
Multimodal Joint Emotion and Game Context
Recognition in League of Legends Livestreams

Charles Ringer∗†, James Alfred Walker†, Senior Member, IEEE, Mihalis A. Nicolaou∗‡

∗Department of Computing, Goldsmiths, University of London, London, UK SE14 6NW
†Department of Computer Science, University of York, UK, York, UK YO10 5DD

‡Computation-based Science and Technology Research Center, The Cyprus Institute, Cyprus
Email: c.ringer@gold.ac.uk, james.walker@york.ac.uk, m.nicolaou@cyi.ac.cy

Abstract—Video game streaming provides the viewer with
a rich set of audio-visual data, conveying information both
with regards to the game itself, through game footage and
audio, as well as the streamer’s emotional state and behaviour
via webcam footage and audio. Analysing player behaviour
and discovering correlations with game context is crucial for
modelling and understanding important aspects of livestreams,
but comes with a significant set of challenges - such as fusing
multimodal data captured by different sensors in uncontrolled
(‘in-the-wild’) conditions. Firstly, we present, to our knowledge,
the first data set of League of Legends livestreams, annotated for
both streamer affect and game context. Secondly, we propose
a method that exploits tensor decompositions for high-order
fusion of multimodal representations. The proposed method is
evaluated on the problem of jointly predicting game context and
player affect, compared with a set of baseline fusion approaches
such as late and early fusion. Data and code are available at
https://github.com/charlieringer/LoLEmoGameRecognition

Index Terms—Livestreaming, multimodal fusion, multi-view
fusion, affective computing.

I. INTRODUCTION

Livestreaming is an exciting and emerging area of video
games entertainment. People find watching other people play
games compelling [1], as evidenced by the popularity of
streaming services like TWITCH.TV1. Typically, a live stream
entails the broadcast of a set of both visual and auditory data.
This includes game footage along with a webcam overlay
showing the streamer (Fig. 1), as well as auditory data which
includes in-game audio as well as speech and non-verbal
cues. As a result, livestreaming presents a rare opportunity
for studying streamer emotion and affect at the same time as
the stimulus for this emotion, i.e. their game-play experience.

Modelling livestreams is an inherently ‘in-the-wild’
paradigm, using organically generated real-world data [2], [3],
and therefore subject to many complicating factors such as
visual and audio occlusions. Such occlusions can either be
temporary, e.g. the streamer looking away from the camera,
or permanent, e.g. overlays placed over the game scene or the

This work was supported by the EPSRC Centre for Doctoral Training
in Intelligent Games & Games Intelligence (IGGI) [EP/L015846/1] and
the Digital Creativity Labs (digitalcreativity.ac.uk), jointly funded by EP-
SRC/AHRC/Innovate UK under grant no. EP/M023265/1.

1www.twitch.tv

music that the streamer is listening. Other difficulties include
streamers having their webcams at a range of angles, using
varying levels of lighting, and choosing different volume levels
between their voice, music and the game audio. Additionally,
modelling streamer affect and game context is a multimodal,
or multi-view, problem where a key challenge is joining
information from multiple views, e.g. webcam, game footage
and audio, to form a single model. It is possible that these
complicating factors contribute to the lack of past study into
audio-visual stream data, but we feel that despite this there are
compelling reasons to study livestreaming. In fact, one goal of
this work is to invigorate the research community and spark
interest in this topic.

This paper presents two contributions. Firstly, a data set
of streamers playing the popular Multiplayer Online Battle
Arena (MOBA) game League of Legends2 is presented, along
with annotations for both streamer affect and in-game con-
text. Secondly, a novel method for fusing multiple views by
modelling high-order interactions using a ‘Tensor Train layer’
[4] is presented and evaluated on this dataset. Additionally,
we present a comparison of this method with several existing
fusion approaches, thus providing baseline results for the
dataset.

In this work, experiments are presented for all fusion meth-
ods in terms of modelling affect and game context both jointly
as well as separately. In essence, this paper acts as a platform
inviting further research into this problem, and a starting point
for the study of supervised learning in terms of modelling the
multiple facets of livestreams and their interactions.

II. RELATED WORK

A. Analysis of Game Streams

Livestreaming is a young technology and so currently lacks
a wealth of former work dedicated to it. Existing studies into
modelling livestreams have focused on detecting ‘highlights’,
i.e exciting or important moments, in streams. Chu et al. [5],
[6] looked into various facets of League of Legends esports
broadcasts, building models of highlight detection, focusing
on modelling hand-crafted features such as the number of

2Riot Games, 2009
978-1-7281-1884-0/19/$31.00 ©2019 IEEE

ar
X

iv
:1

90
5.

13
69

4v
1

 [
cs

.C
V

]
 3

1
M

ay
 2

01
9

players on screen, and event detection, utilising text recog-
nition on in-game messages. Additionally, our previous work
[7] focused on using unsupervised learning to detect highlights
in livestreams of Player Unknown’s Battlegrounds using a
technique similar to ‘feature fusion’, as presented in this paper,
to fuse measures of novelty across views over time.

Often, instead of studying streams themselves, past re-
search has focused on the social and community aspects of
livestreaming. Examples include Smith et al. [8], Recktenwald
[9] and, Robinson et al. [10] who studied streamer - viewer
interactions. Others have examined the behaviour of streams
in general, taking a higher level view by looking at features
such as the number of viewers and the length of streams, such
as Kaytoue et al. [1] and Nascimento et. al [11].

