
Carnival - A low cost solution to Interactive Movie on Demand System

Sachin Agarwal Raman Mittal Aayush Deep Garg Sudip Sanyal
Indian Institute of Information Technology – Allahabad

Allahabad, India
{sachin, rmittal_02, aayush , ssanyal}@iiita.ac.in

Abstract

This paper aims at describing Carnival, a movie on
demand system that provides Movie on demand service
by implementing low cost storage architecture for
movie storage server. Carnival uses personal
computers with ordinary configuration, as movie
storage servers. Since RAM will become a major
bottleneck in such storage servers, hence optimization
from the view of memory should be a primary concern.
The solution described in this paper proposes a movie
file system which minimizes the RAM requirements of
the movie storage servers. The proposed file system
provides various VCR functionalities like forward,
rewind pause and play without any additional RAM
requirements.

1. Introduction

1.1. Movie on Demand System

A movie on demand server is a system that store
movies in compressed digital form and provides
support for the movie data to be accessed by remote
clients in real time. The Movie on demand service
provides flexibilities to the viewer such that the viewer
can start watching a movie from a collection stored on
the server, at any time he/she wishes. The viewer can
also use the VCR operations like pause, play, forward
and rewind.
 With increasing demand for large-scale Movie on
demand systems, considerable effort has been spent in
designing scalable, reliable, and cost-effective video
servers. Nevertheless, a video server can only have
finite capacity. As the system scales up, the server will
need to be upgraded and this can become very
expensive.
 In our work (Carnival), personal computers with
ordinary 1 configuration have been used as storage

1 CPU: Intel® Pentium® 4 CPU 1.5 GHz

servers. RAM requirement is one of the major concerns
which paralyses such movie servers. It follows an
incremental trend with the increase in the number of
connections. Since RAM is costly, it adds to the cost of
the storage server. We have implemented a new file
system that incorporates the RAM optimizations
described in Fellini multimedia storage system [1]. The
movie data can be interpreted as a 2D matrix with each
cell corresponds to a block of the movie data.
Carnival’s file system stores this matrix in column
major form on the disk. This storage strategy
considerably reduces the RAM requirements while
serving multiple clients for a single movie.
 The implementation of the VCR functionalities
further incorporates expensive overhead in RAM
requirements. The available architectures [1, 12, 14] of
the movie storage servers did provide some
optimizations for the RAM requirements .In most of
the cases, the use of VCR functionalities by the client
adds unwanted overhead and/or deteriorates the
performance of the server. We propose a method to
implement the VCR functionalities like play, pause,
fast-forward and rewind using this architecture,
without any overhead of RAM or performance
degradation.

1.2. Organization of the paper

The rest of the paper is organized as follows.
Section 2 mentions some of the related works
published in this field. Section 3 describes the details
of different components of Carnival. Section 3.1
describes the architecture of storage server, including
the storage and retrieval optimizations and the
proposed method for implementation of VCR
functionalities. Section 3.2 describes the file system
architecture along with its detailed working. Finally we
present our results and conclusion derived from
simulation of the techniques described in this paper.

 RAM: 256 MBytes.

Proceedings of the 2005 International Conference on Computational Intelligence for Modelling, Control and Automation, and International Conference on
Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC’05)
0-7695-2504-0/05 $20.00 © 2005 IEEE

2. Related Work

Current Movie on Demand systems can be
classified into centralized [2, 3] and distributed [4, 5]
architectures.

