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Abstract— In freemium games, the revenue from a player
comes from the in-app purchases made and the advertisement
to which that player is exposed. The longer a player is playing
the game, the higher will be the chances that he or she will
generate a revenue within the game. Within this scenario, it
is extremely important to be able to detect promptly when a
player is about to quit playing (churn) in order to react and
attempt to retain the player within the game, thus prolonging
his or her game lifetime. In this article we investigate how
to improve the current state-of-the-art in churn prediction by
combining sequential and aggregate data using different neural
network architectures. The results of the comparative analysis
show that the combination of the two data types grants an
improvement in the prediction accuracy over predictors based
on either purely sequential or purely aggregated data.

I. INTRODUCTION
Games distributed using the freemium business model are

freely downloadable and playable. The main revenue for the
games comes from virtual goods that can be purchased by
players. Furthermore, many games include some form of
advertisement (e.g. banners) that serve as a supplementary
revenue stream.

In the freemium industry, similarly to other service indus-
tries such as telecommunications, the revenue that a player
can generate is proportional to the duration of the relationship
between the player and the game/service. Therefore, increas-
ing player retention (i.e. the duration of the period before a
player quits) is commonly considered an effective strategy
for increasing lifetime value [25].

This can be achieved in many ways, for example by
producing more content for players in end-of-content situ-
ations or by adjusting problematic sections in the game that
have shown to lead players to quit. Another possible way,
as shown by Milosevic[20], is to identify the players that
are likely about to stop to playing (i.e. churn) and target
them with a personalised re-engagement initiative before they
abandon the game.

This is challenging especially in non-contractual services
such as freemium games. For contractual services, such
as telephone subscriptions or newsletters, the churn event
is well defined, and corresponds to the moment when the
contract expires or is cancelled. However, for non-contractual
services, such as games or retail, there is not an explicit event
that signals that a user stops using the service.

The most common way, as described by Hadiji et al. [8],
is to define the churn time as the time of the last event
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produced by a player before being inactive for a certain
period of time. The duration of the inactivity may be very
different depending on the context: for example, if a player
does not return to a freemium game after one week it is
much more likely that he/she has churned compared to not
returning to a clothing retail shop after a week. Formalising
churn is therefore industry and time scale dependent and has
to take into account the applicability to the business.

Regardless of the churn definition, churn prediction is
currently actively researched in number of different in-
dustries including telecommunication providers [24], [9],
insurance companies [33], pharmaceutical companies [29]
and games [16].

Within games, a number of techniques have been em-
ployed for churn prediction ranging from a number of super-
vised learning models based on aggregated player data [8],
[27] to more recent works that try to leverage the dynamics
for the player behaviour by using temporal data [15].

The main reason to use this kind of data is that the changes
in the user behaviour leading up to the churn event are
potentially more predictive than aggregated data. Such an
assumption is supported by a number of other recent studies
on churn prediction in other industries [7], [18], [30].

However, since these temporal based methods focus on the
dynamics of the player behaviour in a limited time window,
they are unable to capture the baseline behavioural patterns
of the players and assume that a specific sequence of events
determines churn independently of the player’s history and
context.

Inspired by the work of Leontieva and Kuzovkin [17] on
combining static and dynamic features for classification, in
this article we investigate how both sequential and historic
aggregated data about the player behaviour can be used in
churn prediction models. The hypothesis behind this study
is that static data about the player could serve as context
to interpret the dynamics of the player behaviour. For this
reason, we evaluate a number of different architectures that
can be used to combine the two types of data and we
showcase the results in a comparative analysis based on data
from a commercial free-to-play game.

The structure of the article is as follows: first the state-
of-the-art methods for churn prediction will be presented in
section II. Next the churn definitions and methods that we
will use in this article are introduced in III. The evaluation
parameters and data will be described in IV, and the results
of the evaluation is shown in IV-A. Lastly, section V is
a discussion of the results, followed by the conclusion in
section VI.
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II. RELATED WORK

While the concept of customer churn has been used in
research for many years, the first examples of models for
churn prediction start to be published in the late nineties and
the early two thousands [19], [21]. In their works, Masand et
al. and Mozer et al. employ artificial neural networks (with
slightly different topologies and feature selection methods) to
predict whether a customer will cancel their telephone sub-
scription or not. Other methods, such as decision trees [31],
support vector machines (SVM) [32] and logistic regressions,
have also been used extensively for churn prediction [13],
[9], [6], with many variations detailed in [28].