B. Studies of Player Experience Through Visual and Audio-
Visual Data

Most prior work into audio-visual models of player ex-
perience do not use livestreaming platforms as their source
of data. For example, the Platform Experience Dataset [12]
is a data set of players playing the platformer game Infinite
Mario Bros. This data set has been utilized in several studies,
for example, Shaker et al. [13] developed player experience
modelling techniques, while Asteriadis et al. [14] used this
data set to cluster player types. Additionally, off-the-shelf
affect models have been used to study player experience, for
example Blom et al. [15] explored how these models could be
used to personalise game content and Tan et al. [16] performed
a feasibility study exploring player experience modelling via
visual cues, concluding that facial analysis is a rich data source
which warrants more exploration.

C. Multimodal Machine Learning

The problem of analysing multiple views is an open chal-
lenge in the affective computing and computer vision com-
munities and describe situations where multiple data sources,
e.g. audio and images, depict different views of the same
event. Generally speaking, attempts to tackle this problem have
focused on the question of fusion - how can multiple views
be joined, or fused, into a single model. There is no general
consensus on what the most appropriate fusion technique is
with many studies attempting to perform fusion in different
ways within the network architecture [17], [18]. Some of the
most popular techniques for fusion in ‘end-to-end’ systems,
where the inputs are raw data extracted from the video and
the outputs are the classifications, include early (feature) fusion
and late (decision-level) fusion. While early fusion refers to
concatenating raw features or representations (e.g. [19], [20]),
late fusion is usually performed on bottleneck features (e.g.
[21]). Note that other fusion approaches exist, e.g. model
fusion, where separate models are utilized for each view and
subsequently aggregated (e.g. EmoNets [22]). However, such
approaches are not naturally suited to an end-to-end system as
two stages are often required during training.

A significant advantage of utilizing multimodal data, as
Ngaim et al. [19] note, is that exploiting information from

Fig. 1. Example screenshot from a League of Legends livestream.

multiple views can significantly aid learning from noisy and
imperfect data (e.g. when audio is noisy). This suggests that
multimodal fusion may be well suited to the problem at
hand, where noise is introduced due to uncontrolled conditions
(discussed in Section I). This is also crucial for modelling
behaviour and affect, as it is well known that audio information
is more suited to predicting emotional arousal, while visual
data is more suited for modelling valence [23]. Therefore,
fusing these views allows for holistic modelling of affect. We
refer the interested reader to [17] and [18] for more details on
the literature in multimodal learning.

D. Tensor Decompositions

This paper presents a method for utilizing tensor decompo-
sitions as a fusion mechanism in order to model high order
relationships between multiple views. For the purposes of this
work, a tensor refers to the general term for an array of values
where the rank refers to the dimensionality of the array e.g. a
vector is a rank-1 tensor and a matrix is a rank-2 tensor. The
proposed approach is similar to Zadeh et al. [24], where Tensor
Fusion was employed to fuse multiple views in a sentiment
analysis task. Likewise, this work utilises a Tensor Train [25]
[26] layer that decomposes a tensor into a set of simpler and
smaller ones in a weight-efficient manner. Other researchers
have used similar approaches to aid different tasks, e.g. Yang et
al. [4] utilizes a (recurrent) Tensor Train layer, directly on the
pixels of a video replacing the convolutional layers. Kossaifi et
al. [27] used similar tensor methods on the unflattened output
of a Convolutional Neural Network and showed that these
types of decomposition can be trained in an end-to-end model.
Anandkumar et al. [28] provide a comprehensive overview of
tensor decompositions for learning latent variable models.

III. DATA SET

League of Legends is a MOBA game where two teams of
five players compete with the goal of reaching and destroying
the opposing team’s base. It is one of the most popular esports,
with at least 5 professional leagues and numerous global
competitions3. In addition, it is an incredibly popular game

3https://eu.lolesports.com/

for streamers and is regularly in the top 3 most popular games
being streamed on TWITCH.TV4. Video data5 was gathered
from streamers playing League of Legends on TWITCH.TV.
The data set consists of 10 streamers, five male and five
female, streaming in English, and using TWITCH.TV. 20
minutes of footage was gathered from 3 games for each
streamer for a total of 10 hours of footage. This data was then
segmented into five second long non-overlapping segments, for
a total of 7200 video clips. Each clip was manually annotated
across three labels, two of which related to the streamers affect
and one of which related to what the streamer was doing in
the game. Note that while the number of streamers is limited
by the effort required to manually annotated data the length
of the data set is in keeping with other works e.g. [5], [6].

A. Emotional Affect Annotation

Each clip was annotated for affect, using the streamer’s
facial, bodily and vocal cues to judge their emotional state.
Affect was annotated across two dimensions, valence and
arousal. ‘Valence’ relates to the positive/negative axis of
emotion whereas ‘arousal’ relates to how strongly someone is
feeling/displaying emotion. For valence each clip was rated on
a three-point scale, positive, neutral or negative. For arousal,
a two-point scale, neutral or positive, was used because
video games, especially League of Legends, are not generally
designed to elicit negative arousal and so this did not appear
often in the data set. Therefore each clip receives a valance
and arousal classification according to observable displays of
the following:
Negative Valence Negative feeling e.g sadness.
Neutral Valence A lack of discernible valence.
Positive Valence Positive feeling e.g. happiness.
Neutral Arousal A lack of discernible arousal.
Positive Arousal Strong emotional response e.g. anger or

excitement.
As can be seen from Table I there is a huge imbalance

between classes with a skew towards neutral affect in both
dimensions. This is to be expected; often gamers are engrossed
in gameplay, and as a result, do not show outward emotion.
This adds another complicating factor to the difficulty of
learning affect in a livestream setting.

