
Test Case Generation for Critical Systems through
a Collaborative Web-based tool

Alessandro Oliveira Arantes1, Nandamudi Lankalapalli Vijaykumar2, Valdivino Alexandre de
Santiago Junior2, Danielle Guimarães2

1 Institute for Advanced Space Studies (IEAv) - Aerospace Technological Center (CTA)
P. O. Box 6044 – 12228-970 – São José dos Campos – SP – Brazil

2 National Institute for Space Research (INPE)
P. O. Box 515 – 12245-970 – São José dos Campos – SP – Brazil

alessandro.arantes@ieav.cta.br, vijay@lac.inpe.br, valdivino@das.inpe.br,
danielle.guimaraes@cea.inpe.br

Abstract

Tests play a major role in validating software. In
particular, the role becomes more important when
considering critical software such as for space
applications as is the case in the National Institute for
Space Research (INPE) in Brazil. Such software uses
Finite State Machines (FSM) in order to model the
software specification from which test sequences are
generated for a black box test approach. As the
software for space applications is considered as a
complex system with several components (usually in
parallel), test designers seem to look for other
alternatives instead of modeling via FSM. This paper
addresses an experience in the modeling issue in using
Statecharts to represent the specification of space
application software from which test sequences can be
generated. Moreover, it also describes a web-based
tool in order to facilitate software testing, from models
specified in Statecharts, in a distributed environment.

1. Introduction

Nowadays software is an essential element in our
lives and it is embedded into a wide variety of devices
from simple electronic devices as music players to
scientific satellites. Especially when dealing with
critical systems, testing activities are an essential phase
in order to validate software, since their engineering
processes demand high level and high cost
technologies to perform complex tasks. Therefore,
space agencies that deal with complex missions,
naturally demand higher software quality in lieu of the
huge investments in their missions [1].

The subject discussed in this paper is, in fact, the
most important phase in a Verification and Validation
process being one of the key issues within software
development life cycle, and in particular, for critical
software this activity gains much more importance
dedicating more time and resources when compared to
other phases within the cycle. INPE (National Institute
for Space Research) is a government institute
responsible to develop the Brazilian Space Mission
involving satellites and, consequently, to develop and
implement their embedded software.

Complex software requires a long and expensive
development process, and therefore, costs for
correcting errors during final development phases turn
out to be extremely expensive. For these cases,
modeling techniques are welcome to provide a formal
specification of software, so that tests can be applied in
order to detect errors during initial development
phases. The quality of test sets applied to critical
systems is heavily associated to Reliability and Safety,
which consequently leads to the necessity of generating
proper test sequences. And, in order to avoid their (test
sequences) inadequacy in revealing errors, an effective
way is to adopt an entirely scientific based modeling
technique.

In this paper, Section 2 discusses about software
modeling techniques, in particular Statecharts. Section
3 shows the importance of testing critical systems in a
collaborative scenario and also presents PerformCharts
tool by explaining how a model represented in
Statecharts is converted into a FSM from which test
sequences are generated. Section 4 presents the WEB-
PerformCharts tool. Section 5 presents a case study
with results from implemented methods. Finally,
Section 6 concludes the paper.

CIMCA 2008, IAWTIC 2008, and ISE 2008

978-0-7695-3514-2/08 $25.00 © 2008 IEEE
DOI 10.1109/CIMCA.2008.143

163

2. Software Modeling and Statecharts

Modeling techniques are an approach that has
become common for domain-specific applications
recently, in particular for software development [3].
Reactive systems, that is the focus of this paper, has a
very particular characteristic that is based on reactions
to stimuli or events; thus, a natural choice for
representing reactive systems is FSM as it can be
represented graphically by a state-transition diagram.
However, features as depth and parallelism are not
easily specified in a straightforward manner through
FSM. So, a formal higher-level technique should be
investigated. Some alternatives are Petri Nets [4], SDL
[5], Statecharts [6] and others. The scope of this paper
explores Statecharts alternative.

Statecharts have a graphical formalism to specify
reactive systems ([7] and [8]). Originally, they have
been developed to specify and simulate real time
systems. They extend classic state-transition diagrams
by adding features as hierarchy (depth), orthogonality
(parallel activities) and interdependence (broadcast-
communication). The elements that are used by
Statecharts to represent reactive systems are: states,
transitions, events, conditions, actions, variables and
expressions [6], [7], [8] and [9].