All of the aforementioned methods for churn prediction
attempt to assess the likelihood of a customer to churn based
on their past behaviour expressed as a static summary of their
state. These models assume that conditions leading to a churn
event are based only on a given state of the customer rather
than the way customer reached that given state. This means
that, for instance, two players with the same average number
of hour played per day would be classified in the same way
even if one of the two is playing increasingly more while
the other is progressively stopping.

To capture this type of difference, the inputs to the model
need to incorporate a temporal dimension. This dimension
can be either approximated (e.g. incorporating trend and
standard deviation to the aggregated measure) or the model
can process the inputs as time series. Castro and Tsuzuki [4],
for instance, analyse a number of methods to approximate the
dynamics of the customer behaviour using different forms of
frequency-based representations.

If a feature can be arranged into time-sequential bins (e.g.
hourly score, daily time played, monthly minutes on call), a
more complete representation of the dynamic behaviour can
be expressed in the form of a multi-variate time series, in
which each sample of customer behaviour is described as a
matrix with nt rows and nf columns, where nt is the number
of time steps/length of time-series and nf is the number of
features.

Prashanth et al. [24] present two different ways of pro-
cessing time series using machine learning models. In their
compararive study, in one of the case, they employ a long
short-term memory (LSTM) [11] recurrent neural network
using the data directly as time series. In the other case they
flatten the multivariate time-series matrix into a single vector
with length nt · nf . By flattening the time-series, additional
static features such as days since last usage and age can be
appended to the vector. This vector is then used as input
to non-sequential models such as a random forest classifier
(RF) and a deep neural network.

A similar approach is used in [14] where the static features
(e.g. user age) are repeated for each month for the sequential
models. While the performance of the different models is
comparable, in both articles the RF outperformed the LSTM
approach in terms of area under the curve (AUC). Another
architecture that allows using sequential data is Hidden
Markov Models (HMM) which is used in [26].

One issue with framing churn prediction as a binary
classification problem is that we do not know if/when a
customer churns in the future. Because this information is
hidden in the future the data is said to be right-censored.
So, instead of framing the churn prediction as a binary
classification problem, methods such as survival analysis
attempt to estimate the time to the next event of interest,
for instance the return of the customer or cancellation of
subscription.

Survival analysis is extensively used in engineering and
economics, and popular methods include Cox Proportional
Hazards Model [5] and Weibull Time To Event model [1].
Both methods have been also applied to churn prediction
alone and in combination with other classifiers [12], [23],
[18], [7].

A. Churn prediction in games

In both a general industry and games context, the two main
approaches for churn prediction consider the churn prediction
task as either a classification or survival analysis problem.

In [23], Perianez et al. interpret churn prediction as a
survival analysis problem and focus on predicting churn
for high-value players using a survival ensemble model.
One of the first examples of treating churn prediction as a
classification problem in games is the 2014 article by Hadiji
et al. [8].

In this work, the authors describe two different forms
of churn classification problems, in which the algorithm
is either trained to detect whether the player is currently
churned (P1) or whether the player will churn in a given
future period of time (P2). Furthermore, they compare a
number of classifiers based on aggregated gameplay statistics
on both tasks on datasets from five different games, showing
decision trees to be the most promising classifier.

In the same year, Runge et al. [27] present an article
investigating how to predict churn for high value players
in casual social games. In this article, high value player are
defined as the top 10% revenue-generating players, the churn
definition is similar to the one labelled as P1 by Hadiji et
al. [8], and the period of inactivity used to determine churn
is 14 days.

A set of classifiers similar to [8] – with the addition of
support vector machines – is evaluated on the dataset from
two commercial games. For the feed-forward neural network
and logistic regression models it was found that 14 days of
data prior to the churn event leads to the highest AUC.

Furthermore, to include a temporal component in the
model, sequences of the daily number of logins are processed
through a Hidden Markov Model. The output of the HMM
is then used as an extra input feature. The authors, however,
find the the inclusion of the temporal data using HMM
degrades the results and hypothesise this might be due to
data over-fitting.

A Hidden Markov Model is also used by Tamassia et
al. [30] in comparison with other supervised learning clas-
sifiers based on aggregated data. The comparative study,



conducted on data from the online game Destiny1, shows
an advantage in processing the player behaviour as temporal
data.