Serpanos, et al. [3] compared the performance of
centralized and distributed architectures for video
servers. Their work concluded that in general a
centralized architecture is gives good performance and
management but it is not preferable due to high cost
and scalability issues.
 Researches have contributed a lot of their efforts in
the development of multimedia file systems optimized
for movie on demand services. Rangan et al. [6]
proposes a multimedia file system for continuous
storage and retrieval of media and also discusses the
admission control algorithms. Freedman et al. [7]
discusses a scalable file system for multiple disks for
the intensive I/O applications and multimedia systems.
The Tiger video file server [8] implements a
distributed file system that strips the files over multiple
disks and the computers in distributed fashion.
 The Fellini[1] continuous Multimedia storage system
by AT&T Bell Labs has described a storage technique
for efficient retrieval of the movie data to minimize the
RAM requirements.
 VCR functionalities too are the major issues in a
movie on demand system. Qazzaz et al. [9] describes
allocating some resource channels for providing VCR
functionalities. It uses large size buffers at client side.
It continues to transfer multicast data to the client, even
if he comes late or use pause etc. and uses different
unicast channel to handle VCR operations. Venkatram
et al. [10] propose segmentation of multimedia data
into small segments and segment-skip for VCR
operations. Law et al. [11] also propose a possible
implementation of VCR functionality.

3. Detailed description of the System

3.1. The Storage server

3.1.1. Movie Storage. The movie is stored on a raw
partition/ hard disk using our proposed file system
(described in section 3.2). The file system is mounted
on the raw partition/ hard disk to store the movies. The
movie could be interpreted as two-dimensional matrix
[12] i.e. movie data is divided into blocks of equal size
where each block corresponds to a cell in the two-
dimensional matrix. The proposed file system stores
the movie data in the column major form on the disk.

Figure 1. The 2D matrix used to store the movie
data

For example, suppose a movie is interpreted in the
form of a 2D matrix of dimension 4 rows and 3
columns then the sequence of blocks stored on the disk
would be : 1,5,9,2,6,10,3,7,11,4,8,12.

3.1.2. Optimization during retrieval of movie data.
To retrieve any data block of the movie, corresponding
column is loaded in the memory [12]. In order to serve
the movie stream sequentially to the client, the first
column (comprising of the blocks numbered 1, 5 and 9
in the example given in section 3.1.1)) needs to be
loaded into the memory. While this column is being
served to the client, the second column, consisting of
the blocks numbered 2, 6, and 10, is fetched from the
disk. The columns are sequentially retrieved starting
from the first column to the last and then wrapping
back to the first column. In order to serve the same
movie to multiple clients, instead of retrieving multiple
blocks of movie for each client, only a single column
would serve any number of clients. Considerable RAM
optimization is achieved when the number of clients is
much more than the number of blocks in a single
column of the 2D matrix. The subsequent columns are
stored sequentially on the hard disk, hence their
sequential retrieval ensures the minimization of disk
head seek time and rotational latency. The position in a
movie stream from where the data is transferred to a
particular client is called a phase. The number of
unique phases supported will be equal to number of
rows in 2D matrix. A two column length buffer can be
used, one to retrieve the data and the other to transfer
the movie data to the client in parallel. This technique
effectively reduces the delay on the client side.

3.1.2. Implementation of VCR functionalities. We
propose a novel method to implement the VCR
functionalities using the above storage and retrieval
technique. The various VCR functionalities like play,
pause, fast-forward and rewind can be provided to the
client, without any overhead of RAM or performance
degradation. They have been described hereunder.
(a) Pause: To handle the pause functionality a buffer
of size equal to the size of a single row of the two-
dimensional matrix described in section 3.1.1), is
maintained on the client side. When the client issues a
pause command, the playback of the movie is stopped
but the transfer of movie from the server is paused only

Proceedings of the 2005 International Conference on Computational Intelligence for Modelling, Control and Automation, and International Conference on
Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC’05)
0-7695-2504-0/05 $20.00 © 2005 IEEE

after the buffer on the client side gets exhausted. On
un-pausing, the playback is started from the buffer.
The data transfer from the server is started when the
column containing the next data block required by the
client is loaded into the memory and subsequent data is
appended to the client’s buffer.
(b) Fast Forward: To provide the fast forward
functionality, instead of sending the next data block of
the sequence, the data block present diagonally below
in the two-dimensional matrix is send. The sequence of
the data blocks sent will be i, i+(n+1), i+2*(n+1) and
so on (where n is the number of columns in the two-
dimensional matrix).

