
Pitako - Recommending Game Design Elements in
Cicero

Tiago Machado
Game Innovation Lab
New York University

New York, USA
tiago.machado@nyu.edu

Dan Gopstein
Game Innovation Lab
New York University

New York, USA
dgopstein@nyu.edu

Andy Nealen
School of Cinematic Arts

University of Southern California
Los Angeles, USA

andy@nealen.net

Julian Togelius
Game Innovation Lab
New York University

New York, USA
julian@togelius.com

Abstract—Recommender Systems are widely and successfully
applied in e-commerce. Could they be used for design? In this
paper, we introduce Pitako1, a tool that applies the Recommender
System concept to assist humans in creative tasks. More specif-
ically, Pitako provides suggestions by taking games designed by
humans as inputs, and recommends mechanics and dynamics as
outputs. Pitako is implemented as a new system within the mixed-
initiative AI-based Game Design Assistant, Cicero. This paper
discusses the motivation behind the implementation of Pitako
as well as its technical details and presents usage examples. We
believe that Pitako can influence the use of recommender systems
to help humans in their daily tasks.

Index Terms—AI-Game Design Assistant, Recommender Sys-
tems, Frequent Itemset Data Mining, Exploratory design

I. INTRODUCTION

Recommender Systems are most well-known for their usage
in e-commerce. The number of algorithms, applications, and
studies is so large that some scientists affirm we are living
in the age of recommender systems [1]. Their techniques are
nowadays used in many domains, from movies [2] and books
[3], to scientific papers [4], fitness training [5] and even friends
[6], it seems everything can be suggested by these tools.
However, we have not seen much use of recommender systems
to assist humans in design tasks. Specifically, if we consider
the field of AI Game Design Assistants, despite the increasing
number of level generators and telemetry tools available, it
is not easy to find a human-in-the-loop process in which a
machine is constantly evaluating and providing suggestions
about what to do next in the game design process. One
example of a recommender system being used for game design
is Sentient Sketchbook [7]. Here, evolutionary algorithms are
used to create level suggestions based on an initial user level
given as input. Still, it is limited to the level design of a
predefined game genre and the generated suggestions are not
based on any existing content designed by other humans,
so that system fails to build on existing designs. In this
paper, we present Pitako, a recommender system to assist
game designers in the design of the games themselves. Pitako

1The name Pitako comes from the Portuguese dialect word - pitaco - in use
around the Pernambuco state in Brazil to designate hints coming from people
who supposedly know what they’re talking about.

suggests mechanics and dynamics to add to games based on
association rules and frequent item sets found in other games
across similar and different genres. The motivation to design
such a system comes from the observation that many games are
built upon features borrowed from their predecessors. Jesper
Juul illustrated this phenomenon as a network of common me-
chanics available in matching tile puzzle games, and a family
tree outlining how these mechanics have spread throughout
games [8]. Similarly, the work of Summerville et. al. [9]
analyzes the jump mechanic available in 2D platform games
developed for the Nintendo Entertainment System (NES). The
work presents commonalities and trends in jumping across
games, developers, and game franchise. This motivated us to
investigate a system that could automatically do the same sort
of taxonomy research introduced in Juul’s paper and the formal
categorization presented in the Summerville’s one to describe
mechanics in games similar to the ones being developed. The
idea of doing exploratory design in an automatic way also
brings the possibility of exploring such a tool as an educational
environment. Our proposal relies on the fact that Pitako
performs an automatic exploration of potential design elements
and provides them to the user, ready to be incorporated into the
game they are designing. Such flexibility allow the designer
to inspect, play, analyze, and learn alternatives to their games
in a way that couldn’t be possible without the use of an
AI-assistant. Therefore our contribution is providing creative
stimulus since the user can take the recommendations as an
inspirational tool for generating new ideas, as mentioned by
Shneiderman [10]. Plus, we advocate the use of recommender
systems for assisting human tasks, and we hope this work
can inspire and push other researchers to go beyond of the
e-commerce-based paradigm.

II. BACKGROUND

A. The atoms of a game

Digital games as we know them today are a creation of
the twentieth century. As every invention of the 1900s the
analysis (and, in some cases, the design) of the digital games
was influenced by the three main scientific discoveries that
started to change the world more than a hundred years ago:
the atom, the gene, and the byte (or bit) [11]. Conceptually
speaking, these three discoveries brought the evidence of the

978-1-7281-1884-0/19/$31.00 ©2019 IEEE

ar
X

iv
:1

90
7.

03
87

7v
1

 [
cs

.H
C

]
 8

 J
ul

 2
01

9

unit, to the indivisible and smallest part of a system as the main
component to understand the whole. From the game literature,
we can see that this idea is widely shared. For example, the
idea of the game as a sum of its units is presented by [12], and
minimalist game design [13] advocates a development practice
in which you start your new game project from its core game
mechanics. Everything else like graphics, sounds and even new
mechanics (derived from the basics one or not) comes after.
In the book written by Brenda Brathwaite and Ian Schreiber
[14], a best seller in the game design literature, you can find
a whole chapter entitled ”game design atoms”. The authors
claim that “by looking at a game as a collection of atoms
(mechanics, dynamics, goals, game state, etc.), the process
of design itself becomes clearer”. A similar approach is put
forth in another best seller, written by Paul Schuytema [15].
The MDA - Mechanics, Dynamics, and Aesthetics [16] also
brings the same concept of building games starting by its basic
components, and evolve them until the level of creating the art
content(aesthetics).