B. Game Annotation

Each clip was also annotated for game context, relating to
what the streamer was doing during the clip. This behaviour
is not always represented on screen for the full duration
of the clip, in most cases due to players quickly switching
their camera in-game to observe what others are doing.
Eight categories were chosen which represent the majority
of gameplay and for the occasions where the player is doing
something outside of the scope of the categories a ninth
‘miscellaneous’ category was used:

4https://twitchstats.net/
5Code for all models along with the data set can be downloaded from

https://github.com/charlieringer/LoLEmoGameRecognition

In Lane Farming ‘creeps’ (game controlled enemies) in a
lane. Often the default action.

Shopping Spending gold earned in-game on items.
Returning to Lane Walking back to lane after re-spawning,

shopping or returning to base for health.
Roaming Roaming the ‘jungle’ area, the space between lanes.
Fighting Engaging in player vs player combat.
Pushing Pushing into and attacking the enemy base.
Defending Defending their own base.
Dead Killed and is awaiting re-spawn.
Miscellaneous Something not covered above.

Similarly to the affect annotations, there is an imbalance be-
tween game event classes, although less pronounced. ‘In Lane’
and ‘Roaming’ are the most popular activities, representing
33.58% and 19.75% of the data respectively, shown in Table I.

C. Data Pre-Processing and Over-Sampling

Once annotated, all clips where the game annotation was
‘miscellaneous’ were removed because this label does not
accurately represent the content of the clip. Next, the data set
was split randomly into 20% testing data, 1375 clips, and 80%
training data, 5517 clips. The training data underwent a further
pre-possessing step, oversampling, to help address the class
imbalance in the data. Traditionally, oversampling algorithms,
e.g. SMOTE [29] and ADASYN [30], generate synthetic data
for minority classes by finding points between two existing mi-
nority examples. However, these techniques are not applicable
to videos, which features both incredibly high dimensionality
and important inter-view relationships. Therefore, synthetic
data is generated as clones of existing minority class data.

It is important to ensure that oversampling a minority class
in one output does not increase the majority class if it belongs
to a different output. Therefore, the least and most represented
classes across all annotations are calculated, with a weighting
applied to account for the varying number of classes between
outputs, see Equation 1 where wc is the representation weight
for a class c, Tc is the total for this class, Td is the total data
points in the data set, and Nc is the number of classes for this
output. Next, a data point is selected at random which is in the
least represented class and not in the most represented class.
The selected clip is then cloned in the data set. This process
is repeated until either a predefined threshold is reached (the
chosen threshold for this work was the size of the initial
data-set) or no data satisfies the selection requirement. The
result of this oversampling is shown in Table II.

wc =
Tc

Td/(1/Nc)
(1)

The data is also processed by taking each five-second clip
and extracting visual and audio frames at a rate of four frames
per second. Game images are 128 × 128 × 3 down-sampled
images taken from the frame. They represent the game context
on the screen and have a black patch placed over the streamer’s
webcam. The streamer’s webcam images are 64 × 64 × 3
down-sampled images taken from the frame and represent
what is present in the streamer’s webcam and contain no

TABLE I
DISTRIBUTION OF ANNOTATIONS IN THE RAW DATA SET.

Valence Arousal Game Context

Neg Neut Pos Neut Pos In Lane Shopping Ret. to Lane Roaming Fighting Pushing Defending Dead Misc.

246 6,227 727 6,755 445 2,418 294 591 1,422 892 213 233 831 308

TABLE II
IMPACT OF THE OVERSAMPLING TECHNIQUE ON THE TRAINING DATA SET.

Valence Arousal Game Context

Neg Neut Pos Neut Pos In Lane Shopping Ret. to Lane Roaming Fighting Pushing Defending Dead

Before 0.033 0.862 0.104 0.937 0.063 0.35 0.043 0.084 0.206 0.13 0.03 0.033 0.123

After 0.259 0.483 0.257 0.725 0.275 0.181 0.097 0.097 0.146 0.103 0.181 0.097 0.181

gameplay data. The audio represents a joint stream, containing
the streamer’s voice, the game audio, along with occlusions
such as any music the streamer is listening to and represents
the raw audio waveform as a single vector of length 5512.
Therefore, the input data for each clip consists of 20 frames
(4 fps × 5 seconds) represented as two image tensors and one
audio vector. The temporal and spacial down-sampling was
chosen empirically to provide a reasonable middle ground
between representing the original clip and reducing the data
passed into the network for performance reasons.

IV. METHODOLOGY

Three models with a similar underlying structure were
developed to compare fusion technique. First, a set of
latent features are extracted from each frame using a set of
convolutional neural networks (CNNs). When considering
views containing image data a 2D CNN is used, whereas
on the audio stream a 1D CNN is applied, due to the one-
dimensional shape of the audio data. These features are then
modelled temporally using several Long Short-Term Memory
(LSTM) [31] recurrent layers. Finally, several fully connected
layers are used to extract a set of classifications, dependant
on the task presented to the network. The difference between
models, discussed in IV-B, lies in how the multimodal latent
representations after the feature extraction stage are fused
to build a shared representation of the input. The high-level
architecture for each model is demonstrated in Fig. 2.