Figure 1. Blocks sent during Fast-Forward starting
from ith block

(c) Variable speed fast forward: To provide fast
forward functionality at variable speeds the above
described scheme can be modified as follows. Instead
of sending a single block of data to the client to the
client from a column, the block immediately below the
block to be sent is also sent to the client. The frames
corresponding to this block are displayed before the
frame corresponding to the block diagonally below.
This way the speed of fast forward on the client side is
halved. So the sequence of blocks being displayed at
client will be i, i+S-1, i+S, i+2S-1, i+2S, .. and so on.
A buffer to hold at most n data blocks will be required
at client. The speed of fast forwarding can be further
reduced by increasing the no. of extra data blocks
being sent to the client from each column. If k data
blocks are sent from each column, then at client side
before displaying the diagonal block the frames
corresponding to last k-1 data blocks in the same row
which are already buffered on the client will be
displayed. So a k time reduction in fast forward speed
can be achieved. The sequence of blocks being
displayed at client will be i, i+S-(k-1),i+S-(k-2),…i+S-
1, i+S, i+2S-(k-1), i+2S-(k-2),…i+2S-1, i+2S, .. and so
on. A buffer to hold at most k*n data blocks will be
required at client.
(d) Rewind: In case of rewind command by the client,
the next data block to be send is the data block present
diagonally upward from present block in the two-
dimensional matrix. The sequence of the data blocks
sent will be i, i-(n+1), i-2*(n+1) and so on.

Figure 2. Blocks sent during Rewind starting from
ith block

(e) Variable speed Rewind: Rewind functionality can
be modified in a similar manner as fast forward to
provide variable speeds of rewind. Only instead of
sending k-1 blocks below a designated block in a
column, k-1 blocks above it are sent. The sequence of
blocks displayed at client will be i, i-S+(k-1),i-S+(k-
2),…i-S+1, i-S, i-2S+(k-1), i-2S+(k-2), ….., i-2S+1, i-
2S, .. and so on.

3.2. The File system

3.2.1. Architecture of the multimedia File system.
The file system on the Carnival’s movie server
accounts for efficient retrieval and storage of the movie
files so as to minimize the disk head movement and the
memory requirements in case of multiple access by
various clients or otherwise. The files and directories
on the disk are represented internally in the form of
inodes. A movie file is represented in form of a movie
file inode and a directory is represented as a directory
inode. An inode keeps general information about the
file or directory such as its name, file number, access
permissions, last modified times, file owner’s id, group
number, datazones and other required relevant details.
 Carnival’s movie specific file system is developed
specifically for the movie on demand server. The file
system has the following layout:

1. Boot block – consists of the appropriate
information required to boot the operating
system.

2. Super block –
(a) Number of blocks for File Inode Bitmap

= 1
(b) Number of blocks used for Directory

Inode Bitmap =1
(c) Number of blocks for file zone Bitmap =

1
(d) Number of blocks used for directory zone

Bitmap = 1
(e) Number of direct zones in the inode

structure= 10
(A single movie file on Carnival’s file
system can have a maximum size of
1.725 GB which is sufficient amount of
space required by a single movie file.)

Proceedings of the 2005 International Conference on Computational Intelligence for Modelling, Control and Automation, and International Conference on
Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC’05)
0-7695-2504-0/05 $20.00 © 2005 IEEE

 Number of free inodes and zones for
directories and files are computed by referring
the corresponding bitmap and the field is set
accordingly.

3. Directory inode bitmap – It keeps information
related to directory inodes.

4. Movie File inode bitmap – It keeps the
information about the filled and empty
movie file inode structures on the disk in
form of 0’s and 1’s where 1 represents a
filled inode and a 0 represents an empty
inode.

5. Directory zone bitmap- It keeps the
information about the filled and empty
directory datazones using 0’s for free and 1’s
for filled zones.

6. Movie file zone bitmap – It keeps the
information about the filled and empty
movie file datazones in the manner similar to
the inode bitmap in form of 0’s and 1’s.