B. The catalog

To facilitate the process of knowing, recommending and
combine features from different games to design new ones, we
took inspiration from chemical and biological methods. For
example, the geneticist Thomas Morgan designed a catalog
of fruit flies in which he described their minimal features
and tracked every mutation to facilitate how to combine them
and come up with modified species [17]. Also, the chemical
periodic table of elements was designed to make easier the pro-
cess of synthesizing chemical structures. Therefore we build
a catalog of games, also based on their minimal components
with the intention of inspect their individualities and mix them
to generate new games.

C. VGDL & GVGAI

To implement a design breakdown process and build a cata-
log of games and their elements, we used a Game Description
Language (GDL) that could be as atomic as possible and
at the same time as universal as possible. The Video Game
Description Language (VGDL) [18], [19] is a domain-specific
language for general AI game design. It allows the design of
many game genres such as puzzles, action, shooters, and so
on. Graphically the games are similar to the style of Atari
2600 or Nintendo Entertainment System (NES) games. They
are all two dimensional and constrained to grid-based level
design. VGDL was created primarily for research in general
video game playing, and the primary design consideration was
the suitability for testing AI agents. Therefore, you can with
the same description language have a puzzle labyrinth like
Pacman (Namco & Atari, 1980) and a shooter like Space
Invaders (Taito, 1978), both of which can be easily played
by autonomous systems. The VGDL description of a game is
short and human readable (See Figure 1). It is defined by four
sets. However we will just explain with more details the ones
most important for this study.

Fig. 1. Example of a Space Invaders (Taito, 1978) version written in VGDL.

• The Sprite Set - A sprite is any object in the game,
including its graphical representation and behavior. In this
set the sprites are defined. It is the place to specify if your
avatar can shoot and if a non player character (NPC) will
move randomly around the level or chase another game
element. We stress here that in VGDL a sprite has both
a graphical interpretation and a behavior associated with
it. This is essential for this system since it is one of the
main components of a mechanic rule system in VGDL.
Therefore, every time the word sprite appears in the text,
it is related to the concept of a sprite in VGDL.

• The Interaction Set - This set defines what happens
when two sprites collide. It is the second part of the
mechanic rule set in VGDL. Here, for example, you
define when an element should be removed from the
game after another one hits it. For example, when a
missile collides with an alien airship and both sprites
disappear.

The VGDL description still contains a LevelMapping set
that maps sprites into symbols to represent them in the game
level matrix, a Termination Set that defines game over condi-
tions for winning and losing the game, and finally the levels,
these are designed in a 2D matrix of symbols representing the
places the sprites will occupy in the level when the game starts.
The General Video Game AI (GVGAI) is a framework for
general AI video game playing [20], [21]. It has an associated
competition, which runs annually. Participants submit their
agents which are judged by their performance playing unseen
games. All the games available in the framework are coded
in VGDL, some of them are famous versions of classics like
Sokoban (Thinking Rabbit, 1982) or Zelda (Nintendo) cave
levels.

D. Game design breakdown

Before recommending fundamental components for the de-
sign of a new game, we must first develop a comprehensive

understanding of similar games, from which to draw patterns
to be recommended. We call the process of understanding
the fundamental components of similar games ”game design
breakdown”. It consists of getting a formal game description
and rewriting it in a simplified way to have access to its
minimal (atomic) elements. The process’ name comes from
a similar process in the movie industry, the script breakdown
[22], in which the crew reads the movie screenplay page by
page and define all the minimal technical aspects necessary
to shoot the movie. To keep using our atomic metaphor, we
took the individual sprite and sprite-interaction descriptions as
our atomic elements. Everything they bring with them (their
parameters) are the subatomic elements. It allow us to build a
data set where we can map games to the elements they contain,
and sub-elements to their parent elements.

E. Cicero

Cicero is an AI game design tool that offers several kinds
of assistance. It has a replay analysis tool [23], a query engine
[24], a level visualization interface, and a game-debugger
assistant [25]. It is built on top of the GVGAI framework
and runs VGDL games, which allows Cicero to automate
gameplay by interacting with games using one of the many
agents available. There are agents based on various techniques,
including Monte Carlo Tree Search, evolutionary planning and
reinforcement learning. In essence, any kind of algorithm that
one can design or adapt for playing games is supported by
GVGAI, and consequently by Cicero. This feature was used to
design an AI debugging experiment, which showed that users
improve their accuracy during game debugging tasks when
augmented with AI-assistance. Cicero also has a pre-existing
recommender system for choosing sprites based on analysis of
the game similarity through Euler vector distances. The sprite
attributes are written as vectors and compared in different
games. A score ranks the most similar ones and suggests
them [26]. Unfortunately, this approach does not reach good
results. Attributes are not well differentiated from one sprite
to another. Recommendations are often repeated, and there
is no information provided about why an element is being
recommended.