Kim et al [15] also investigate the predictive power of
sequential data by evaluating an LSTM Neural Network
model in predicting churn for new players. In this work, the
input data to the LSTM corresponds to a single time series
containing the player score recorded every 10 minutes over
5 days; churn is defined as having no activity for 10 days
after the first 5 days of observation.

The results show that the LSTM model is able to outper-
form both a one-dimensional convolutional neural network
on the same time series data and traditional learning models
(RF, Gradient boosting, logistic regression) in terms of AUC.
A similar result is achieved also by the LSTM based model
by YOKOZUNADATA in the churn prediction competition
article by Lee at al. [16].

Outside of the context of churn prediction in games,
Leontjeva and Kuzovkin [17] show in their article that a
hybrid LSTM network combining aggregated and time-series
data is capable of better churn prediction than methods using
only one of the two data types or classical ensemble methods.

These results combined with the aforementioned results
by the YOKOZUNADATA LSTM based model suggest that
there is potential for hybrid LSTM networks to leverage
the combination of aggregated an time-series data. For this
reason, in this article we present a comparative study of
multiple hybrid architectures of LSTM to evaluate the best
possible solution in a realistic churn prediction problem.

III. METHODS

In this study, we compare a number of different hy-
brid LSTM architectures that combine time-series data with
aggregated data against commonly employed LSTM neu-
ral network and random forest algorithms. In this section,
we describe all the architectures, the algorithms and the
settings employed, while in the next section, we describe
the evaluation procedure. However, before describing the
algorithms, it is first necessary to define what definition of
churn will be used to label the data for the algorithms training
and evaluation. This choice motivates what kind of data is
relevant and can be used and that, in turn, will also determine
what kind of architectures can be tested.

A. Churn prediction definitions

In freemium games the relationship between a player and
the game is typically non-contractual in nature because the
user can stop playing the game without any notice. In this
situation there is not clear churn event, like a customer
cancelling a subscription. For this reason, different research
works have slightly different definition of churn; however,
they all agree that a player can be considered churned if
inactive for a long enough period of time [16].

In this work, we define a churn event as the last event
generated by a player before a period of inactivity. The churn

1https://www.destinythegame.com/d1

Fig. 1. Depiction of the churn definition used to label the data. The
predictions are made the day after the last day of the observation period/first
day of the prediction offset. In this example user A, C and E are labelled as
churners because their churn dates – i.e. the last active day before a period
of inactivity (churn span period) – happen before the end of the prediction
window. Even though user B and D have a churn date, they are labelled as
non-churners because it happens after the prediction window. This is not a
problem since their churn will be detected at a later prediction when it is
appropriate to reengage them. User F is continuously active and does not
churn either. Image courtesy of [10].

prediction task, similar to the P2 definition in [8], consists
in predicting whether churn event will occur in the next
prediction period (e.g. the week following the prediction).
Figure 1 show a number of examples of patterns of player
activity and explains whether the players are considered
churned or not according to our definition.

A second aspect of the churn classification task that we
need to specify is which player is this model targeted at. Kim
et al. [15] describe a model aimed at predicting churn for new
players, while Runge et al. [27] and Perianez et al. [23] focus
on high-value players. In contrast, the model we propose in
this study is aimed at any player that is currently active.
This means that at the time of prediction, the model can be
applied to any player which has shown some activity (e.g.
has performed at least one action) within the previous 14
days. This time window has been selected as 14 days is also
the length of the input data time window. Which, in turn, has
been chosen based on the periods selected in the literature.
The period duration had to be a multiple of 7 days based on
the periodicity of the players’ behaviour in the game used
for training and prediction.

A third aspect necessary to define is how long a player
needs to be inactive before being labelled as churned. Choos-
ing the duration of this period is a trade-off between finding
actual churners versus players just taking a break. Because of
the aforementioned weekly periodicity, a minimum require-
ment for inactivity duration should be at least one week. The
maximum duration is not clear cut and can be chosen from a
business perspective. For example, if the cost of reengaging
churning players is low, a short inactivity period can be
chosen; however, at the same time a short inactivity period
could lead the algorithm to label as churned a lot of player
who would return later. In this article the churn span period,



(A) Baseline LSTM

(B) LSTM + Aggregated/Prediction

(C) Hidden State LSTM

Fig. 2. Structure of some of the different architectures tested in this
article. (A) is a simple LSTM setup and serves as a baseline. (B) merges
the aggregated data with either the activations of the LSTM or the churn
prediction of the LSTM (baseline LSTM) which is then fed into the output
layer. (C) connects the aggregated data with two separate dense layers which
then serve as the initial hidden and internal cell states for the LSTM. The
output from the LSTM cell is then fed into the output layer, similarly to
the baseline LSTM model.

i.e. duration of inactivity before being labelled as churner, is
set to be 30 days.