7. Directory inodes –It consists of the series of
directory inodes structures present on the file
system. Its structure is same as that of the
Movie File inode structure described below.

8. Movie File inodes – The inode structure(in
implementation) consists of the following
fields:

(a) The size of the file in bytes.
(b) An array containing the zone numbers of

the file data. The maximum size of this
array is equal to the total number of direct
zones.

(c) The device number of the device on which
the file is stored.

(d) The inode number of this inode on the disk.
(e) The inode type, specifying whether the inode

is a movie file inode or a directory inode.
(f) The count specifying the number of processes

currently using the file.
(g) The total number of direct zones for this inode.
(h) A pointer containing the address of the super

block.
(i) A field that marks whether any of the inode

data has changed. In case any of the inode
field undergoes a change, the field is set to
dirty and the inode is written on to the disk
from the inode cache later on.

9. Directory content Blocks – It holds all the data of
directories. These directory content blocks reside

within a group of four blocks on the file system. The
size of directory content block is taken to be 1024
bytes. Two directory content blocks constitute a single
directory datazone for storing the data of any directory.
On any standard file system the block size used for
storing the file’s data or the directory’s data is same.
But in Carnival’s movie specific file system, the block
size is 8.03MB (explained below), which is too large
just for storing the content of any directory on the file
system. So in order to prevent the wastage of disk
space, the block size used for directory content has
been reduced to 1024 bytes.

10. Movie Data Blocks –Since the movie data is large
in comparison to the files normally stored in a typical
file system, the block size taken in our case is quite
large (235* size of a cell of the 2-D matrix). Here 235
is the maximum number of parallel phases supported
by the movie server for a particular movie as described
in the section 3.2.2) above. This has been calculated
using the relation [12].

p= (d/rd – at)*rt/d (1)
where
d = size of a cell of the 2-D matrix (here after
referred as CELL_SIZE).
It has been calculated taking in account the size
of main memory and the maximum number of
different movies that can be transmitted
simultaneously from the server. On a server
having 256MB RAM to support 15 different
movie streams simultaneously, size of a cell of
the 2-D matrix is taken to be 35KB.
So the block size = 235*35KB ~ 8.03MB

rd = rate of transfer of MPEG movie =1.5 Mbps
at = access time taken by the head of the hard disk
rt = transfer rate of the hard disk.

On our hard disk configuration we obtained:-

at = 13.6
rt = 400 Mbps

Hence p was calculated as 235 which is the
number of rows of the 2-D matrix. The number of
columns (n) of the matrix can be calculated
according to the following relation:
n=sizeof(movie)/(p*d) (2)
In our case for a 700MB MPEG movie file, n was
calculated out to be 88.

Each movie file datazone in Carnival’s file system
contains 22 blocks (BLOCKS_PER_ZONE for movie).
This is chosen by assuming the average length of a
MPEG movie file to be 700MB and block size equal to
8.03MBytes. Inodes on our (Carnival’s) movie specific
file system does not have any reference to indirect

Proceedings of the 2005 International Conference on Computational Intelligence for Modelling, Control and Automation, and International Conference on
Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC’05)
0-7695-2504-0/05 $20.00 © 2005 IEEE

zones which is present in many current file-systems.
This is done intentionally so as to reduce the overhead
associated with referencing of indirect zones for movie
file data. As a consequence of large block size on the
file system a very limited number of zones can do the
job of storage of an average 700MB MPEG movie file.

3.2.2. Working of the File System.
(a) Initialization of the file-system

 To initialize the file system, the super block is
loaded from the hard disk into the file buffer cache.
Various file system specific attributes are derived from
the super block. A pointer which holds information
about the current directory is made to point towards the
root inode whose address is derived from the super
block.

(b) The Buffer Caches and the Inode Caches
 The buffer cache is introduced to minimize the

disk operation. In Carnival’s movie specific file system
we have developed two buffer caches each for file and
directory content blocks. Each buffer cache is
maintained in form of a Hash Map with Hashing
function as (HASH_MASK & Block number) where
‘&’ is the logical AND operator.