F. Recommender systems and the Apriori algorithm

A popular definition of ‘recommender system’ is “any sys-
tem that produces individualized recommendations as output
or has the effect of guiding the user in a personalized way
to interesting or useful objects in a large space of possible
options. Such systems have an obvious appeal in an environ-
ment where the amount of on-line information vastly outstrips
any individuals capability to survey it.” [27]. In order to attain
the goal of providing accurate recommendations, a myriad of
techniques are available [28], from ‘authoritativeness” criteria
[29] to collaborative filtering, what is probably the most
popular and mature recommendation technique in use now
[30], [31], and largely used by companies such as Amazon
[32] and Netflix [33]. These techniques present strengths and
weakness and its common to hybridize them to overcome

Fig. 2. In the association rule on the top, the presence of a ShootAvatar
and a RandomNPC, in a sprite set, implies in the presence of the Missile
sprite. In the association at the bottom, the presence of a ShootAvatar and
an Immovable implies in the presence of the Door element.

the issues. In our case, we decided to use association rule
mining for recommender systems [34], more specifically the
apriori algorithm [35] because the way it creates rules based
on a set of transactions suits the data we can extract from
VGDL game descriptions. The apriori algorithm efficiently
analyzes a database of transactions to find association rules
between repeated items in different transactions. An associa-
tion rule says that the presence of an item X in a transaction
implies in the presence of Y in the same transaction with
some probability (see Figure 2). A common example of
this technique is the supermarket basket case. The article
published by Agrawal et. al. [36] exemplifies by giving the
statement that 90% of transactions that purchase bread and
butter also purchase milk. The presence of bread and butter
in a transaction implies the presence of milk in the same one.
90% is the confidence that such a rule will hold in a future
set of new transactions. Finding all such rules is valuable
for cross-marketing and attached mailing applications. Other
applications include catalog design, add-on sales, store layout,
and customer segmentation based on buying patterns [35].
We believe that games share behaviors in the same way that
shoppers share items in their shopping carts. For example,
Mega Man X (Capcom, 1993) and Super Metroid (Nintendo,
1994) have the same mechanic of shooting. On top of that,
they even share the “hold the shoot button” rule to fire a more
powerful shot. The idea here is that if your game has a shooting
mechanic you may want to use a powerful shot rule like the
cited games. The presence of the shooting mechanic implies
(with a certain probability) in the presence of the powerful
shot rule. Given it is already available in previously designed
games, it can be directly imported rather than re-implemented.
Our system also displays confidence levels along side each of
its suggestions to help the designer understand the strength
of each recommendation. Commonly used mechanics like the
‘shooting example’ above will appear with a high confidence
level. Less common mechanics will have a low confidence
level. This way, the designers can decide in which direction
they will push their new games. Do they want to make a
clone of an existing popular title (or maybe learn how it was
done) ? Then, they can get the high confidence suggestions.
Do they want to come up with something new and explore
different possibilities? If so, they can go for the low confidence
recommendations. Of course, they can use a mix of high and

low confidence game elements, and mix them with the ones
they are creating by themselves.

G. Suggestion engines for design assistance

While recommender systems are predominantly used in the
e-commerce sector there are examples in the literature of
other sorts of suggestion engines. They do not necessarily
rely entirely on recommender systems techniques, but are
an inspiration to our work because they share the idea of
searching for patterns and suggesting them to assist design
tasks. In the field of sketch based interfaces, Igarashi et. al.
[37] introduced a system that assists humans in 3D modeling
works. When users sketch an object, the 3D structure is
compared against a database of previously sketched structures.
When there is a match between the structures, the parts yet
to be modeled are suggested by the system and the user may
choose to utilize one. A paper published by O’Donovan et. al.
[38] describes the design of a virtual illustrator assistant. In
this work, the users can design layouts for business cards or
birthday invitations. At the same time, the system is generating
altered copies of the users’ original work. These copies change
spacing, text font, add and remove figures, backgrounds,
resolution and so on. This way, the authors claim that the users
benefit from an automatically exploratory design task, which
they promote as a vital part of the design process. In the work
by Nguyen et. al. [39] the authors bring a recommender system
for topic conversation suggestions. The idea is to provide a
way of two strangers to engage in a good conversation easily.
The system takes in consideration a list of subjects that the
users have in common and provide topics within them. The
results contributed to the understanding of how communication
interventions influence people’s experience and behaviors,
and enhance interpersonal interactions. The (already cited)
Sentient Sketchbook brings a mixed-initiative method based
on evolutionary techniques for assisting the level design of
real-time strategy games by providing suggestions based on
the level being designed by the user. Finally, Evolutionary
Dungeon Designer is also based on evolutionary methods. It
also applies heuristics based on game design patterns to assist
users in the creation of dungeon maps for adventure games.
The tool follows an interaction design approach with every
new verision based on previous users’ feedback [40], [41]. All
of theses examples show that it is possible to use recommender
system techniques to assist human tasks. However, it seems
that its usage in the game domain just started to scratch the
surface.