Lastly, in order to create actionable predictions, a sliding
offset window from the prediction date (end of observation
period) is used in which the churn can happen, similar to
the P2 definition in [8]. This allows for preemptive actions
to be taken when a player about to churn, instead of when
he/she has already churned. The length of the prediction
offset window is 7 days.

B. Models

With the aim of finding the most effective way to combine
time-series and aggregated player behaviour data, we include
in the study three models which only use the sequential data
are used as a baseline, and a number of different hybrid archi-
tectures. All implemented algorithms are based on either the
Keras Deep Learning library2 for Neural Networks or scikit-
learn3 for the random forests and the evaluation heuristics.

The first two baseline models are a random forest classifier
and a feed-forward neural network. Because these models
cannot handle sequential data, the sequences are flattened
into a single vector. The last baseline model is shown in
Fig. 2 (A). It consists of an LSTM layer to handle the
sequential data with an output dimension of 16. Heuristically
using a larger dimension did not improve the predictions and
typically caused the model to overfit. The LSTM layer uses
the default settings of Keras – i.e. the activation function is

2https://keras.io/
3https://scikit-learn.org/stable/

a hyperbolic tangent and the recurrent activation function is
a hard sigmoid.

The hybrid models tested in this study include the architec-
ture that is best performing in [17], which we label as LSTM
+ Aggregated. As shown in Fig. 2 (B), this hybrid model
relies on the temporal model to generate features from the
time-series. The generated output is then concatenated with
the static data and fed into a final classifier.

These LSTM output can either be the LSTM activations,
the log-likelihood of belonging to each class or ratios of the
likelihoods. While all the hybrid models performed well in
[17], the setup using LSTM activations generally performed
better when many samples were used (> 5000) and the
sequence lengths were around 15 or longer; therefore, we use
this configuration. The final classifier uses a fully connected
network output layer with 1 unit using a sigmoid activation
function.

On top of this architecture, three other configurations are
included in this study: LSTM Predict + Aggregated, LSTM
Hidden State and Static in LSTM.

The first one (LSTM Predict + Aggregated) is a modified
version of the LSTM + Aggregated model that uses the
LSTM prediction instead of the activation. The final sigmoid
output of the LSTM serves as one of the inputs to the final
classification layer together with the aggregated features.
This architecture behaves similarly to the ensembles de-
scribed by Leontjeva and Kuzovkin [17] as the two classifiers
operate independently.

In the LSTM Hidden State model, the static input is used
to set the initial states of the LSTM (see Fig. 2). This is done
by feeding the input data into two separate dense layers with
linear activations which correspond to the initial hidden state
and initial internal cell state of the LSTM. Since the number
of neurons in these layers must match the number of units
in the LSTM, 16 units are used for the dense layers.

Finally, in the Static in LSTM model, the static features
are modelled as time-series with a constant value over time.
These constant series, together with dynamic features, are
used as inputs to an LSTM model as suggested by Khan et
al. [14] Otherwise, the structure of the LSTM network is the
same as the baseline LSTM model.

All the neural networks are trained using binary cross-
entropy as a loss-function and an Adam optimiser. Early
stopping is also utilised and uses the model weights from
the best epoch if there are no improvement in the validation
loss after 10 epochs.

IV. EVALUATION

All the models described in the previous section are
evaluated on the same churn prediction task; the data used
for this test contains player logs from a casual mobile pop
shooter game by Tactile Games called Cookie Cats Pop
(Fig. 3). In these type of games the user typically has to
complete levels over a linear or semi-linear progression and
each level is composed by a different puzzle with the same
core mechanics; in this case, the player has to shoot a number
of bubbles towards other bubbles to compose areas of the



Fig. 3. In-game screenshots from the mobile casual game Cookie Cats
Pop, a pop shooter game for Android and IOS. The left image shows the
world map where level progression can be seen (here it is level 96) and how
in-game events appear (such as treasure hunt). The right shows an example
of a level.

same colour and gather points. Various boosters, such as
bonus actions or clearing the game board, can be used before
or during the game as help to finish the level.

