’s joints to one of the four states:
hold, relax, extend/raise or contract/lower. We will refer this
as an action. After both players have selected their actions,
game progresses by a fixed number of frames, simulating
the body movements according to the selected joint states.
After this, next turn begins. Game ends when a set number
of frames have passed or one of the players is disqualified, if
such disqualifying rules are set. Joints are visible in Figures 1
and 2 as orange spheres. Detailed list of the joints and their
possible states are listed in Table 1 of [11].

1We also include a copy of the game in our Python package.
2Source: https://steamcharts.com/app/248570 .

The game tracks amount of damage players’ characters have
received (we will call this injury). Different parts of body
receive different amounts of damage, e.g. punching the head
will do more damage than punching the elbow. Game shows
the injury of the opponent as the score of the player. Player
with higher score, and thus least amount of injury, at the end
of the game wins the game. Disqualification can be enabled
as well, causing player who touches the ground with anything
else than feet or hands to lose. Most of the human games
end in such disqualification when disqualification is enabled3.
Players can also dismember characters: Hits strong enough
will detach parts of the player from their bodies. The player
is still able to control joints of severed limbs, and player is
disqualified if such severed limb hits the ground.

B. Why Toribash?

Toribash has the following positive highlights among other
learning environments:

+ Focused problem: Toribash does not present difficulties
like the need for exploration, multi-task learning or long-
term temporal modelling, which is case with e.g. Dota 2
[8] and Starcraft [5]. We study this further in Section III.

+ Competition: Being a competitive game, Toribash lends
itself to game theory research. Specifically, Toribash calls
for game theory techniques that also work in its high-
dimensional and continuous state space.

+ Human players and replays: Toribash has an active and
ranked player base. This allows easy evaluation against
top human players. The game allows replaying stored
games, which can also be used for imitation learning
using replays obtained from human players (e.g. on
Toribash community forums4).

+ Turn-based: Toribash runs in turns, much like Go and
Chess, and players gain little benefit from fast reactions.
This avoids problem of inhumane reaction-times being
huge benefit over human players, which has been ex-
pressed as one the unfair advantages of AI in benchmarks
like in Dota 2 [8] and Super Smash Bros [9].

But, in all fairness, Toribash has some limitations when it
comes to using it as a learning environment:
− Compatibility: Toribash is developed originally for Win-

dows using OpenGL. As such, running the game on
Linux requires additional work (e.g. Wine library), and
OpenGL requires a valid display to initialize correctly.

− Closed environment: Toribash is not open-source and
thus cannot be modified at a lower level.5

Considering both the pros and cons, Toribash does not offer
the flexibility and performance to be used as an environment
for evaluating multiple algorithms against each other or in-
depth analysis of learning methods. Environments like Atari
Learning Environment, MuJoCo or Roboschool offer faster

3Private communicate with an experienced Toribash player.
4http://forum.toribash.com/forumdisplay.php?f=10.
5However the main developer “hampa” was kind enough to implement some

required features for ToriLLE.

https://steamcharts.com/app/248570
http://forum.toribash.com/forumdisplay.php?f=10


Fig. 2. Overview of the Toribash Learning Environment (ToriLLE). ToriLLE uses Toribash’s Lua scripts to communicate with outside controllers over TCP/IP.
For each turn, game sends an observation vector to the controller. Controller replies to this by sending a list of joint states to be executed, and Toribash
progresses by one turn.

execution at a lower computational cost, as well as the
possibility to create various environments and robots. The
benefit of Toribash to research lies in its competitive nature in
high-dimensional state space: Computer agents have to control
a complex body (reinforcement learning, control), but also
reason and plan ahead of the opponent (game theory).

Other video-game environments like Starcraft [5] offer simi-
lar challenges but require special learning methods and/or long
training runs before learning to play against human players
[15]. Meanwhile, current off-the-shelf reinforcement learning
algorithms can be successfully trained on Toribash without
additional modifications (Sections III and IV). We argue this
simplicity makes Toribash ideal for studying how to combine
reinforcement learning and game theory together.