 A free list of buffers is also maintained that
preserves the least recently used order. The free list is a
doubly linked circular list of buffers with a dummy
buffer header which marks its beginning and end.
Whenever a new buffer has to be allocated, free list is
searched and the returned buffer is inserted at
appropriate index in the HASH MAP.

 In Carnival’s file system: The size of file Buffer
cache is equal to 40 and HASH_MASK is 63. The size
of directory Buffer cache is equal to 10 and
HASH_MASK is 31. The layout of the buffer cache
can be depicted from the figure below.

Figure 4. Structure of a single Buffer cache

Both inode caches (directory as well as file inode
cache) are simply a continuous array of inode
structures in the memory. When the I/O operation for
an inode is to be done, the inode structure is first
searched in the respective inode cache. If cache hit
occurs then the inode structure need not be read from
the disk and thus saves valuable time. In Carnival’s file
system the size of file inode cache is equal to 64 and
that of directory inode cache is 32.

(c) Writing a new movie file to the file system
 As described in section 3.1.1 the movie data is stored
in a column major form in the file system. Whenever a
new movie is to be stored on the disk, the complete
target path of the movie file destination is provided to
the file system. The given path is resolved and the
directory in which the movie file is to be written is
returned using to the algorithm given below.

Algorithm directoryi
Input: path name
Output: inode of target directory
if (path name starts from root)
 working inode=root inode (algorithm iget[19]);
else

working inode=current directory inode (algorithm
iget [19]);

read next path name component from input;
while (there is more path name)
 read directory (working inode) by use of algorithms
 bmap [19],bread[19],brelse [19]
 if(component matches an entry in directory (working
inode))
 get inode number for matched component;
 release working inode (algorithm iput);

 working inode = inode of matched component
(algorithm iget);

 else
 create entry of component in working inode;
 read next path name component from input;
end while
return (working inode);

For example:-
Suppose the path given to the file system is

/A/B/C/D.mpeg. The directory A already exists in the
root directory of the file system but there are no
directories named B and C on the file system. The
above algorithm creates directory B in directory A and
C in directory B and returns the working inode which
is the directory inode of C. Now the movie file inode
bitmap is scanned for the first available free bit, the bit
is set to unity and the corresponding inode number is
returned. This inode number can now be used to
uniquely identify the file on the hard disk.

The storage of the movie in column major form is
done by reading appropriate chunks of CELL_SIZE of
movie data from the movie source. When the size of
the buffer becomes equal to the block size of the file
system, it has to be written onto the disk. The offset in
the movie source file to read the appropriate chunks of
movie data can be calculated according to the
equations given below.
for each block present in ith column and jth row
 Offset =(i + j * (no of cols)) * CELL_SIZE (3)

The data blocks of the movie inode are organized
by grouping them into various zones with maximum

Proceedings of the 2005 International Conference on Computational Intelligence for Modelling, Control and Automation, and International Conference on
Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC’05)
0-7695-2504-0/05 $20.00 © 2005 IEEE

number of blocks in each zone equal to
BLOCKS_PER_ZONE (for movie) of the file system.
 A zone is created by scanning the movie file zone
bitmap and finding the first available zone and making
the entry of the corresponding zone number in the
movie inode. The inode cache is searched for the
availability of the inode and all the additions and
updations to the inode fields are temporarily done to
this alias of the disk inode in the inode cache. This
leads to the setting of DIRTY field in the inode
structure indicating that its fields has been changed and
it needs to be written back to the disk with its new
fields. This writing of inode structure on the disk is
done only when this inode structure is not in use and a
new inode structure needs to be assigned in the inode
cache for some other file.