The initial dataset contains player behaviour data from
2018-08-01 to 2019-03-04. However, because we cannot
know whether a player has churned until the inactivity period
and prediction offset period have passed, the latest data is at
least 30 + 7 = 37 days before the upper-bound date.

The models are trained on two types of input data:
aggregated data, which summarises the characteristics of
the player during the last 6 months up to the moment of
prediction, and temporal data, which contain time series
describing daily summaries of the players’ behaviour.

The temporal data contain both features that describe the
activity level of the players and data that that reflect skill
level of the player. The selection is based on the features
included in [15] and [24]. In total, the following ten different
features have been selected:

• ACTIVITY: 1 if player was active, otherwise 0
• GAMESTARTED: number of times game/app was opened
• MISSIONSTARTED: number of missions started
• MISSIONMOVESUSED: sum of moves used
• POINTSPERMISSION: average points per mission
• MOVESPERMISSION: average moves used per mission
• MISSIONCOMPLETED: number of completed missions
• MISSIONCOMPLETEDFRACTION: fraction of com-

pleted missions
• MISSIONFAILED: number of failed missions
• CONVERTED: 1 if in-app purchase, otherwise 0

Each training record is composed by these ten features, each
feature has one daily entries for each of the previous 14 days
(observation period).

The aggregated data contain features to describe the char-
acteristics of the players and give context to the classifier

to interpret the temporal data. These features include game-
specific metrics such as amount of in-game currency used,
game feature/event participation and booster usage, but also
aggregations of general playing patterns (e.g. number of
active days, minutes played per day and max level reached).
The features can be grouped into the following categories:

• Player description which contain general descriptions of
the player and consists of FB-CONNECTED, MONTHSS-
INCEINSTALL, NUM-ACTIVEDAYS and MAXLVL

• Player behaviour which describes how the player
behaves in-game and consists of MINUTESPLAYED-
SUM, MINUTES-PERDAY-AVG, GAMESTARTED-
SUM, LEVELSTARTED-SUM, COMPLETIONRATE,
ABANDONEDRATE, COINSUSED, COINUSED-
PERLEVEL, COINSRECEIVED, CONTINUESUSED-
PERLEVEL, BOOSTERSUSED-PERLEVEL,
TRANSACTION-SUM, SUM-SPEND, TOTAL-SPEND
and PROGRESSIONRATE

• Progression which describes progress in different
game modes and consists of DAILY, MAIN, ONELIFE-
CHALLENGE, SOCIAL-CHALLENGE, TOURNAMENT,
TREASUREHUNT, HOT-STREAK, LEVEL-DASH, LEVEL-
RUSH and STARTOURNAMENT

• Platform which describes what device player is using
and consists of ANDROID, FIREOS, IOS and KINDLE

• Acquisition channel which describes how the player
got invited to the game and consists of ACQUIRED,
CROSSPROMOTED and ORGANIC

In total 22 features are used which expand to 36 features
using one-hot encoding on categorical features.

As argued in the previous section, we use an observation
period of 14 days, churn inactivity period of 30 days and
a prediction offset window of 7 days. Defining churn this
way yields a data set with 65% non-churners and 35%
churners. While methods such as over- or under-sampling
or bootstrapping can be used to deal with class imbalances,
ensuring an even class distribution does not guarantee a better
result, especially in a churn setting and when using AUC as
the evaluation metric [3]. No further action is therefore taken
to deal with the class imbalance.

In order to gather a diverse data set covering a long enough
period of time, 8 sampling dates that are each 18 days apart
are chosen. This ensures data for every week day is included
and that the observation periods do not overlap. A player may
be included in multiple sampling dates, but since there is no
overlap in the observations it is assumed that the behaviour
is independent. Each date has approximately 250,000 records
resulting in a total data set of 2,284,238 records with 814,822
unique players.

For the evaluation of the different approaches, a 10-fold
cross validation is performed. In each fold three evaluation
parameters are used: the area-under-curve score (AUC) of the
receiver operating characteristic curve (ROC), the accuracy
and the F1 score.