C. Playing Toribash via software

To train agents with Toribash we wish to play Toribash
via programming languages directly. To this end, we use
Toribash’s Lua scripts to send the current state of the game
and receive commands synchronously over TCP/IP, waiting for
the actions from the controller (e.g. Python) before proceeding
game forward. Controller can also control rules of the game
like gravity and initial distance between players.

ToriLLE can be used with any language which supports
TCP/IP networking. We provide a simplified library in Python
which hides all the communication under an API similar
to ViZDoom and OpenAI Gym [1] environments. Figure 3
provides examples of using direct API as well as basic example
of the Gym API. Provided Gym environments implement
required functions specified by OpenAI Gym documentation,
which allows using ToriLLE environments as a drop-in re-
placement of other Gym environments.

For observation information, ToriLLE provides 3D co-
ordinates of the body parts’ locations, their 3D velocities,
rotation matrix of the groin (close to hip), states of joints,
injuries of both players and winner of the game (if any).

Body parts are visible as white shapes in Figures 1 and 2.
This information does not describe the state of the game
completely: We do not know the rotation of any dismembered
limb, for example. The library can be modified to provide
rotations of all joints and other objects in the future.

The Python library includes normalization code for the
observations, centering and rotating the coordinates of body
parts relative to both character’s groin. There are total of 21
body parts on each characters’ body, so e.g. positions of both
characters would be a vector of length 21·2·3 = 126. Toribash
can also provide information on custom objects (e.g. size and
location of obstacles), which can be supported by ToriLLE.

For actions, ToriLLE takes in next state of each joint
in characters’ bodies. These states specify how the joint
will actuate until next turn. There are total of 20 joints for
each character, each of which can be in four possible states
{1, 2, 3, 4}. Character also has hands which can also be in one
of two states release or grip, which can be used to take hold
onto opponent.

Upon end of the game the controller can change the rules
of the game, change the game mod and/or enable recording of
a replay of the next round. Controller can also read a stored
replay to play it through and obtain per-frame information.
Combined with e.g. human replays, this could be used for
imitation learning or for learning the basic dynamics of the
game.

D. Performance

Toribash is designed to be human-playable game at com-
fortable frame-rate of 60 frames per second (FPS), which is
the designed pace of the game (frame-rate dictates simulation
speed). However, being an older game designed to be ran on
older hardware, we can run the game significantly faster on
modern hardware. For a better picture, we ran performance
benchmarks on two different machines.



import t o r i l l e
from t o r i l l e import u t i l s
t o r i b a s h = t o r i l l e . T o r i b a s h C o n t r o l ( )
t o r i b a s h . i n i t ( )
whi le True :

s , t = t o r i b a s h . g e t s t a t e ( )
i f t : break
a = u t i l s . c r e a t e r a n d o m a c t i o n s ( )
t o r i b a s h . m a k e a c t i o n s ( a )

t o r i b a s h . c l o s e ( )

import gym
# R e g i s t e r s e n v i r o n m e n t s
from t o r i l l e import envs
e = gym . make ( ” Tor iba sh−DestroyUke−v0 ” )
whi le True :

a = e . a c t i o n s p a c e . sample ( )
s , t , r , i = e . s t e p ( a )
i f t : break

e . c l o s e ( )

Fig. 3. Example snippets of Python code running random agent on Toribash via ToriLLE, with default interface (left) and Gym environment (right). Settings
of Toribash can be defined on creation and episode reset (not shown in the code).
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Fig. 4. Performance benchmark results of ToriLLE with episode length of
1000 frames and engagement distance of 1500 (i.e. no collisions between
players). One agent step is after every “Frames per turn” frames. Toribash
can be ran at FPS comparable to Starcraft 2 environment [5] and scales up to
four parallel instances on same machine before benefits from more instances
diminish. With higher frames-per-turn the game runs faster but also increases
time between agent steps. Toribash runs notably faster on high clock-rate
machines than on multi-core machines.