A. Feature Extraction

All models use the same set of CNN architectures for
extracting a vector of latent features from each view. The
two image networks, for streamer and game data, use a 2D
CNN with a series of residual blocks [32] to aid in back-
propagating gradient. The difference being that the streamer
network expects a smaller input image and as a result requires
fewer layers and weights to satisfactorily model the features
required. For modelling audio, a feature extractor with 3 1D
convolutional layers followed by a dense layer was used.
After each convolutional layer across all feature extractors,

ReLU activation and Batch Normalization are applied. A
visual layout of these architectures can be found in Fig. 3.
Convolutional and residual block structures are illustrated in
Fig. 4. For more details on residual CNNs, see [32].

B. Multimodal Fusion and Temporal Modelling

Once latent features have been extracted frame by frame
from the various views, the next step is to fuse the views
together to form a single view in addition to modelling
per-frame features temporally. The purpose of this process
is to extract a single feature vector corresponding to a joint
representation across both views and time. Traditionally,
concatenating input or representation space vectors has been
one of the most popular approaches [17]. Nevertheless, this
method can fail in terms of modelling interactions between
views. The fusion approaches detailed in this work include
both early and late fusion, as well as a novel method based
on tensor decompositions to facilitate modelling high-order
interactions between views in an efficient manner. The
methods are detailed in the following sections.

1) Early Fusion: In the early fusion model, fusion is
performed by taking the 512 features extracted for each view
per frame and fusing them into a single vector of l = 1536.
A stack of 20 feature vectors, one for each frame, is then fed
into 2 LSTM layers each with 384 neurons. Before and after
the LSTM layers, batch normalization and 20% drop out are
applied to guard against over-fitting and aid generalisation.
The resulting vector represents the fused representation of
this clip across views and time.

2) Late Fusion: Late fusion is implemented with separate
LSTM layers, with 128 neurons per layer for each view.
Batch Normalization and Dropout layers are applied before
and after the layers. As such, a single feature vector for each
view represents the latent representation of the entire clip
across one view. Concatenation of the various views then
occurs after the LSTM step, and right before classification.

3) TensorTrain Fusion: Both early and late fusion models
concatenate feature vectors from each view into a single
vector. However, this fusion approach has no explicit

Face Images
Game Images
Audio Frames

Streamer 2d CNN
Game 2d CNN
Audio 1d CNN

Concatenation LSTM
Dense Layers
Dense Layers
Dense Layers

Valence Classification
Arousal Classification
Context Classification

Face Images
Game Images
Audio Frames

Streamer 2d CNN
Game 2d CNN
Audio 1d CNN LSTM

Dense Layers
Dense Layers
Dense Layers

Valence Classification
Arousal Classification
Context Classification

Face Images
Game Images
Audio Frames

Streamer 2d CNN
Game 2d CNN
Audio 1d CNN

Tensor Construction
Dense Layers
Dense Layers
Dense Layers

LSTM
LSTM

LSTM

LSTM
LSTM

Concatenation

TT Layer
Valence Classification
Arousal Classification
Context Classification

Inputs Feature Extraction Fusion & Temporal Modelling Classification Outputs

Key: Input Trainable Layer Tensor Operation Output

Early Fusion

Late Fusion

Tensor Train Fusion

Fig. 2. Comparison between the high level architectures of the three fusion techniques presented in this paper. All modes use the same feature extraction and
classification layer shapes but differ in how the input views are fused. Best viewed on a computer.

Audio In

Latent Features Out

Latent Features Out Latent Features Out

Game Image InFace Image In

Conv
Layer Filters: 64Conv

Layer Filters: 64 Conv
Layer Filters: 128

Max Pooling 3x3Max Pooling 3x3 Max Pooling 8

Conv
Layer Filters: 128

Max Pooling 8

Conv
Layer Filters: 128

Max Pooling 8

Global Avg. Pooling

Global Avg. Pooling

Conv
Block

Filters a:
64

Filters b:
128

Conv
Block

Conv
Block

Filters a:
128

Filters b:
256

Conv
Block

Filters a:
256

Filters b:
512

Conv
Block

Residual
Block

Filters a:
64

Filters b:
128

Residual
Block

Filters a:
128

Filters b:
256

Residual
Block

Filters a:
256

Filters b:
512

Residual
Block

Residual
Block

Filters in:
64

Filters out:
256

Filters in:
256

Filters out:
512

Filters in:
64

Filters out:
256

Filters in:
256

Filters out:
512

Dense
Layer

Neurons:
512

Streamer Feature Extraction Game Feature Extraction Audio Feature Extraction

Fig. 3. Architectures of feature extraction modules. Note that each ‘Conv
Block’ and ‘Residual Block’ are in turn multiple layers, resulting in a deeper
network than shown. The makeup of these blocks is show in Fig. 4.

representations which capture the relationship between
variables in different views. To better capture interactions
between different views, we construct a tensor that models
up to third order interactions between views. That is, given
feature vectors vx, vy , vz each corresponding to separate
views, we take the cross product as

z =

[
1
vx

]
⊗
[
1
vy

]
⊗
[
1
vz

]
(2)

were [
1
vx

]
⊗
[
1
vy

]
=

[
1 vx
vy vx ⊗ vy

]
As such the fused feature tensor z ∈ R129,129,129 is created
which contains vx, vy , vz , vx ⊗ vy , vx ⊗ vz , vy ⊗ vz , and
vx ⊗ vy ⊗ vz . The resulting tensor is shown in Fig. 5.