III. RECOMMENDING GAME DESIGN ELEMENTS

In this section we show how three types of game elements
are recommended: sprites, sprite placements, and interaction
rules. It is worth to note that the confidence level of the
suggestions in this particular case of a recommender system
has a different interpretation. A low confidence level or a high
one does not mean a bad or good item (sprite, interaction
or position) to be picked. It works here as a guide to the
designers. If they want to let their games as close as possible to

the original source they will choose the suggestions with high
confidence levels. If they want to differentiate their games,
they will choose the recommendations with low levels of
confidence.

A. Apriori algorithm applied to sprite sets

As stated before, a sprite in VGDL is not only an image. It
is the description of a behavior onto which you can attach an
image. If you are implementing the hero of a shooter game like
Mega Man X (Capcom, 1991) or Contra 3 (Konami, 1992), you
would specify the sprite behavior as a ShootAvatar, and then
attach the image of your hero to the defined sprite. Therefore,
the set of sprites is the first source of rules in a VGDL game,
and a natural candidate to be automatically recommended
during AI-assisted game design. To use the apriori algorithm
to provide sprite suggestions the first step is collecting every
sprite in every known game in our catalog (Figure 3). In the
end, we have a table where each game represents a transaction
set, with the sprite behaviors as the items of the transactions.
The final table is therefore the algorithm input. After running
apriori we get a table with the item sets whose frequency of
occurrences reach the limit of the minimum support provided.
Therefore, the table shows us how frequent sprite behaviors
are associated with each other in different games.

Fig. 3. From left to right, a catalog of game sprite sets with Pacman (Namco
& Atari, 1980), Zelda (Nintendo) and Frogger (Konami, 1981). The games
are arranged as a list of ”baskets” (in Apriori terminology) where each game
is a basket and the elements (sprites) are items. This approach makes easier
the process of searching an element and combine it with one (s) from other
games.

1) Sprite Recommendation protocol: With knowledge of
the association between different sprites in different games,
we can then provide suggestions to the designer. The input
for our recommendation protocol is the sprite set of the
game in development. This set is compared against the set
of association rules. All the associations which have the sprite
set as a subset are stored in a list. At this point, the association
rules give us the sprites candidates to be recommended (Figure
4). In this approach sprites from the same type can be part of
the recommendation list. The user can use filtering commands
to avoid “repetitions” when consulting the list. With the sprite
candidates pointed by the association rules, we go to the

catalog and find which games have the same sprites. We then
do copies of these sprites and suggest them to be used in
the user’s game. Note that a sprite cannot be suggested direct
from an association, because it is necessary to adapt contextual
information from the game which it is recommended, and the
one which is getting the sprite. We talk more about this process
in the following section.

Fig. 4. In this figure (a) is the user’s game’s sprite set. In (b) we look at
the association set, to find an association rule related to (a). The selected
association rule, will give us the candidate sprite to be suggested. We then,
go to the games in the catalog to find one with the given sprite. Finally we
copy and recommend it to user.

2) Game Blending Process: Once the user has selected
which sprite to add to the game being developed, we start the
procedure to merge the features and behaviors of the sprite
into the game; we call this by the blending process, and we
are inspired by the logical blend methods present in the work
by Eppe et. al. [42]. We are extracting information from one
game and inserting it into another one. As sprites can have
other sprites attached to it, we need to make sure that it will be
imported not individually, but with all the other sprites it refers.
We use this approach to reduce user workload. For example,
if a designer selects a shooter character, the recommender will
import the character and the object it uses to shoot. Otherwise,
the designer would have the shooter character but would have
the extra work to design an object to be shot. In order to
create the sprite package to be imported, we use a depth-first
search tree navigation to navigate in the game catalog entry
recursively, so we can get the sprite and any other it refers to.
It captures the context of a game and let it logically prepared
to be inserted into another one.

B. Apriori algorithm applied to the sprite placement recom-
mendations

Once we have the user decision about the imported sprite,
we can suggest positions in the game level map to put the
recommended sprite. This process uses a combination of
heuristics and the apriori algorithm.

The recommended sprite comes from a single previously
designed game. In the VGDL game repository, each game
has five levels. The input table for the apriori algorithm
is generated by picking the recommended sprite type. The
Sprite positions are then stored and indexed by level. So each
level of the game is an association set of the positions of a
specific sprite. The positions are the items of the association.

Then, after we run the apriori algorithm, the output is a set
of the most frequent positions for a specific sprite.

1) Heuristics for placing sprites in a level: After getting the
output of the apriori algorithm with the positions to suggest,
we apply filters to provide better recommendations to the user.
The use of game level design heuristics is useful for this task.

• Items should be at a K distance of the avatar
We identified that the avatar should begin each level
somewhat isolated from other sprites. For example, it
is often undesirable to place a sprite adjacent to the
avatar as the two sprites may collide on the first timestep,
potentially harming or destroying the avatar as soon as
the game starts. If the recommended sprite is a collectible
item or the final goal of the level, placing it too close
to the avatar will afford no challenge in retrieving it.
By contrary, sprites which are harmful to the avatar are
suggested to be placed close to resource items and exit
level doors. The interaction set provides us the context
to understand which sprites can be harmful to the avatar
player.