We ran benchmarks for a minute by executing random
actions for both players and calculating the average FPS over
the run. We varied the number of frames between turns to see
the overhead caused by communication between Toribash and
Python program. We also repeated experiments with multiple
instances of ToriLLE in parallel asynchronously to see how
well Toribash scales up for multiple cores.

Benchmarking results presented in Figure 4 indicate that
Toribash scales up to four instances almost linearly, but beyond
that the benefits begin to diminish. Curiously, even with 16
physical CPU cores, moving from 8 to 16 parallel instances
provides lower total FPS. We believe this has to do with
varying clock-speeds of modern processors, where clock-speed
of an individual core is reduced when processor is under a
heavy load. The Toribash environments run notably faster on
a quad-core, higher clock-speed CPU. With longer turns the
overall FPS is higher but this also reduces the rate at which
agent receives observations from the environment.

The complexity of simulation also has influences the game
speed: In our experiments in Section III we noticed the

speed of the environments changing as agent learns to punch
the other player, requiring more computation to process the
collisions. We do not include this effect in our benchmarks as
it cannot be controlled with simple settings.

While running and creating the benchmarks, we noted
following three things related to the performance of the
environment:

Toribash and Linux. Up-to-date Toribash binary is only
available for Windows on Steam, but modern versions of Wine
are able to run Toribash on Linux machines as well. We used
Wine 3.0.2 to run the experiments included in this paper.

Resources. One instance of Toribash uses at most one CPU
core, around 700MB of system memory and 20MB of GPU
memory on Ubuntu 16.04. No memory leaking or slow-downs
were observed during experiments done in this work. This
allowed us to comfortably run 10 instances of Toribash on a
16-core server machine for a week.

Headless rendering. Toribash uses OpenGL to render the
game, which requires a valid display where screen buffer
can be created. Creating valid screen buffers on headless
servers and/or over SSH connections requires special setups.
One way is to use virtual screen buffers like Xvfb. As of
writing, Nvidia drivers do not work with Xvfb, and CPU-
based rendering must be used. We observed notably smaller
frame-rate from this setup, and especially the total FPS gain
with multiple instances vanishes.

III. TORIBASH AS A MACHINE LEARNING ENVIRONMENT

Now for a pressing question: Is this environment suitable
for training machine learning agents? Since the game is not
originally designed to be used for experiments like this, there
are no guarantees it would be fast or stable enough for long
experiments spanning multiple days or even weeks. The game
could be leaking memory and crash every now and then, or it
could end up being too slow/heavy to run to obtain samples
from thousands of games.

The environment can also prove to be too difficult to
machine learning algorithms: Seemingly simple games like
reaching goal in a small maze or Super Mario prove to be
too difficult for current reinforcement learning algorithms by
default, and they require additional modifications to learn
successfully in the mentioned environments [18]. If we want to
focus on the competitive aspect of the game (i.e. game theory



Fig. 5. Learning curves of training three different learning algorithms with
goal of damaging immobile target in Toribash. Each line is an average over
five repetitions, and for each individual run one point on the curve is average
performance over 200 last games. Shaded area is the standard deviation
over these five runs. Hyperparameters are selected per method for highest
score. While these methods have been reported to have clear differences in
performance in other experiments [16], [17], in Toribash their performance is
approximately same.

side), the environment mechanics and rules should be simple
enough so that the learning algorithms can learn to play the
game.

To find answers to these questions we trained off-the-shelf
reinforcement learning algorithms in this environment. By
successfully running the experiments, we show that Toribash
indeed is stable enough to be used for machine learning
purposes. By training agents that improve over time in the
task, we also show that the environment is simple enough to
be learned by current algorithms without additional fine-tuning
or modifications.