At this point, it would be possible to flatten this feature
tensor and then pass it through a series of dense classification

In Input

Add

Out

Add

Out

Conv
Layer

Conv
Layer

Conv
Layer

Conv
Layer

Conv
Layer

Conv
Layer

Conv
Layer

Filters: a

Filters: a

Filters: b

Filters: a

Filters: a

Filters: bFilters: b

Filters a Filters b In Input InputFilters a Filters b

Convolutional Block Residual Block

Fig. 4. Structure of the convolutional and residual blocks.

⊗v1 v2

v1⊗ v3

⊗v2 v3

⊗ ⊗v1 v2 v3

v2

v1

v3

vx Feature Vector

1st order interactions
2nd order interactions
3rd order interactions

Fig. 5. Exploded structure of the 1st, 2nd and 3rd order interaction tensor
constructed before the Tensor Train layer. Note: Each feature here represents
16 features in the model. Best viewed on a computer.

layers. However, due to the size of the tensor (2, 146, 689
elements), this is computationally infeasible. Connecting this
tensor to a fully connected layer with 128 neurons would result
in 128 × 2, 146, 689 = 274, 776, 192 weights for this layer
alone. Therefore, a Tensor Train layer [4] is used to connect the
latent tensor with the classification layers. This layer replaces

a dense layer and represents its weight matrix as a series of
smaller tensors, the tensor cores. In this case, a tensor train
with ranks (1, 2, 4, 4, 2, 1) is used. Each element in the weight
tensor is then approximately represented as a product of these
tensors thus allowing the model to learn the weighted mapping
between the input tensor z and the output vector with far fewer
parameters, around 11,000, resulting in a space saving of 4×
10−5. The Tensor Train layer extracts 384 features, the same
number features of concatenating the original feature vectors,
which are then passed forward to the classification layers. This
approach thus incurs only a small increase in weights whilst
in theory modelling these important higher order interactions.

C. Classification

The fused feature vector is then passed into several dense
layers to perform classification. These layers act as separate
task specific ‘heads’. For each task, first, the feature vector
is passed through a 128 neuron dense layer with ReLU
activation before the final classification layer, which is
calculated by taking the softmax across n neurons where n
= the number of classes (e.g. for Valence n = 3).

V. EXPERIMENT

Each model presented in Section IV was trained on three
tasks. Firstly, to learn a joint representation of both game
context and streamer affect, and thus classify valence, arousal
and game context simultaneously. Secondly, the task of only
learning the game context. Finally, the task was learning just
the streamer’s affect.

We used Keras [33] with the Tensorflow backend for
implementing each model. Models were optimized with
ADAM [34] where α = 0.0005. For each learning task, each
network was trained for 100 epochs using an NVIDIA GTX
1080 GPU. The number of weights per model can be found
in Table III. For each output, a set of class weights were
implemented as an additional measure to tackle the bias in
the data set. To calculate class weights for each class x, an
initial weight ix is calculated then a scaled weight wx is
calculated so that all weights for an output sum to one:

ix =
Td

Tx ×Nc
(3)

wx, wy, ... =
ix

sum(ix, iy, ...)
,

iy
sum(ix, iy, ...)

, ... (4)

Where Td is the total data points in the data set, Tx is the
total data points for class x and Nc is the number of classes
for this output, e.g. for a valence class Nc = 3 as there are 3
possible valence classifications.

VI. RESULTS

A. Affect and Game Context Classification

For each task, model, and label values for Precision, Recall,
and F1 Score are calculated by:

Precision =
TP

TP + FP
(5)

TABLE III
COMPARISON OF TRAINABLE WEIGHTS ACROSS MODELS.

Task Early Fusion Late Fusion Tensor Train Fusion

Affect + Game 9,382,029 6,629,517 6,640,939
Affect 9,331,717 6,579,205 6,590,627
Game 9,282,824 6,530,312 6,541,734

Recall =
TP

TP + FN
(6)

F1 = 2 · Precision ·Recall
Precision+Recall

(7)

Where TP , ‘true positive’, is the sum of correctly classified
data-points for a label, FP , ‘false positive’, is the sum of all
data points annotated with a different label but classified as
this label and FN , ‘false negative’, being the sum of all data
points with this label that were classified with a different
label. These metrics were used because accuracy, e.g. the
average correct classifications across a whole data set, is not
necessarily the best measure of success when testing on very
unbalanced data. In these cases, high accuracy can be achieved
by simply always classifying the majority class e.g. for
Arousal outputting only Neutral Arousal classifications would
yield an accuracy of 0.94. As such, discussion of the results
will focus on the individual class F1 Score values, as it is the
harmonic average of Precision and Recall so is representative
of both. F1 scores for all models across all classes in both
single and joint task learning are shown in Table IV.

B. Joint vs Single Task Learning

One of the aims of this study is to explore if learning both
game context and affect classifications at the same time would
improve results. While learning these tasks simultaneously
has the drawback that model has fewer variables to dedicate
to each task, jointly learning the task may also lead to
learning more generalisable, and thus robust, representations.
Additionally, joint task learning has the benefit of requiring
only a single model to perform recognition across all tasks
thus resulting in faster training and inference as only one
model needs to be trained/queried.