3. Testing Critical Systems within a
Collaborative Scenario

There are different types of tests and, depending on
these types, they can be applied in different phases
within a software development process. Even in
modeling phases, before implementation, it is already
possible to fix errors as long as a formal specification
is available. Without any knowledge on its internal
structure, testers have a perception that software is a
“black box”. Consequently, these tests based just on
the software’s specification are Functional Tests, also
known as “black box tests”.

Situations, where teams involved in satellite
missions are not exactly in one place, are usual in
space research activities, since joint collaborations are
a very common trend among space agencies.
Therefore, the use of an on-line collaborative tool
would definitely aid the software testing activities
developing space applications in this scenario such as
the one shown in Figure 1.

Due to popularization of internet access, web-based
applications become popular providing advantages by
offering a lower cost solution than conventional
applications. In this architecture, a client does not
require proprietary software, and can use any operating

system as well as any internet browsers available free
of costs. Also, whenever necessary, updates may be
conducted only in the web-server where the application
is hosted, without any necessity for the users to
reinstall any kind of software. So, collaborative web-
based applications (or E-collaboration) can be seen as a
natural approach adopted for many companies of
varied segments; and in this work a collaborative
application was developed in order to generate “black
box tests” for software specifications uploaded via
internet.

Figure 1. Example of cooperative work

PerformCharts is a tool used to generate test

sequences from Statecharts specifications. It was
initially developed to be used to evaluate performance
of reactive systems by associating them to Markov
Chains [10]. However, since Markov Chains can be
represented graphically by a state-transition diagram,
PerformCharts tool has also been used to generate test
sequences. Or, in other words, PerformCharts converts
a Statecharts model (software specification) in a FSM
from which test sequences can be derived.

So, the specification of a reactive system in
Statecharts and generation of FSM (or Markov chain)
have to be coded as calls to methods in C++ language
as a main module. In order to avoid this tedious
coding, an XML-based language PcML
(PerformCharts Markup Language) [11] has been
developed

PcML code is edited by a text editor and parsed by
a Perl script that converts it to the main program in
C++. Thus, this program in C++ (that is a main
program) is linked and compiled with PerformCharts
classes and when executed, the corresponding FSM is
generated. Test sequences are generated based on this
FSM, as mentioned before.
4. WEB-PerformCharts

164

With the objective of enabling different teams,
distributed geographically in different locations,
working in software testing sharing projects through
Internet access, PerformCharts was modified to
become WEB-PerformCharts. It is a web-based tool to
help software testers working in different places
cooperating in common projects, and using their
expertise and know-how in order to benefit software’s
quality. PerformCharts tool has been modified and
adapted to execute remotely through a web-based
interface and to be hosted in a web server. Also,
instead of manipulating local files spread in several
computers, an on-line database has been implemented
in order to able testers to load and save projects from
anywhere to the web server. Besides the traditional
HTML, other resources for implementation were
required, and the preference was for cost-free
technologies such as PHP, MySQL for databases and
Apache web server software. At the moment, WEB-
PerformCharts uses a platform based on Windows
servers; but a Linux version is in its final stage and
about to be released.

Statecharts specifications (written in PcML) are
distributed in projects that can be created by any user
and can be shared among users. Once logged in the
system, testers are able to create, edit or delete projects
and their associated specifications. Tester can modify
or run the test case generation method as many times
as required. This is an important feature especially
when software is incorrectly modeled or has to
undergo changes in its specification. These changes
can be perceived by anyone who can access the same
project.

In theory the number of users who can access
WEB-PerformCharts is not limited, since it depends
directly on the server capacity to support a heavy on-
line workload as well as on the storage capacity. The
interface was developed keeping in mind the facilities
to provide the user features to manage her or his
projects creating a new one, deleting or modifying an
existing project in order to obtain new test cases
running the test case generator. Test cases are stored in
database, and can be accessed anytime by those who
have the proper authorization. A text file with PcML
specification is uploaded to web server (WEB-
PerformCharts) when user selects it using the provided
interface implemented in HTML and PHP. When
uploaded, the PcML contents are automatically parsed
by a PHP script which extracts any Statecharts
specification data and insert them into a MySQL
database. This data inform the database is read and
used to invoke proper methods holding the
encapsulation, states, events, conditions, parallel

components and transitions. It calls appropriate
instances from PerformCharts and generates the FSM
from its specification. If performance evaluation is
required, a Markov chain is the result instead of FSM;
but in either case (Markov chain or FSM) the output is
inserted in database and can be extracted in XML
format for any other use.