The ROC curve is a graph of the true positive ratio over
the false positive ratio at different classification thresholds.
The higher area-under-curve, the fewer false positives to true
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Fig. 4. Feature importance of the baseline random forest model. Note that
not all 140 features are shown, only the 10 most important features followed
by every tenth feature. The number in the parenthesis indicates the order of
importance. The suffixed number indicates number of days ago, where 1 is
the most recent date.

positives. An AUC score of 1 is therefore the highest possible
score while 0.5 corresponds to a random guessing model.
Although using AUC with imbalanced data sets may not give
a complete idea about the model performance [2], the method
is independent of choice of classification threshold and thus
useful for a non-biased comparison between models.

Accuracy is a measure of how many correct predictions
out of all the samples, i.e. acc = TP+TN

N , where TP is the
number of true positives, TN is the number of true negatives
and N is the number of samples. While accuracy is not a
good metric on very imbalanced data sets, it is often used in
literature and thus included for comparison.

The F1 score is the harmonic mean of the precision and
recall of the model. Precision refers to the ratio of true
positives to classified positives, and recall is a ratio that
describes the number of true positives to actual number
of positives. Since the F1 score gives equal weight to
precision and recall it can be used to measure the all around
performance of the model.

Accuracy and F1 score require a binary classification so
a classification threshold of > 0.5 is used to label a player
as churning.

A. Results

The results of the evaluation are shown in Table I. Of the
baseline models, the LSTM is better in terms of all three
metrics, with significant differences that are larger than the
uncertainties. The NN and RF classifier had very similar
performances. Since the data is sequential in nature it is
perhaps not surprising that models that are designed to deal
with such data also performs better. However, it is a good
test of the validity of using sequential data for churn.

In order to extract some information about the behaviour
leading to churn, the RF model can be used to extract the

TABLE I
MODEL RESULTS. NUMBER IN PARENTHESIS IS THE TWO SIGMA

UNCERTAINTY ON LAST SIGNIFICANT DIGITS. THE MODELS WITH THE

BEST PERFORMANCE ARE HIGHLIGHTED IN BOLD.

Model AUC F1 score Accuracy
Baseline RF 0.8405 (21) 0.6414 (33) 0.7749 (21)
Baseline ANN 0.8559 (18) 0.6771 (54) 0.7868 (19)
Baseline LSTM 0.8592 (18) 0.6795 (48) 0.7900 (16)
LSTM + Aggregated 0.8729 (19) 0.6929 (50) 0.8013 (16)
LSTM Predict + Aggr. 0.8711 (20) 0.6898 (60) 0.8000 (17)
LSTM Hidden State 0.8741 (20) 0.6953 (30) 0.8023 (20)
Aggregated in LSTM 0.8737 (22) 0.6927 (34) 0.8020 (19)

feature importance, which is shown in Fig. 4. It can be seen
that the three most important features are the most recent
values for number of missions started, number of times game
has been opened and whether a player was active – all values
which reflect play time. The least important features were all
whether the player had converted. These results are similar
with what was found in [15] for other mobile casual games
and in [24] for telecom data.
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Fig. 5. ROC curves for selected models.

The LSTM Hidden State model and the one using static
features in the sequential data have the best performance on
all the parameters of all the tested architectures. However, the
confidence intervals of the evaluation metrics of the different
models overlap. It is worthwhile to note, though, that the
training time of the Hidden State model is about one third
faster than the static one, while the LSTM + Aggregated
model was only slightly faster than the Hidden State model.
In a business setting, the baseline LSTM model may be the
fastest to both train and implement but it is only a small
increase in complexity to use the Hidden State or LSTM +
Aggregated model, which may then allow for use of domain-
specific features that can boost the model performance for
different user segments (e.g. level reached in games or in-
game event participation). The best strategy may therefore
be to use either the Hidden State or LSTM + Aggregated
model and then tune the hyper-parameters.

A reason why the Hidden State and Aggregated in LSTM



models appear to perform better than the LSTM + Aggre-
gated models may be because the static features are not
directly used in LSTM part of the latter models. It therefore
limits what kind of features the LSTM can extract resulting
in slightly worse performance. The ROC curves of some of
the models are shown in Fig. 5, where it can be seen that
the Hidden State and Aggregated in LSTM are better than
the baselines but otherwise very similar.