• Ensure that the items will be placed inside the level
boundaries
As the level being developed can have different dimen-
sions from the level of other games in the catalog,
positions of a specific sprite type that cannot fit in the
user’s level boundaries are not suggested.

After applying the heuristics and filtering the output of the
apriori algorithm output (Figure 5), the placement suggestions
can then be recommended.

Fig. 5. For the sprite type RandomNPC in the game Bomberman, its
positions in the three first levels are shown in this figure. The association
rule is filtering according the heuristics and then suggested to the user.

C. Recommending interaction rules

In VGDL, an interaction is composed by two sprites and
the interaction they activate when colliding. Therefore to

Fig. 6. The sprite recommendation component displays which game the sprite
is imported from, the confidence of the recommendation, and its type (left
figure). By hovering over it, the user can see other attributes and values of
the sprite (right figure).

recommend interactions, first it is necessary to do a map
of combinations between all the sprite types (the key) and
all the kind of interactions (the value(s)) they can fire when
a collision event happens. Secondly, combinations among
the elements of the sprite set in development are generated.
Finally, a search identifies which combinations in the user’s
game has an interaction that can be used as suggestion.

1) Sprite combination map: To generate all combinations
of sprites, it is necessary to navigate through the interaction
set of all the games in the catalog, build a pair of sprite types
and the interaction that is activated when they overlap each
other. It’s important to note that pairs of sprites with the
same type are valid since often two sprites of the same type
can interact with each other. The end of this process is a map
whose key is the pair of sprites and the value is a list of the
interactions activated by them.

2) Sprite pairs comparison: We can only recommend in-
teractions for pairs of sprites available in the sprite set of
the game in development. Therefore, after combining these
sprites we compare each one of them against the map keys.
When we found an entry whose pair (key) is equal to the
pair in the user’s game, we return the key value, a list of
interactions. These are the ones that will be suggested to the
user. In opposite to the sprite recommendations, interaction
ones are straightforward. Therefore, there is no necessity of
performing extra navigation in the game catalog entry, once
the user decides for picking one of the recommendations, it is
automatically inserted in the user’s game interaction set (and
removed from the recommendation set).

IV. RECOMMENDER SYSTEM UI

For the user interface design of our system, we divided it in
three different Graphical User Interfaces (GUIs), one for the
sprite set, another for the interaction set, and finally the level
layout design to show the recommended positions of where to
place the sprites.

A. Sprite Recommender UI

The sprite recommendations appear on the screen as a list
sorted in decreasing order by the confidence of the recom-
mendation. Each list object has information about the game

from where the recommendation is coming, the confidence
value of the recommendation, the type of the sprite being
recommended, and its image (Figure 6). By hovering over
the image, a pop up shows a list of the sprite’s attributes (and
their values). We added this extra information to help the user
to decide what to pick when having two or more sprites from
the same type being recommended. When the user selects a
recommended sprite, it is imported to the game sprite set. In
the background, the system performs a search in the catalog,
when finding the game whose specific sprite is recommended,
it extracts all the information from the sprite and others it
may carries. For example, if a user is picking a sprite which
can shoot, the sprite that represents the projectile behavior is
imported as well.

B. Interaction Recommendation UI

Similar to the sprite recommendations, the interaction rec-
ommendations (Figure 7) shows up as a list sorted by con-
fidence in decreasing order. As the number of interaction
suggestions tends to be high, the users can sort the list based on
the elements they want to put to activate an specific interaction.
When the user selects one the recommendations it is added
to the interaction set. As mentioned before, interactions are
plain descriptions of what happens in the game when a
sprite A overlaps a sprite B. Therefore, this is, in general, a
straightforward import process and extra search steps usually
are not necessary because interactions do not have attributes
which are other interactions (like a sprite having another sprite
on its attribute list). It may have references for another sprite
in particular cases. For example, when a sprite X transforms
into a sprite Z after colliding with a sprite Y. In cases like
this the system will import Z and all the other sprites it refers
to the game.

Fig. 7. An example of a interaction recommendation component. The avatar
sprite will be killed (killSprite interaction event) when colliding with a sprite
enemy.

C. Sprite Placement UI

The sprite placement suggestion happens whenever a user
is adding a sprite in the level grid layout (Figure 8). The
process of placing a sprite in the grid is a simple drag-and-
drop interaction. Therefore, as soon as the user starts to drag
the sprite, green circles highlights the grid square positions
recommended to receive the sprite.

V. A SAMPLE SESSION

The version of the system introduced in this paper was used
for an informal test session. A computer science graduate

Fig. 8. An example of recommending placement positions to a sprite. It is
suggested, in this case, to place the enemy sprite far from the avatar player
(top left corner) to avoid an instant kill when the game starts.