The code used to run the experiments is available at https:
//github.com/Miffyli/ToriLLE/tree/master/experiments.

A. Environment and task

The environment consisted of the agent’s character and Uke
character, which stays immobile. The task in the environment
was to damage the Uke and avoid receiving damage yourself.
The starting distance between players was randomly selected
from the interval [100, 200] to encourage more general solution
rather than memorizing certain sequence of actions to play.
The games lasted for 1000 frames and each turn advanced by
10 frames. This lower-than-normal number of frames per turn
allows finer control over character than in default mods, where
humans play with 20− 40 frames per turn.

Reward: Given the change in player’s injury between
two successive turns ∆p and Uke’s injury ∆u, the reward
signal for agent was (∆u −∆p)/5000. That is: Damage the
opponent without causing damage yourself. Note that this
reward is always zero or positive, since amount of injury never
decreases. The normalizing term was used included to avoid
large magnitudes. Using logarithmic scale with appropriate
base would also work as an normalizer for the reward, but

accumulated reward in log-scale would be higher for many
smaller hits than for few stronger hits (e.g. 4 · log10(10) >
log10(1000)).

Observations: Agent received normalized locations of both
players w.r.t to player’s groin, with rotation of player’s groin
included. We replaced the height coordinate of player’s groin
with the absolute height, so that the agent knew its relative
position to the ground. The final observation space was thus
x ∈ R126, where values were clipped to interval [−30, 30] to
avoid too large numbers for the neural network.

Actions: The action-space consisted of selecting one of
four states for each joint, i.e. a multi-discrete variable. The
agent chose one of four states for each of 22 joints during
each turn.

B. Learning algorithms

As per with reinforcement learning research, we wish
to compare different learning algorithms by analyzing their
performance in the environment over training regimen. Each
training run lasted for three million agent steps (turns), and
we repeated each experiment five times to include the variance
between runs.

We selected three distinct actor-critic methods for our
comparisons: Proximal Policy Optimization (PPO) [16], Trust-
Region Policy Optimization (TRPO) [19] and Soft-Actor Critic
(SAC) [17]. To avoid implementation bugs, we used pre-
existing implementations of PPO and TRPO from stable-
baselines package [20] and SAC implementation from rlkit
package6.

We selected these three based on their state-of-art results
in MuJoCo locomotion tasks (similar to Toribash’s character),
for their applicability to multi-discrete action spaces (multiple
joints with multiple discrete possibilities) and for existing
implementations of the methods. Other possible algorithms
include Branching DQN [21], which modifies DQN to work
with this type of action space, and evolution-strategy methods
[22].

For all methods and experiments, we used a small network
of two hidden layers with 64 units each and tanh-activations.
In PPO and TRPO experiments same network was used for
estimating both value function and policy. In SAC experiments
there were three separate networks: One for value estimation,
one for state-action estimation (for computing advantage)
and third network for policy estimation. All networks in all
experiments were trained with an Adam optimizer [23].

C. Hyper-parameters

The three included RL learning algorithms are sensitive
to settings set at the beginning of the training (“hyper-
parameters”), and Toribash presents a novel task to be com-
pleted, so we cannot be sure which set of hyper-parameters
works best for Toribash tasks. For a fair comparison between
these methods, we aim to find best hyper-parameters for each
algorithm.

6https://github.com/vitchyr/rlkit.
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To find suitable hyper-parameters, we trained learning algo-
rithms on default Toribash-DestroyUke-v1 Gym envi-
ronment with different hyper-parameters. We then selected the
best-performing hyper-parameters for the final experiments.
In general, we found that amount of exploration (weight of
entropy loss) plays a significant role across all three learning
algorithms, and with too low or high weight the algorithms
were unable to improve over time. We ran experiments over
different magnitudes of entropy loss weight from in interval
[10−1, 10−5].