(d) Reading a movie file from the file system
 The movie data is written in the column major

form to the file system and is retrieved in the same
form during its read from the file system. To read the
data contained in a movie file, its inode is loaded into
the RAM by resolving the given movie file path name
using the namei[13] algorithm. While the file is being
read from the hard disk, one complete column is read
at a time. The column to be retrieved is based on the
next data block to be send to the client and is known
before the read operation. The movie file data block
(DB) on the file system containing the movie file data
corresponding to this column can be calculated from
the following relation:
DB = SOD + (DZ*BPZ)+ Column no. (4)
Where
(i) SOD is the number of blocks to be skipped on

hard disk in Carnival’s file system before reading
any data blocks. For reading the data block of
any movie file SOD includes the skipping of
the boot block, super block, all the bitmaps,
directory inode and movie file inode structures
and four blocks which contains all the directory
content blocks.

(ii) DZ is the starting zone number for the inode of
the file for which the data is requested. This
starting zone number can directly be fetched
from the field of the inode structure with is an
array containing the zone numbers of the file data.

(iii) BPZ=BLOCKS_PER_ZONE (for movie)

NOTE: In Carnival’s case the bmap [13],bread [13]
and brelse [13] algorithms used in namei[13]
algorithm operates on the directory blocks. bmap [13]
operates on directory inodes, bread [13] and brelse [13]
operates on directory content blocks.

 The required data block calculated above is
fetched by firstly checking for its availability in the file

buffer cache. A cache hit saves the time required to
read the data from the disk which is quite expensive. If
it is not found in the file buffer cache, the respective
block is read from the hard disk into the file buffer
cache. Now the location of the block in the file buffer
cache is copied into a temporary buffer which is then
used to transfer the movie data to the client. To further
lower the hard disk head movement the C-Scan [14]
algorithm is used to service the multiple clients read
requests.

4. Results

To get a rough estimate of the performance of Carnival,
we ran some very simple experiments, in which a
client program downloads a file from the storage server
and the server sends the file by retrieving the movie
file as described above. The whole experiment was
carried out on a heavy traffic 100Mbps Ethernet Local
Area Network. The plot of Transfer time versus Size of
the movie has been shown below.

Figure 5. Plot of Transfer time against size of the
movie

The first graph shows the transfer time for small
(varying from 35 MBytes – 62 MBytes) sized movies.
The graph clearly shows that the slope of the plot is
increasing with increase in size of the movie due to
increase in page faults (here page fault refers to not
being able to find the requested block in buffer cache).
Since the number of columns in the 2D matrix
representation of a movie file are served in a round
robin fashion, therefore for small sized movies, the
subsequent columns might still remain in memory
(buffer cache of the file system) and they need not be
fetched from the memory, thus decreasing the number
of disk accesses and hence the transfer time. The
second graph shows the Transfer time for movies with
larger (70 MBytes – 720 MBytes) size. Here the slope
of the plot is almost constant because the number of
page faults (not being able to find block in buffer cache)
becomes constant because each new column has to be
fetched from the hard disk. The plot of free memory
versus number of clients for the same movie on the
movie server has been shown below.

Proceedings of the 2005 International Conference on Computational Intelligence for Modelling, Control and Automation, and International Conference on
Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC’05)
0-7695-2504-0/05 $20.00 © 2005 IEEE

Figure 6. Free Memory available against the
number of clients watching the same movie from

the same server
The initial drop in the graph shows a memory

usage of approximately 16 MBytes (since two buffers
of size 8.03 MBytes each as explained in section 3.2.1),
are loaded into memory). The initial drop in free
memory will come as soon as the 1st client asks for the
movie. Thereafter, there is no considerable increase in
memory usage with the increase in number of clients.
This is true even in the case of hundreds of clients as
depicted by the graph above.

5. Conclusion

The storage optimization technique described in this
paper along with complete implementation details of
the file system and network architecture provides
comprehensive details of Carnival, our movie on
demand system. The storage enables the different
sections of a movie to be concurrently retrieved from
the disk and a number of clients could be
simultaneously served thus minimizing the RAM
requirements and thus the overall cost of the storage
server. The proposed solution for VCR functionalities
provides an efficient method for their implementation
without any overhead of RAM requirements. The
results show considerable optimizations in main
memory (RAM) usage when hundreds of clients watch
the same movie from the same storage server.