Fig. 6 shows the delta in performance between single and
joint task learning, showing that whilst there is a large degree
of between-class variance, the models which perform fusion
after the LSTM step see an improvement when learning
jointly, whereas the early fusion model performs worse.

VII. DISCUSSION

A. Affect and Game Context Classification

Table IV shows that affect classification is a much harder
task that game context classification, further reinforcing
the discussion regarding the difficulty of in-the-wild affect
detection. Importantly, while results such as a high of 0.362
for F1 Score for positive valence and a high of 0.286 for
negative valence may seem poor, they are actually significantly
higher than a random baseline, which has expected F1 scores

TABLE IV
F1 SCORES FOR EACH LABEL ACROSS ALL MODELS. FOR EACH MODEL F1 SCORES FOR EACH TASK AND EACH LABEL ARE REPORTED. BEST RESULT

FOR EACH CLASS IN BOLD.

Model Task Neg V Neut V Pos V Neut A Pos A In Lane Shopping Returning Roaming Fighting Pushing Defending Dead

Early
Fusion

Joint 0.194 0.911 0.362 0.969 0.509 0.778 0.797 0.496 0.667 0.515 0.568 0.544 0.899
Single 0.206 0.905 0.345 0.966 0.540 0.842 0.724 0.591 0.794 0.565 0.610 0.667 0.924

Late
Fusion

Joint 0.286 0.925 0.297 0.964 0.465 0.840 0.828 0.615 0.805 0.635 0.652 0.557 0.906
Single 0.088 0.918 0.340 0.968 0.491 0.791 0.776 0.513 0.774 0.581 0.582 0.452 0.937

TT
Fusion

Joint 0.102 0.926 0.325 0.971 0.476 0.848 0.765 0.580 0.791 0.630 0.635 0.574 0.930
Single 0.135 0.928 0.315 0.969 0.537 0.837 0.777 0.518 0.819 0.557 0.405 0.473 0.948

Neg
 V

Neu
t V

Pos
 V

Neu
t A

Pos
 A

In
La

ne
Sho

pp
ing

Retu
rni

ng
Roa

ming
Fig

hti
ng

Pus
hin

g
Defe

nd
ing

Dea
d

Ave
rag

e

Class

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.20

0.25

F1
 S

co
re

 D
el

ta

Model
Feat. Fusion
Late Fusion
TT Fusion

Fig. 6. Delta change in F1 Score performance. Positive values occur when
joint task learning outperforms single task learning. Negative values occur
when single task learning outperforms joint task learning.

of 0.044 (negative) and 0.106 (positive), because of the hugely
imbalanced data set. There is clearly still a lot of interesting
work to be done to accurately model streamer emotions,
however, these results do provide a baseline. Additionally,
Tensor Train models have a large scope for improvement
gains via hyper-parameter tuning [4] so it is possible that
future gains are possible using similar architectures.

Regarding game context we see that in general all models
perform better when classifying examples of ‘In Lane’, ‘Shop-
ping’, ‘Roaming’ and ‘Dead’, where F1 scores range from
0.667 (Early Fusion, ‘Roaming’, joint task learning) to 0.948
(TT Fusion, ‘Dead’, single task learning), compared to other
context classes. It is difficult to know exactly why the models
perform better on these categories but it is possible confusion
arises for classes such as ‘Pushing’, and ‘Defending’ which
can be visually similar. Consider the case where there are two
players of opposite teams very close to each other and at the
edge of a base. Only the positioning of the two players and
prior knowledge about which side they are on provide clues as
to if the streamer is pushing or defending. Contrast this with

the ‘Dead’ class where the screen is mostly greyscale with a
fixed message on the screen, resulting in easier classification.

B. Joint vs Single Task Learning

As Fig. 6 shows, for Late Fusion and TT Fusion we
see a general if erratic improvement when learning a joint
representation with average F1 Score improvements of 0.044
and 0.026. However, Early Fusion sees a degradation of
F1 Score performance with an average change of −0.036.
Furthermore by performing a Wilcoxon Signed-Rank Test we
see that both the change in Early Fusion and Late Fusion
are statistically significant at P < 0.05 (P = 0.047 and
P = 0.03 respectively). Perhaps a key take away from these
results is that seemingly fusion techniques occurring after
temporal modelling see improved results from learning both
tasks jointly, but Early Fusion which occurs before the LSTM
see a performance reduction.

C. Determining the ‘Best’ Model

It is difficult to ascertain from these results which model
performs the best as there is no clear ‘winner’ across all cat-
egories. Each model appears to perform better on some tasks
and worse on others. Early fusion outperforms TT fusion and
late fusion for emotion prediction tasks, although TT fusion
appears best at classifying the neutral, majority, classes. This is
possibly due to the LSTM layers applied to the fused represen-
tation being able to facilitate a temporal, multimodal represen-
tation that can account for cross-view cues manifesting at dif-
ferent points in time, e.g. anticipatory co-articulation. Further-
more, TT fusion slightly outperforms late fusion in emotion
recognition due to TT fusion better modelling the interactions
between views. In general, using post-LSTM fusion (late, TT-
fusion) seems to provide better performance at game context
recognition, possibly due to the game footage and game audio
being the most important cues for the task, and there appears to
be a benefit in modelling their individual dynamics separately.