student with experience in game development, and a digital
media professional, also with experience in game design tested
the tool. We started their sessions by introducing the system
and teaching them how to add sprites and interactions without
recommender assistance. Then, we teach them how to use the
recommendations. After the tutorial was finished, we asked
them to use the tool freely and design a prototype of a hack-
and-slash game in the style of the ones available for the Super
Nintendo Entertainment System, like Knights of The Round
(Capcom, 1991). In both of the experiences the recommender
system was used as expected. Half or more of the sprite set was
composed by recommended sprites. Users especially benefited
from recommendations of sprites able to cast or spawn objects.
In most of the cases they accepted the sprites (and the ones at-
tached to them) exactly as they were suggested, in other cases
they benefited from the customizing available and made some
adjustments to fit the sprites behavior to what they had in mind
for the game. In both situations the users interactions were
faster than having to design the equivalent functionality from
scratch. This is evidence that we can prove with Hierarchical
Task Analysis (HTA). For having a FlakAvatar in the game,
by using Pitako the user will save, at least, three UI interaction
steps. More than that, they indicated the suggestions gave them
ideas about design elements they were not thinking before.
For the interactions, almost half of the recommendations were
accepted. The number of recommendations accepted were far
higher than what we expected. We can say that half or more
of the game design happened in a mixed initiative way, with a
human accepting the suggestions of an algorithm, and in some
cases, making modifications to fit their needs. More than that,
the users really put in effort and didn’t only choose the first
recommendations they were given. They really took their time
to understand the recommendations, to inspect and test them,
to change what they wanted to change, all based on a desire to
make the best possible game in tandem with the AI-assistant
(Figure 9).

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we discussed the design and implementation
of Pitako, a recommender system for game mechanics. We

Fig. 9. An example of a game designed by a user assisted by our recommender
system. This game combines elements from Plants vs. Zombies (PopCap
Games) and R-Type (Irem, 1991)

took inspiration from previous works which found similarities
in games. These similarities were sometimes related to a
whole game genre, like puzzles that have the same mechanics
as Tetris [8] or a single mechanic feature like jumps in
2D platform games[9]. We developed our system on top
of the VGDL and GVGAI framework to be general across
game genres and mechanics. First, we reduced all the game
descriptions available to a description in which we could have
easy access to all the game components, like a catalog of
chemical elements or biological species. The recommender
system itself is based on association rules and frequent item
sets. By applying the apriori algorithm, our search process
navigates into our catalog of game elements and finds associ-
ations between the sprites, their interactions, and the positions
they have in different games and levels. The contribution
of this work is stimulating the generation of new ideas by
automatically exploring the design spaces of games, and
provide solutions that the designer does not need to generate
from scratch. Perhaps the main limitation of the recommender
approach is that it would seem to encourage sameness and
quasi-plagiarism. But, as discussed above, users can tune their
originality by balancing their choices between high and low
confidence recommendations. In the future, it would be inter-
esting to complement the current data-driven recommendations
with recommendations based e.g. on evolutionary search. A
preliminary and informal study showed that the mixed design
initiative was well employed by the users, with them having
half of their game design algorithmically suggested. We hope
this work will help push the use of recommender systems
beyond the e-commerce field, and that it can be used more as
a method of (game) design assistance.

ACKNOWLEDGEMENTS

Tiago Machado is supported by the Conselho Nacional de
Desenvolvimento Cientı́fico e Tecnológico (CNPQ), under the
Science without Borders scholarship 202859/2015-0. We also
want to thank to our intern students and collaborators, Angela
Wang, Katherine LosCalzo, Katalina Park, and ZhongHeng Li.

REFERENCES

[1] C. Anderson, “The long tail,” Wired magazine, vol. 12, no. 10, p. 107,
2004.

[2] A. Said, B. Kille, E. W. De Luca, and S. Albayrak, “Personalizing
tags: A folksonomy-like approach for recommending movies,” in
Proceedings of the 2Nd International Workshop on Information
Heterogeneity and Fusion in Recommender Systems, ser. HetRec ’11.
New York, NY, USA: ACM, 2011, pp. 53–56. [Online]. Available:
http://doi.acm.org/10.1145/2039320.2039328

[3] M. S. Pera and Y. K. Ng, “How can we help our k-12 teachers?:
Using a recommender to make personalized book suggestions,”
in Proceedings of the 2014 IEEE/WIC/ACM International Joint
Conferences on Web Intelligence (WI) and Intelligent Agent Technologies
(IAT) - Volume 02, ser. WI-IAT ’14. Washington, DC, USA:
IEEE Computer Society, 2014, pp. 335–342. [Online]. Available:
http://dx.doi.org/10.1109/WI-IAT.2014.116

[4] A. Sesagiri Raamkumar and S. Foo, “Multi-method evaluation in
scientific paper recommender systems,” in Adjunct Publication of the
26th Conference on User Modeling, Adaptation and Personalization,
ser. UMAP ’18. New York, NY, USA: ACM, 2018, pp. 179–182.
[Online]. Available: http://doi.acm.org/10.1145/3213586.3226215

[5] L. Turmo Vidal, E. Márquez Segura, and A. Waern, “Movement
correction in instructed fitness training: Design recommendations and
opportunities,” in Proceedings of the 2018 Designing Interactive Systems
Conference, ser. DIS ’18. New York, NY, USA: ACM, 2018, pp. 1041–
1054. [Online]. Available: http://doi.acm.org/10.1145/3196709.3196789

[6] Y. Liu, X. Chang, and W. W. Huang, “Recommending friends in local
social networks: An envelope of algorithms,” in Proceedings of the 2014
International Conference on Big Data Science and Computing, ser.
BigDataScience ’14. New York, NY, USA: ACM, 2014, pp. 35:1–35:3.
[Online]. Available: http://doi.acm.org/10.1145/2640087.2644197

[7] A. Liapis, G. N. Yannakakis, and J. Togelius, “Sentient sketchbook:
Computer-aided game level authoring.” in FDG, 2013, pp. 213–220.