PPO is usually trained with multiple concurrent environ-
ments to gather more diverse dataset for updates, as well
as with large batch size before updates. However, we found
that PPO learned faster and scored higher with only one
environment and batch size of 128 experiences, compared to
higher batch sizes or more environment. For weight of the
entropy loss (encourages exploration) we select 10−4.

TRPO is also trained with a single concurrent environment
and 1024 samples per update. Entropy loss weight 10−3 had
highest score.

While SAC also uses weight of the entropy loss to encour-
age exploration, the implementation also includes automatic
entropy scaling [24]. However, we found this automatic tuning
to very quickly set the entropy weight very low, and agent was
not able to improve after that point. Instead we select static
entropy loss weight of 10−5. Reward-scale was mentioned as
one of the sensitive parameters, and we found 1.0 to perform
best. Each policy update is done with 128 samples from a
single environment.

D. Experiment results

Starting with the question related to validity as a learn-
ing environment: All experiments including hyper-parameter
search took a total of one week of computing on a 16-core
server and quad-core workstation, and there were no issues
observed (no random crashes or memory leaking). This shows
that Toribash is indeed stable and fast enough to be used as a
learning environment. Note that we only used one instances of
the environment per experiment and ran multiple experiments
in parallel. According to benchmarks in Figure 4, one can
also speed up individual experiment by running multiple
environments per experiment.

As for the learning performance: Learning curves averaged
over five repetitions are shown in Figure 5. All of the three
agents are indeed able to improve over time as training
progresses, signaling that the task is indeed learnable without
modifications to the learning algorithms. What is curious
is the similar performance of all three learning algorithms:
Research related to these methods shows that PPO is clearly
outperformed by SAC in MuJoCo and robotics tasks [24],
where controlled humanoids have similar structure.

The major difference between different learning algorithms
is the variance of final performance between different runs:
PPO’s final performance varied in range 4.3 to 12.7, TRPO
in range 5.8 to 9.1 and SAC in range 6.3 to 8.7. Upon
subjective inspection of the learned models, TRPO and SAC

learned very similar techniques across different runs despite
the randomness of the environment (engagement distance)
and different initial parameters. PPO learned different tactics
across the different runs, sometimes ending up with just a
strong kick which launched the opponent outside player’s
reach (lowest performance) but in one run agent learned to
constantly pummel the opponent for more damage (highest
performance).

In light of these results, the requirement for reaching the
optimal solution in this environment is not the best available
learning method but a better exploration strategy: The main
Achilles’ heel of all tested learning algorithms was the fact
that they initially learned some opening moves, and later
on only built upon these without exploring different opening
moves. This problem could be approached with novelty search
/ diverse policies [25], where agents are encouraged to try
novel approaches to the task.

IV. SELF-PLAY EXPERIMENTS AND PLAYING AGAINST
HUMANS

Given the successful experiments with RL agents in the
previous section, a natural follow-up question arises: How well
these agents could play against humans in Toribash? Given
the success of RL agents beating human players in various
games [7], [8], [26], it indeed seems possible to do in Toribash
as well. With this in mind, we continued by training RL agents
with self-play to beat human players.

A. Setup

Task and environment: For game rules we selected a
commonly played multiplayer mod aikidobigdojo.tbm.
The mod includes a large area called dojo. Players lose if they
touch the ground with other parts than hands or feet inside dojo
or with any part outside the dojo. Mod has time-limit of 500
frames, and number of frames per turn increases from 10 to
50 over the game.

Observations: Agents received relative locations of players’
body-parts, rotated and translated according to their groin.
With this information alone agent cannot know if it is inside
the dojo, which is why we included player’s distance from
the center in the observations. We also included number of
frames left in the game and number of frames for next turn.
This observation does not include current joint states of either
player, making the environment only partially observable. We
compensated for this by using recurrent models.