However, once FSM is available, test sequences can
be generated from it by application of methods. A
previous version of WEB-PerformCharts just generates
FSM through a collaborative methodology, and it
depended on another tool Condado [10] to generate test
cases. However, CONDADO that implemented Switch
Cover method cannot generate the sequences
depending on the complexity of the FSM. The reason
why some FSMs cannot be dealt with is not clear.
Therefore, the present version of WEB-PerformCharts
incorporated two test sequence generation methods:
Transition Tour [12] and Switch Cover [13]. These
methods have been developed as “cartridges” to be
applied on the resulting FSM from Statecharts
representation. This “cartridge” approach enables
developing and implementing other methods that can
generate test sequences based on FSM modeling. In
fact, other methods DS (Distinguishing Sequence) [12]
and UIO (Unique Input Output) [14] are being
implemented at the moment. Figure 2 describes all
basic steps to generate test sequences using WEB-
PerformCharts. The generation using Transition Tour
is indicated as “Path A”, and Switch Cover method as
“Path B”. One major advantage in implementing
Switch Cover within the web tool is that those complex
FSMs that CONDADO couldn't deal with, are now
being handled.

5. Case study

In order to show the use of WEB-PerformCharts for

test sequence generation, a following case study is
considered. This is a piece of APEX [15] software, an
astrophysical experiment aboard on a Brazilian
scientific satellite; more precisely, this is a command
recognition component. Command messages are sent
in a format composed of six fields: SYNC (EB9
synchronization value), EID (experiment
identification), TYPE (specifies accepted commands),
SIZE (amount of bytes in the DATA field), DATA and
CKSUM (8-bit checksum). SIZE and DATA fields are
optional and depend on the type of command. The
behavior of command recognition component software
is shown in Figure 3 and it is a low-level modeling
since it is possible to see all the specified values of the
protocol frame fields.

165

Figure 2. WEB-PerformCharts architecture

Figure 3. Statecharts representation of APEX system [15]

166

Figure 4. FSM generated from Statecharts specification in Figure 3

Figure 4 shows the FSM generated from this
specification in Statecharts, and Table 1 shows results
obtained by WEB-PerformCharts generating test cases
for this application. In Table 1, row “time” means the
amount of time spent to generate test cases, rows
“events” and “cases” mean, respectively, the number of
events and the number of cases generated by both
methods.

Table 1. Results from test case generation

Result/Method Transition Tour Switch Cover

Time 328ms 7s
Events 70 events 27 events
Cases 1 case 7 cases

As can be seen in Table 1, Transition Tour method,

as expected, is faster in terms of performance, but less
precise by stimulating 70 events in order to cover the
full graph with its unique test case sequence. Switch
Cover method covered all possible 7 paths from FSM
by stimulating just 27 events. However, it spent much
more time. Both methods may start and finish test
sequences from an initial state (IdleWaitingSync, in
this case), as can be seen in Figure 4.

6. Conclusions

The adoption of a collaborative tool enables
decentralized work, that is a common practice for
widely dispersed companies resulting in time and cost
savings in modern days, since it decreases travel and
infrastructure requirements. In space research scenario
this type of system is applicable and useful since
professionals may be located in different institutes and
the union of their efforts, wherever they are,
contributes a lot towards the development of critical
systems and, consequently, for the success of space
missions.

The implementation of an on-line database allows
test designers to share their projects in real-time
conditions, and facilitates control of versions since its
management is easier than copying multiple local files
from several computers. Also, another advantage of
WEB-PerformCharts is the access from any place in
the world at anytime, and its few requirements
composed just by a computer or laptop, an internet
connection and a web browser.

The integration of test sequence generation methods
enables the comparison of different methods when
using WEB-PerformCharts. Besides Transition Tour
and Switch Cover, other methods are under
development and may be available as cartridges of the
system soon. The main contribution of this paper is to
provide a web-based tool, in a distributed environment,
that supports test processes for space software
engineering, providing a time comparison of two

167

methods for generation of test sequences within a real
space application. In addition, XML was used to
format documents and it contributes in standardization
of test data.

With respect to complex software modeling, it
could be concluded that this requires features as
explicit representation of hierarchy and parallel
activities. Hence, Statecharts come into picture being
used as a higher-level technique based on state-
transitions diagrams. However, dealing with higher-
level techniques increases complexity in developing an
automated environment demanding much more
computational effort, and one must be prepared to pay
the price for this. A proof of this is that two main
discrepancies were observed among tested methods:
the execution time in favor of Transition Tour and the
effectiveness in favor of Switch Cover.