[8] J. Juul, “Swap adjacent gems to make sets of three: A history of
matching tile games,” Artifact, vol. 1, no. 4, pp. 205–216, 2007.

[9] A. Summerville, J. Osborn, C. Holmgård, and D. W. Zhang,
“Mechanics automatically recognized via interactive observation:
Jumping,” in Proceedings of the 12th International Conference
on the Foundations of Digital Games, ser. FDG ’17. New
York, NY, USA: ACM, 2017, pp. 25:1–25:10. [Online]. Available:
http://doi.acm.org/10.1145/3102071.3102104

[10] B. Shneiderman, “Creating creativity: user interfaces for support-
ing innovation,” ACM Transactions on Computer-Human Interaction
(TOCHI), vol. 7, no. 1, pp. 114–138, 2000.

[11] M. Siddharta, “The gene: An intimate history,” Scribner, New York, pp.
9–9, 2016.

[12] M. Sicart, “Defining game mechanics,” Game Studies, vol. 8, no. 2,
2008.

[13] A. Nealen, A. Saltsman, and E. Boxerman, “Towards minimalist game
design,” in Proceedings of the 6th International Conference on Founda-
tions of Digital Games. ACM, 2011, pp. 38–45.

[14] B. Brathwaite and I. Schreiber, “Challenges for game designers, charles
river media,” Inc., Rockland, MA, 2008.

[15] P. Schuytema, Game design: A practical approach. Charles River
Media, 2007, no. Sirsi) i9781584504719.

[16] R. Hunicke, M. LeBlanc, and R. Zubek, “Mda: A formal approach to
game design and game research,” in Proceedings of the AAAI Workshop
on Challenges in Game AI, vol. 4, no. 1, 2004, p. 1722.

[17] T. H. Morgan, C. Bridges, and A. Sturtevant, “The genetics of drosophila
melanogaster,” Biblphia genet, vol. 2, pp. 1–262, 1925.

[18] M. Ebner, J. Levine, S. M. Lucas, T. Schaul, T. Thompson, and
J. Togelius, “Towards a video game description language,” 2013.

[19] T. Schaul, “A video game description language for model-based or
interactive learning,” in Computational Intelligence in Games (CIG),
2013 IEEE Conference on. IEEE, 2013, pp. 1–8.

[20] D. Perez-Liebana, S. Samothrakis, J. Togelius, T. Schaul, and S. M.
Lucas, “General video game ai: Competition, challenges and opportu-
nities,” in Thirtieth AAAI Conference on Artificial Intelligence, 2016.

[21] D. Perez-Liebana, S. Samothrakis, J. Togelius, T. Schaul, S. M. Lucas,
A. Couëtoux, J. Lee, C.-U. Lim, and T. Thompson, “The 2014 general
video game playing competition,” IEEE Transactions on Computational
Intelligence and AI in Games, vol. 8, no. 3, pp. 229–243, 2016.

[22] R. S. Singleton, Film Scheduling, Or, How Long Will it Take to Shoot
Your Movie? Lone Eagle New York, 1991.

[23] T. Machado, A. Nealen, and J. Togelius, “Seekwhence a retrospective
analysis tool for general game design,” in Proceedings of the 12th
International Conference on the Foundations of Digital Games, ser.

FDG ’17. New York, NY, USA: ACM, 2017, pp. 4:1–4:6. [Online].
Available: http://doi.acm.org/10.1145/3102071.3102090

[24] T. Machado, D. Gopstein, A. Nealen, and J. Togelius, “Kwiri-what,
when, where and who: Everything you ever wanted to know about your
game but didnt know how to ask,” in Knowledge Extraction From Games
Workshop. AAAI, 2019.

[25] T. Machado, D. Gopstein, A. Nealen, O. Nov, and J. Togelius, “Ai-
assisted game debugging with cicero,” 2018 IEEE Congress on Evolu-
tionary Computation (CEC), pp. 1–8, 2018.

[26] T. Machado, I. Bravi, Z. Wang, A. Nealen, and J. Togelius, “Shopping
for game mechanics,” 2016.

[27] R. Burke, “Hybrid recommender systems: Survey and experiments,”
User modeling and user-adapted interaction, vol. 12, no. 4, pp. 331–370,
2002.

[28] G. Adomavicius and A. Tuzhilin, “Toward the next generation
of recommender systems: A survey of the state-of-the-art and
possible extensions,” IEEE Trans. on Knowl. and Data Eng.,
vol. 17, no. 6, pp. 734–749, Jun. 2005. [Online]. Available:
https://doi.org/10.1109/TKDE.2005.99

[29] S. Brin and L. Page, “The anatomy of a large-scale hypertextual web
search engine,” Computer networks and ISDN systems, vol. 30, no. 1-7,
pp. 107–117, 1998.