Agent: We selected PPO algorithm based on the results
from the previous experiment and due to its previous success in
self-play experiments [8], [27]. The neural network consisted
of one 64 unit layer followed by a 64 unit LSTM layer [28].
With a LSTM layer, the agent is able to construct a hidden
state that includes information from previous observations, e.g.
model the velocity of the body parts and enemy behaviour. We
set entropy coefficient to 0.01 and number of samples per up-
date to 512. We continued using high-quality implementation
of PPO from stable-baselines [20] in self-play experiments.



Self-play training: PPO agent was trained by mostly
playing against itself. We launched four separate instance of
ToriLLE with above settings, in which the learning agent
(one being updated) fought against different opponents. The
opponent was either a randomly playing agent (20%), one
of the previous learned models (20%) or the current learning
agent (60%). The opponent was randomly changed after every
game with 1% probability. We included random agents and
previous versions to diversify the opponent pool, which has
been found to be beneficial [27]. The agent being trained only
played as the Player 1, while the opponent was always the
Player 2. The game should be perfectly mirrored between the
two players, and as such it should not matter as which player
you play. However, following results show otherwise.

B. Training results

We ran two shorter experiments of 5M game-steps (run 1
and run 2) and one longer training of 20M steps (run 3, equal
of a week of wall-clock time on a modern quad-core machine).
The first two experiments did not include random agent as one
of the opponents. The parameters of agent were saved at fixed
intervals. To find a candidate to play against human players,
we played each saved agent against all other saved agents
for 100 episodes. This provided a better picture which of the
learned parameters was most promising to play against human
players, as we compare one agent version against opponents
they did not experience during training.

The results of evaluating all saved agents against each other
are presented in Figure 6. Note that each pair of agents
is evaluated against each other twice but with flipped roles
(Player 1 and Player 2). Ideally this matrix should look
antisymmetric: If agent beats another as Player 1, it should
do the same as Player 2. However, in the figure we see large
areas where agent X wins over agent Y, but then agent Y wins
agent X when player roles are flipped (bright boxes).

Upon closer inspection of games between agents like this,
we found that both players are receiving same observations
and taking same actions initially. However, in the next turn
Player 2 received a slightly different observation, with some
variables being different from Player 1’s by less than 1%.
While a minimal difference, it was enough for Player 2 to pick
different actions than Player 1, despite in reality the game state
is mirrored between players. This difference in observations
stems from rounding errors in observation handling (rotating
by matrix multiplication), and possibly from the mechanics of
Toribash (imprecision in the simulation).

This deviation from learned strategy as Player 2 led to
Player 1 gaining upper hand constantly7. This led to Player
1 being a constant winner in the game and learning algorithm
enforced this behaviour, but this behaviour was not ideal for
Player 2. This created a feedback loop of agent learning this
one specific strategy which only works if the opponent does
very same actions (which it did, thanks to self-play training).

7Quite literally: Player 1 ripped off the arm of Player 2 and threw it into
the ground, resulting in a victory for Player 1.

Fig. 6. Performance of 46 self-play agents from three different training
runs playing against each other. Small numbers indicate agent’s revision in
that training run. Each pixel is agent on row as Player 1 versus agent on
column as Player 2, and bright color represents higher score for Player 1.
Ideally this matrix should look antisymmetric, but we see Player 1 often
dominates regardless of the agent revision (run 1 and 3, bright boxes), even
when both players are the same agent (bright diagonals). Between training
runs the results are as expected (antisymmetric), with run 1 having weakest
agents overall (dim upper right and upper center boxes).

Use of older models of the agent and random opponents did
not help with this issue.

These results highlight the need of more diverse opponent
pools, like having multiple different learning agents playing
against each other [7]. Especially when using self-play to train
agents in Toribash environment, the agent should be exposed
to playing as both players rather than just playing as Player 1
or Player 2, even if the observations are normalized to be the
same for both players.