Also, depending on the number of states and arcs of
the generated FSM, the problem may be intractable,
i.e., it may not be possible to generate test sequences in
a reasonable amount of time. Therefore, small graphs
can be easily processed by any method quickly; but for
complex graphs, a method must be carefully chosen.
Tester has to opt between waiting more time for a
complete set of sequences from Switch Cover or obtain
a fast unique, and not so precise, set of sequences from
Transition Tour. Through the observation of all
sequences generated it can be deduced that Switch
Cover sequences are more reliable, but it is impossible
to make such a measure without evaluating this issue
in more details and formally.

In future, studies will be made for integration
between WEB-PerformCharts and tools that perform
automatic test execution in order to improve the
automation of test process activities.

7. References

[1] M.F. Matiello, V.A. Santiago, A.M. Ambrósio, R. Costa,
and L. Jogaib, “Verificação e Validação na terceirização de
software embarcado em aplicações espaciais”, SBQS2006,
Vila Velha, ES, Brasil, 2006.

[2] Pressman, R.S., Software engineering - a practitioner's
approach, 5th edition, McGraw-Hill International Editions,
2000.

[3] H. Xiao, M. Zhiyi, S. Weizhong, and G. Shao, “A
metamodel for the notation of graphical modeling
languages”, In: Computer Software and Applications
Conference (COMPSAC), Vol. 1. 31st Annual International,
Volume 1, Issue, July 2007, Page(s): 219 – 224, 24-27.

[4] D. Harel, A. Pnueli, J. Schmidt, and R. Sherman, “On the
formal semantics of Statecharts”, IEEE Symposium on Logic
in Computer Science, Ithaca, USA, 1987.

[5] D. Harel, and M. Politi, Modeling Reactive Systems with
Statecharts: the Statemate Approach, McGraw-Hill, USA,
1998.

[6] D. Harel, and A. Naamad, “The STATEMATE Semantics
of Statecharts”, ACM Transactions on Software Engineering,
1996, 5(4), pp. 293-333.

[7] I. Sommerville, Software Engineering, Addison Wesley,
2003.

[8] G.Y. Tian, and D. Taylor, “Design and Implementation of
a Web-based Distributed Collaborative Design
Environment”, IEEE Fifth International Conference on
Information Visualisation, London, UK, 2001, pp. 703-707.

[9] N.L. Vijaykumar, S.V. Carvalho, and V. Abdurahiman,
“On proposing Statecharts to specify Performance Models”,
International Transactions in Operational Research, 2002,
9(3), pp. 321-336.

[10] V.A. Santiago, A.S.M. Amaral, N.L. Vijaykumar, M.F.
Mattiello-Francisco, E. Martins, and O.C. Lopes, “A
Practical Approach for Automated Test Case Generation
using Statecharts”, In: 2nd International Workshop on
Testing and Quality Assurance for Component-Based
Systems, IEEE COMPSAC Conference, Chicago, EUA,
2006, v. 2, p. 183-188.

[11] S.C.P.F. Fabbri, J.C. Maldonado, T. Sugeta, and P.C.
Masiero, “Mutation Testing Applied to Validate
Specifications Based on Statecharts”, Proceedings of the 10th
International Symposium on Software Reliability
Engineering, November 01-04, 1999, p.210.

[12] D. Sidhu, and T. Leung, “Formal methods for protocol
testing: a detailed study”, IEEE Transactions on Software
Engineering, 1989, 15(4), 413-426.

[13] S. Pimont, and J.C. Rault, “An approach towards
reliable Software”, Proceedings of the 4th International
Conference on Software Engineering, Munich, Germany,
1979, pp.220-230.

[14] K. Derderian, R.M. Hierons, M. Harman, and Q. Guo,
“Automated unique input output sequence generation for
conformance testing of FSMs”, The Computer Journal, v.49
n.3, 2006, p.331-344.

[15] V.A. Santiago, N.L. Vijaykumar, D. Guimarães, A.S.
Amaral, and E. Ferreira, “An environment for automated test
case generation from statechart-based and finite state
machine-based behavioral models”, In: 4th A-MOST 2008,
First IEEE International Conference on Software Testing
Verification and Validation (ICST 2008), Lillehammer -
Noruega, 2008.

168