[30] D. Billsus and M. J. Pazzani, “User modeling for adaptive news access,”
User modeling and user-adapted interaction, vol. 10, no. 2-3, pp. 147–
180, 2000.

[31] I. Schwab, A. Kobsa, and I. Koychev, “Learning user interests through
positive examples using content analysis and collaborative filtering,”
Internal Memo, GMD, St. Augustin, Germany, 2001.

[32] G. Linden, B. Smith, and J. York, “Amazon. com recommendations:
Item-to-item collaborative filtering,” IEEE Internet computing, no. 1,
pp. 76–80, 2003.

[33] C. A. Gomez-Uribe and N. Hunt, “The netflix recommender system:
Algorithms, business value, and innovation,” ACM Transactions on
Management Information Systems (TMIS), vol. 6, no. 4, p. 13, 2016.

[34] W. Lin, S. A. Alvarez, and C. Ruiz, “Efficient adaptive-support associa-
tion rule mining for recommender systems,” Data mining and knowledge
discovery, vol. 6, no. 1, pp. 83–105, 2002.

[35] R. Agarwal, R. Srikant et al., “Fast algorithms for mining association
rules,” in Proc. of the 20th VLDB Conference, 1994, pp. 487–499.

[36] R. Agrawal, T. Imieliński, and A. Swami, “Mining association rules
between sets of items in large databases,” in Acm sigmod record, vol. 22,
no. 2. ACM, 1993, pp. 207–216.

[37] T. Igarashi and J. F. Hughes, “A suggestive interface for 3d drawing,”
in Proceedings of the 14th annual ACM symposium on User interface
software and technology. ACM, 2001, pp. 173–181.

[38] P. O’Donovan, A. Agarwala, and A. Hertzmann, “Designscape: Design
with interactive layout suggestions,” in Proceedings of the 33rd Annual
ACM Conference on Human Factors in Computing Systems, ser. CHI
’15. New York, NY, USA: ACM, 2015, pp. 1221–1224. [Online].
Available: http://doi.acm.org/10.1145/2702123.2702149

[39] T. T. Nguyen, D. T. Nguyen, S. T. Iqbal, and E. Ofek, “The known
stranger: Supporting conversations between strangers with personalized
topic suggestions,” in Proceedings of the 33rd Annual ACM Conference
on Human Factors in Computing Systems, ser. CHI ’15. New
York, NY, USA: ACM, 2015, pp. 555–564. [Online]. Available:
http://doi.acm.org/10.1145/2702123.2702411

[40] A. Baldwin, S. Dahlskog, J. M. Font, and J. Holmberg, “Towards
pattern-based mixed-initiative dungeon generation,” in Proceedings of
the 12th International Conference on the Foundations of Digital Games,
ser. FDG ’17. New York, NY, USA: ACM, 2017, pp. 74:1–74:10.
[Online]. Available: http://doi.acm.org/10.1145/3102071.3110572

[41] A. Alvarez, S. Dahlskog, J. Font, J. Holmberg, C. Nolasco, and
A. Österman, “Fostering creativity in the mixed-initiative evolutionary
dungeon designer,” in Proceedings of the 13th International Conference
on the Foundations of Digital Games, ser. FDG ’18. New
York, NY, USA: ACM, 2018, pp. 50:1–50:8. [Online]. Available:
http://doi.acm.org/10.1145/3235765.3235815

[42] M. Eppe, E. Maclean, R. Confalonieri, O. Kutz, M. Schorlemmer,
E. Plaza, and K.-U. Kühnberger, “A computational framework for
conceptual blending,” Artificial Intelligence, vol. 256, pp. 105–129,
2018.

http://doi.acm.org/10.1145/2039320.2039328
http://dx.doi.org/10.1109/WI-IAT.2014.116
http://doi.acm.org/10.1145/3213586.3226215
http://doi.acm.org/10.1145/3196709.3196789
http://doi.acm.org/10.1145/2640087.2644197
http://doi.acm.org/10.1145/3102071.3102104
http://doi.acm.org/10.1145/3102071.3102090
https://doi.org/10.1109/TKDE.2005.99
http://doi.acm.org/10.1145/2702123.2702149
http://doi.acm.org/10.1145/2702123.2702411
http://doi.acm.org/10.1145/3102071.3110572
http://doi.acm.org/10.1145/3235765.3235815

	I Introduction
	II Background
	II-A The atoms of a game
	II-B The catalog
	II-C VGDL & GVGAI
	II-D Game design breakdown
	II-E Cicero
	II-F Recommender systems and the Apriori algorithm
	II-G Suggestion engines for design assistance

	III Recommending game design elements
	III-A Apriori algorithm applied to sprite sets
	III-A1 Sprite Recommendation protocol
	III-A2 Game Blending Process

	III-B Apriori algorithm applied to the sprite placement recommendations
	III-B1 Heuristics for placing sprites in a level

	III-C Recommending interaction rules
	III-C1 Sprite combination map
	III-C2 Sprite pairs comparison

	IV Recommender System UI
	IV-A Sprite Recommender UI
	IV-B Interaction Recommendation UI
	IV-C Sprite Placement UI

	V A sample session
	VI Conclusions and future work
	References