C. Performance against human players

We selected version 24 of run 3 and version 4 of run 2
for their performance against all other agents, and then pit
them against two human players from the Toribash community,
one with several hundreds and another with more than two
thousand hours of gameplay time. We did not gather personal
information of the players for anonymity. Players played five
rounds in total, three games against one of the models and
then two rounds against the another, in random order. We did
not disclose against which agent humans were playing against.

The more experienced player won both models in all games.
The other player won 1/3 games against run 3 model, and
1/2 of games against run 2 model. Both agents were said to
have very defensive behaviour with focus on avoiding touching
the floor, rather than actively trying to win the opponent.
Both human players commented that both agents could be
considered decent human players, and clearly above a novice



player. The more experienced player placed them on same
performance level as a human player with 20 to 40 hours of
gameplay time.

The behaviour was said to be deterministic as well, with
little reaction to the current situation. Indeed, the actions taken
by agent changed rarely as the game progressed or even against
different players. The agents were also susceptible against out-
of-training-set opponent tactics: Human players were able to
throw the agent off the stage with no resistance from the agent,
as the agent never saw this behaviour during its training.

By successfully running these experiments we show that
Toribash indeed can be used for self-play experiments along
with human evaluations. While the results leave a lot to be
desired in terms of performance against humans, it presents
an exciting milestone among other video games used to
benchmark autonomous agents against humans.

V. CONCLUSION

We presented ToriLLE: An agent learning environment
based on video game Toribash, a humanoid martial-arts game.
Conducted experiments and benchmarks show Toribash’s ap-
plicability as a learning environment. The prime contribution
of Toribash to machine learning community is the focus
on task of outplaying the opponent, such as human, in the
game. Unlike other competitive learning environments like
Starcraft 2, Toribash has simpler mechanics, which we show
by successfully training off-the-shelf learning algorithms on
the environment without per-environment modifications. We
continued on these experiments with self-play learning in
hopes of defeating human players, and the agent was able to
learn beginner-level skills but was not able to win experienced
human players. This task of defeating human players in
Toribash thus remains an open problem and as an exciting
field for future research.

As a related note, the next instalment of the Toribash, named
“Toribash Next”, is under development and is implemented in
Unity. Given Unity’s support for machine learning agents [29],
Toribash Next could lend itself more conveniently for machine
learning purposes.
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Playing doom from pixels,” arXiv preprint arXiv:1809.03470, 2018.

[7] M. Jaderberg, W. M. Czarnecki, I. Dunning, L. Marris, G. Lever, A. G.
Castaneda, C. Beattie, N. C. Rabinowitz, A. S. Morcos, A. Ruderman,
et al., “Human-level performance in first-person multiplayer games
with population-based deep reinforcement learning,” arXiv preprint
arXiv:1807.01281, 2018.

[8] OpenAI, “Openai five.” https://blog.openai.com/
openai-five-benchmark-results/, 2018. Accessed 23-October-2018.

[9] V. Firoiu, W. F. Whitney, and J. B. Tenenbaum, “Beating the world’s best
at super smash bros. with deep reinforcement learning,” arXiv preprint
arXiv:1702.06230, 2017.

[10] Nabistudios, “Toribash.” http://www.toribash.com/, 2006.
[11] J. Byrne, M. ONeill, and A. Brabazon, “Optimising offensive moves

in toribash using a genetic algorithm,” in Proceedings of the Sixteenth
International Conference on Soft Computing (MENDEL), 2010.

[12] ToribashUsers, “Toribash forums: Violence evolved: a script that uses
a genetic algorithm to evolve openers.” http://forum.toribash.com/
showthread.php?t=167355, 2010. Accessed 22-May-2018.

[13] ToribashUsers, “Toribash forums: Suggestions and help for neat a.i.
script.” http://forum.toribash.com/showthread.php?t=25263, 2008. Ac-
cessed 22-May-2018.
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