We have also briefly tested the models only on converted
users. These samples make up 10% of the data set, and about
20% of have a positive churn label (this number is 35% for
the overall data set). While the AUC and accuracy generally
increased slightly, the F1 score decreased.

V. DISCUSSION

The results show that including the aggregated data in-
creases the performance compared to the baseline LSTM and
the improvement is comparable to using an LSTM over an
RF or NN. Interestingly, including static features in the time
series (Static in LSTM), and thereby increasing the number of
sequential features, did not decrease the performance. This
is only somewhat in agreement with [15] where including
more than 4 features lead to either no or a small decrease in
performance. However, it should be noted that the method
employed by Kim et al. [15] is a gradient boosting method
whereas in this this article we use an LSTM.

Small variations of each model were tested, including
inputting the aggregated features into a dense layer first (like
for the hidden state model), adding a dense layer just before
the output layer and using more cell units. However, no
significant differences were found.

While combining aggregated and temporal data shows and
improvement in churn prediction accuracy, it is worthwhile
to consider that the aggregated features used in this study
include many game-specific parameters, such as in-game
currency spent, participation in game-specific events and so
on. Further investigations would be needed to assess the
generalisability of the results in other games. For instance,
by replicating the experiment on the datasets used in [16].

Additionally, being able to use the same architecture for
other games with similar mechanics may be of particular
interest to some companies since that will allow them to
target even more players with relative ease. A more general
approach may therefore be to cluster the users based on
domain specific heuristics and use this group information
as aggregated inputs. Different rates of activity can also be
used, keeping it as general yet informative as possible.

The small difference in model performance across archi-
tectures may suggest that activity features are enough to
capture a churn signal in simple mobile casual games.

One thing that also affects the performance is how the data
sampling is done. The proposed method of using aggregated
historical data and multivariate time series of the behaviour
leading up to churn is a kind of supervised hierarchical
temporal memory model. This means that we choose the
timescale (lifetime values and most recent 14 days) and
binning window (e.g. daily aggregations) ourselves instead of

Fig. 6. Top: number of player start dates split by churn label. Bottom:
fraction of player start dates split by churn label. It can be seen that old
players are generally less likely to be predicted to churn. The predictions
were made on 2019-02-05 using the baseline LSTM model. A classification
threshold of > 0.6 is used, which is chosen from a rough estimate of the
gain and probability of reengaging a true churner vs the cost of reengaging
a falsely predicted churner.

in an automated way. However, this way we may not capture
all the temporal dynamics because we have explicitly chosen
which dynamics to consider. Indeed, looking at the player
start dates (Fig. 6) split by churn label, it can be seen that of
players starting roughly three weeks prior to the prediction
date, a majority of them are churners. Although it is still in
the interest of the business to catch any player, the model
may become specialised in predicting churn for new players
and not learn to properly model the more profitable long-
term players. This is also in line with the previous results:
although the AUC was higher for converting players, this
does not take into account the lower amount of identified
churners, as reflected by the lower F1 score.

Some methods, such as the wavelet approach in [4], allow
for a bit more of an unsupervised approach in terms of data
sampling, but the results are largely the same. In theory the
input to a LSTM model can also be trained using complete
life time sequences. Additionally, stacked LSTMs may allow
a model to learn different temporal dependencies [22], which
was also tested in this article but showed no improvement.

VI. CONCLUSIONS

In this article we presented and tested four neural network
architectures for churn prediction that allow to combine
aggregated historic data with sequential data.

The results show that combining the static features with
either the LSTM prediction or activations showed an im-
provement over the baseline. However, the best models were
the ones that included the aggregated data in as some form
of input to the LSTM – either by setting the initial state or
simply adding the static data to the time series.

As found in other articles, features that described the most
recent activity carried the most importance for predicting
churn. Using general activity patterns therefore form a good
baseline and can be used across games. However, some
features used in the evaluation also included very game



specific details. For this reason, we believe it is worth
investigating some form of generalisation of the aggregated
data, and we plan on investigating how to employ player
profiling as an input in our future works on this topic.

Furthermore, a more dynamic data extraction scheme that
can capture different temporal dynamics depending on player
type may give an even better performance. Individual models
for player archetypes will also give a better understanding
of the predictions allowing for differentiated re-engagement
strategies which will keep players, both old and new, pas-
sionate or absent, interested the game.

Lastly, for our future tests, we plan on expanding our
suite of datasets by including all available data used in other
articles such as [16].
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