The early fusion network is significantly larger in terms
of weights than the other two models, in fact, they are
roughly only 2/3rds of the size. Additionally, it is the only
model that sees performance degradation when joint task
learning. Therefore whilst its performance is comparable to
other models it does so using approximately 3 million more
weights and therefore has a much higher computational cost.

VIII. CONCLUSIONS AND FUTURE WORK

In this work, we pose the problem of modelling streamer
affect jointly with game context, within the framework of a
deep learning architecture that fuses audio-visual stream data
exploiting the power of tensor decompositions such as Tensor
Train. Furthermore, the first annotated data set of emotion
and game context for video game livestreams is presented,
along with baseline results comparing early and late fusion
approaches to the proposed model. Results show that the
proposed approach generally outperforms Early Fusion and
is comparable to Late Fusion across tasks. Additionally, the
difficulty of affect classification in this environment is shown.
Clearly, jointly modelling game context and streamer affect
in a multimodal setting constitutes a challenging problem
of an interdisciplinary nature, with challenges arising in the
context of areas such as computer vision, machine learning,
and affective computing. Ultimately, this paper acts as a call
for action, inviting more researchers to work in this area,
as improved results and models are crucial for facilitating
audio-visual player experience modelling on livestreams with
implications across a range of disciplines.

REFERENCES

[1] M. Kaytoue, A. Silva, and L. Cerf, “Watch me playing, i am a
professional: a first study on video game live streaming,” Proceedings
of the 21st international conference companion on World Wide Web, pp.
1181–1188, 2012.

[2] T. Stadelmann, M. Amirian, I. Arabaci, M. Arnold, G. F. Duivesteijn,
I. Elezi, M. Geiger, S. Lörwald, B. B. Meier, K. Rombach, and
L. Tuggener, “Deep learning in the wild,” in Artificial Neural Networks
in Pattern Recognition, L. Pancioni, F. Schwenker, and E. Trentin, Eds.
Cham: Springer International Publishing, 2018, pp. 17–38.

[3] M. A. Nicolaou and C. Ringer, “Streaming behaviour: Live streaming
as a paradigm for multi-view analysis of emotional and social signals,”
in Twitch Workshop, 13th International Conference on the Foundations
of Digital Games, ser. FDG ’18, 2018.

[4] Y. Yang, D. Krompass, and V. Tresp, “Tensor-Train Recurrent Neural
Networks for Video Classification,” 2017.

[5] “Event detection and highlight detection of broadcasted game videos,”
HCMC 2015 - Proceedings of the 2nd Workshop on Computational Mod-
els of Social Interactions: Human-Computer-Media Communication, co-
located with ACM MM 2015, pp. 1–8, 2015.

[6] W.-T. Chu and Y.-C. Chou, “On broadcasted game video analysis: event
detection, highlight detection, and highlight forecast,” Multimedia Tools
and Applications, vol. 76, no. 7, pp. 9735–9758, Apr 2017.

[7] C. Ringer and M. A. Nicolaou, “Deep unsupervised multi-view detection
of video game stream highlights,” in Proceedings of the 13th Interna-
tional Conference on the Foundations of Digital Games, ser. FDG ’18.
New York, NY, USA: ACM, 2018, pp. 15:1–15:6.

[8] T. Smith, M. Obrist, and P. Wright, “Live-streaming changes the (video)
game,” Proceedings of the 11th european conference on Interactive TV
and video - EuroITV ’13, p. 131, 2013.

[9] D. Recktenwald, “Toward a transcription and analysis of live streaming
on twitch,” Journal of Pragmatics, vol. 115, pp. 68 – 81, 2017.

[10] R. Robinson, Z. Rubin, E. M. Segura, and K. Isbister, “All the feels:
Designing a tool that reveals streamers’ biometrics to spectators,” in
Proceedings of the 12th International Conference on the Foundations of
Digital Games, ser. FDG ’17. New York, NY, USA: ACM, 2017, pp.
36:1–36:6.

[11] G. Nascimento, M. Ribeiro, L. Cerf, N. Cesrio, M. Kaytoue, C. Rassi,
T. Vasconcelos, and W. Meira, “Modeling and analyzing the video game
live-streaming community,” in 2014 9th Latin American Web Congress,
Oct 2014, pp. 1–9.

[12] K. Karpouzis, G. N. Yannakakis, N. Shaker, and S. Asteriadis, “The
platformer experience dataset,” in 2015 International Conference on
Affective Computing and Intelligent Interaction (ACII), Sept 2015, pp.
712–718.

[13] N. Shaker, S. Asteriadis, G. N. Yannakakis, and K. Karpouzis, “Fusing
visual and behavioral cues for modeling user experience in games,” IEEE
Transactions on Cybernetics, vol. 43, no. 6, pp. 1519–1531, 2013.

[14] S. Asteriadis, K. Karpouzis, N. Shaker, and G. N. Yannakakis, “Towards
detecting clusters of players using visual and gameplay behavioral cues,”
Procedia Computer Science, vol. 15, pp. 140–147, 2012.

[15] P. M. Blom, S. Bakkes, C. T. Tan, S. Whiteson, D. Roijers, R. Valenti,
and T. Gevers, “Towards personalised gaming via facial expression
recognition,” in Proceedings of the Tenth AAAI Conference on Artifi-
cial Intelligence and Interactive Digital Entertainment, ser. AIIDE’14.
AAAI Press, 2014, pp. 30–36.