7. References
[1]. C. Martin, P. S. Narayan, B. Ozden, R. Rastogi, and A.

Silberschatz. “The Fellini Multimedia Storage Server.
Multimedia Information Storage and Management”,
Editor S. M. Chung, Kluwer Academic Publishers, 1996.

[2]. A. Krikelis, “Scalable multimedia servers”, IEEE
Concurrency, vol.6(4), Oct.-Dec. 1998, pp.8_10.

[3]. D.N. Serpanos, A. Bouloutas, “Centralized versus
distributed multimedia servers”, IEEE Transactions on
Circuits and Systems for Video Technology, vol.10(8),
Dec. 2000,pp.1438_1449.

[4]. F. Schaffa and J.-P. Nussbaumer, “On bandwidth and
storage tradeoffs in multimedia distribution networks”,
in Proc. Infocom, 1995, pp.1020–1026.

[5]. L.A. Rowe, D.A. Berger, and .E. Baldeschwieler, “The
Berkeley Distributed Video-on-Demand System,
Multimedia Computing”, Proc. Sixth NEC Research
Symp., T. Ishiguro, ed., Society for Industrial and
Applied Mathematics, Philadelphia.

[6]. P.Venkat Rangan , Harrick M. Vin, “Designing file
systems for digital video and audio”, Proceedings of the
thirteenth ACM symposium on Operating systems
principles, p.81-94, October 13-16, 1991, Pacific Grove,
California, United States

[7]. Craig S. Freedman , Josef Burger , David J. DeWitt,
“SPIFFI-A Scalable Parallel File System for the Intel
Paragon”, IEEE Transactions on Parallel and
Distributed Systems, v.7 n.11, p.1185-1200, Nov 1996.

[8]. Bolosky96 W. Bolosky, J. Ban'era III, R. Draves, R.
Fitzgerald, G. Gibson, M. Jones, S. Levi, N. Myhrvold,
R, Rashid, “The Tiger Video Fileserver”. In proceedings
of the Sixth International Workshop on Network and
Operating System Support for Digital Audio and Video
(NOSSDAV 96), April, 1996

[9]. B.Qazzaz, R. Suppi, F. Cores, A. Ripoll, P. Hernandez,
E. Luque. “Providing Interactive Video on Demand
Services in Distributed Architecture”. In Proceedings of
the 29th EUROMICRO Conference “New Waves in
System Architecture” (EUROMICRO’03), page 215,
Year 2003.

[10].P.Venkatram, Shashikant Chaudhary, R. Rajavelsamy,
T. R. Ramamohan, H. Ramakrishna,“Disk-oriented
VCR operations for a multi-user VOD system”, Journal
of Indian Institute of Science, Sept.–Oct. 2004, ,Pg 123–
140

[11].Kelvin K. W. Law, John C. S. Lui, Leana Golubchik
“Efficient support for interactive service in multi-
resolution VOD system”, The VLDB Journal — The
International Journal on Very Large Data Bases
archive Volume 8, Issue 2 (Oct 1999)Pages: 133 - 153

[12].Banu Özden , Alexandros Biliris , Rajeev Rastogi ,
Abraham Silberschatz, ” A Low-Cost Storage Server for
Movie on Demand Databases”, Proceedings of the 20th
International Conference on Very Large Data Bases,
p.594-605, September 12-15, 1994

[13].Maurice J. Bach, The Design of the UNIX Operating
System, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1986

[14].A.L. N. Reddy and J. C. Wyllie, I/O issues in a
multimedia system. Computer, 27(3):69--74, March
1994.

[15]. Rowe, L. A., Patel, K. D., Smith, B. C., And Liu, K.
“MPEG video in software: Representation, transmission,
and playback”, In High Speed Network and Multimedia.
Computing, Symp. on Elec. Imaging Sci. & Tech. (San
Jose, CA), Feb. 1994.

Proceedings of the 2005 International Conference on Computational Intelligence for Modelling, Control and Automation, and International Conference on
Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC’05)
0-7695-2504-0/05 $20.00 © 2005 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