[16] C. T. Tan, D. Rosser, S. Bakkes, and Y. Pisan, “A feasibility study
in using facial expressions analysis to evaluate player experiences,”
Proceedings of The 8th Australasian Conference on Interactive Enter-
tainment Playing the System - IE ’12, pp. 1–10, 2012.

[17] A. K. Katsaggelos, S. Bahaadini, and R. Molina, “Audiovisual Fusion:
Challenges and New Approaches,” Proceedings of the IEEE, vol. 103,
no. 9, pp. 1635–1653, 2015.

[18] S. Poria, E. Cambria, R. Bajpai, and A. Hussain, “A review of affective
computing: From unimodal analysis to multimodal fusion,” Information
Fusion, vol. 37, pp. 98–125, 2017.

[19] J. Ngiam, A. Khosla, M. Kim, J. Nam, H. Lee, and A. Y. Ng,
“Multimodal deep learning,” in Proceedings of the 28th International
Conference on International Conference on Machine Learning, ser.
ICML’11. USA: Omnipress, 2011, pp. 689–696.

[20] M. Wllmer, M. Kaiser, F. Eyben, B. Schuller, and G. Rigoll, “Lstm-
modeling of continuous emotions in an audiovisual affect recognition
framework,” Image and Vision Computing, vol. 31, no. 2, pp. 153 –
163, 2013, affect Analysis In Continuous Input.

[21] M. Shah, C. Chakrabarti, and A. Spanias, “A multi-modal approach
to emotion recognition using undirected topic models,” in 2014 IEEE
International Symposium on Circuits and Systems (ISCAS), June 2014,
pp. 754–757.

[22] S. E. Kahou, X. Bouthillier, P. Lamblin, C. Gulcehre, V. Michal-
ski, K. Konda, S. Jean, P. Froumenty, Y. Dauphin, N. Boulanger-
Lewandowski, R. Chandias Ferrari, M. Mirza, D. Warde-Farley,
A. Courville, P. Vincent, R. Memisevic, C. Pal, and Y. Bengio, “Emon-
ets: Multimodal deep learning approaches for emotion recognition in
video,” Journal on Multimodal User Interfaces, vol. 10, no. 2, pp. 99–
111, Jun 2016.

[23] P. Tzirakis, G. Trigeorgis, M. Nicolaou, B. Schuller, and S. Zafeiriou,
“End-to-end multimodal emotion recognition using deep neural net-
works,” IEEE Journal of Selected Topics in Signal Processing, vol. PP,
04 2017.

[24] A. Zadeh, M. Chen, and E. Cambria, “Tensor Fusion Network for
Multimodal Sentiment Analysis,” 2017.

[25] I. Oseledets, “Tensor-train decomposition,” SIAM Journal on Scientific
Computing, vol. 33, no. 5, pp. 2295–2317, 2011.

[26] A. Novikov, D. Podoprikhin, A. Osokin, and D. Vetrov, “Tensorizing
neural networks,” in Proceedings of the 28th International Conference
on Neural Information Processing Systems - Volume 1, ser. NIPS’15.
Cambridge, MA, USA: MIT Press, 2015, pp. 442–450.

[27] J. Kossaifi, Z. Lipton, A. Khanna, T. Furlanello, and A. Anandkumar,
“Tensor regression networks,” 2017.

[28] A. Anandkumar, R. Ge, D. Hsu, S. M. Kakade, and M. Telgarsky,
“Tensor decompositions for learning latent variable models,” J. Mach.
Learn. Res., vol. 15, no. 1, pp. 2773–2832, Jan. 2014.

[29] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “Smote:
Synthetic minority over-sampling technique,” J. Artif. Int. Res., vol. 16,
no. 1, pp. 321–357, Jun. 2002.

[30] and and E. A. G. and, “Adasyn: Adaptive synthetic sampling approach
for imbalanced learning,” in 2008 IEEE International Joint Conference
on Neural Networks (IEEE World Congress on Computational Intelli-
gence), June 2008, pp. 1322–1328.

[31] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” vol. 9,
pp. 1735–80, 12 1997.

[32] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2016, pp. 770–778.

[33] F. Chollet et al., “Keras,” https://keras.io, 2015.
[34] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,”

International Conference on Learning Representations, 12 2014.

https://keras.io

	I Introduction
	II Related Work
	II-A Analysis of Game Streams
	II-B Studies of Player Experience Through Visual and Audio-Visual Data
	II-C Multimodal Machine Learning
	II-D Tensor Decompositions

	III Data Set
	III-A Emotional Affect Annotation
	III-B Game Annotation
	III-C Data Pre-Processing and Over-Sampling

	IV Methodology
	IV-A Feature Extraction
	IV-B Multimodal Fusion and Temporal Modelling
	IV-B1 Early Fusion
	IV-B2 Late Fusion
	IV-B3 TensorTrain Fusion

	IV-C Classification

	V Experiment
	VI Results
	VI-A Affect and Game Context Classification
	VI-B Joint vs Single Task Learning

	VII Discussion
	VII-A Affect and Game Context Classification
	VII-B Joint vs Single Task Learning
	VII-C Determining the `Best' Model

	VIII Conclusions and Future Work
	References

