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Abstract—3D reconstruction on dense nanoscale medical
images is a very challenging research topic. The challenge comes
from the fact that boundaries of objects on such images are
not always very clear due to imperfect staining. This makes the
segmentation of dense nanoscale medical images very difficult
and thus increases the difficulty in 3D reconstruction. In this
paper, we proposed a method based on watershed and an
interactive segmentation technique, graph cuts, to extract 3D
volumes from dense nanoscale medical images. In our method,
images are first segmented by a marker-controlled watershed
algorithm. Markers for watershed segmentation algorithm are
seed points generated by using distance transform, followed by
a new grouping method that clusters seed points that are too
close. Regions obtained by watershed transform segmentation
algorithms are considered as nodes in a graph. Edges are
to connect between the nodes in adjacent image slices. The
weight on each edge is defined based on the overlapped area
between nodes. User-selected nodes (regions) in an initial image
slice serve as hard constraints in the minimization process. A
globally optimal 3D volume is obtained by minimizing MAP-
MREF energy function via graph cuts. In our application, in
order to obtain a complete 3D volume structures including
branching, the final 3D volume is the union of two 3D volumes
obtained by performing the minimization of MAP-MRF energy
function using graph cuts forwards and backwards through the
image stack. Experiments are conducted both on synthetic data
and on nanoscale image sequences from the Serial Block Face
Scanning Electron Microscope (SBF-SEM). The results show
that our method can successfully extract 3D volumes.

I. INTRODUCTION

Segmentation of medical images has drawn particular
attention recently. One main reason is that huge amounts
of medical images have been generated but it is very time-
consuming for humans to delineate the boundaries manually,
so reliable and fast segmentation algorithms are required to
accomplish segmentation task as well as the subsequent 3D
reconstruction work.

Segmentation of nanoscale images is a challenging task,
especially nanoscale images generated by Serial Block Face
Scanning Electron Microscopy (SBF-SEM) recently devel-
oped by Denk and Horstmann [7]. SBF-SEM data are a stack
of 2D nanoscale medical images with a resolution on the
order of ten nanometers. Denk and Horstmann developed
SBF-SEM to enable high image resolution to make the
identification of small organelles possible. Interstitial staining
for SBF-SEM images highlight cell boundaries so that cells
(foreground) are in brighter gray-scale intensity and non-cells
(background) are in darker gray-scale intensity. Fig. 1 shows
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Fig. 1. Part of an SBF-SEM image stack.

successive 2D images of the optic tectum of larval zebrafish.
Segmentation of SBF-SEM images amounts to delineating
cell boundaries. The challenges of identifying cell boundaries
come from inevitable staining noise and weak or missing
boundaries between cells that are located very close.

Popular segmentation algorithms for medical images in-
clude thresholding [13], watershed [15], and active contours
[5][6] [16] [1]. Unfortunately, thresholding on SBF-SEM im-
ages cannot give satisfying segmentation results due to the in-
complete boundaries and inhomogeneous staining intensities.
Watershed segmentation algorithms partition an image into
small regions with homogeneous intensities; however they
suffer from the over-segmentation problem. Edge-based [5]
[9] and region-based [6] active contour methods encounter
the same problem as thresholding, i.e., being unable to
correctly segment objects with missing boundaries. Weak or
missing object boundaries in SBF-SEM images increase the
difficulty of determining the correct boundaries. To untangle
the problem with blurred boundaries between objects that
are too close, one possible solution is user intervention.
Interactive segmentation is becoming more popular since a
perfect segmentation seems not possible by fully automated
segmentation algorithms. One of the successful interactive
segmentation methods is graph cuts [3] [2], which also have



been applied on 3D CT images to separate bones [10] and to
segment liver tumors [12]. In graph cuts, users can roughly
impose hard constraints. A globally optimal segmentation
is obtained by the minimization of an energy function and
satisfying user specified hard constraints at the same time.
The merit of graph cuts is that user-specified hard constraints
provide segmentation clues to the segmentation algorithms in
order to achieve a more accurate segmentation result.

In this paper, we propose a segmentation method based
on watershed and graph cuts to extract 3D volumes from
SBF-SEM images. Our method takes advantage of watershed
algorithms to produce over-segmented regions to overcome
the weak or missing object boundaries problem. Also, in-
stead of doing graph cuts on individual pixels, we do it
on the watershed regions, thus decreasing computational
complexity. We first generate seed points by using distance
transform. Then, we introduce a new method to group the
seed points. The idea of grouping seed points that are
two close is based on expanded circles centered at seed
points. Regions obtained by a marker-controlled watershed
transform segmentation algorithm (using grouped seed points
as markers) are considered as nodes in a graph. Edges
are to connect between the nodes in adjacent image slices
in the image stack. User-selected regions are set as hard
constraints in the minimization process. A globally optimal
segmentation of 3D volumes is then produced by graph
cuts. In traditional graph cuts on foreground/background
segmentation, intensities change between foreground objects
and background. However, in our case, intensities between
foreground and background are sometimes very similar due
to missing object boundaries and watershed over-segmented
regions have very similar intensities also. Therefore, the
novelty of our method is that the weighting function we
defined does not rely on intensity information but depends
on the overlapped area between nodes. We will elaborate this
point in Section III.

The remainder of this paper is organized as follows. In
section II, the method for preprocessing, including seed
point generation, seed point grouping and marker-controller
watershed algorithm, is introduced. In section III, method on
3D volume extraction from SBF-SEM images by graph cuts
is presented. Section IV shows the experimental results on
synthetic data and SBF-SEM data. Then section V provides
the discussion of our work, followed by a conclusion and
future work in section VI.

II. PREPROCESSING
A. Noise Removal

Gray-scale SBF-SEM images are first converted to binary
images by Otsu’s thresholding method [11], which are then
used to compute distance transform images for seed point
generation in the next step. The intensity values of objects on
SBF-SEM images are inhomogeneous, and as a result small
unnecessary objects can be generated after thresholding. To
get rid of such unnecessary objects, we simply filtered out
the objects by their size (area). Assume that Sy denotes the

size of a foreground object, and if
S f> Tf, (1)

where T is a user-defined threshold value, we keep the
object; otherwise, the object is considered as background.
Similarly, for a non-object region, if its size S, is greater
than a threshold 73, we keep it; otherwise, it is considered
as foreground. Threshold values of 7'y and T}, are determined
empirically. Fig. 2(b) shows the noise removed binary image
of fig. 2(a).

B. Seed Point Generation

The idea of generating seed points is to utilize distance
transform on binary images. Seed points generated in this
step are marker candidates needed for the marker-controlled
watershed algorithm. The method to generate seed points
is to apply distance transform on binary images followed
by morphological reconstruction by geodesic dilation [14].
Assume that D is the distance transform image of the original
image I, as shown in fig. 2(c). The marker image is M =
D — h, where h is a pre-defined value. In our experiments, h
was set to 10. The geodesic dilation of size 1 of the marker
image M with respect to mask image D with structuring
element B is defined as:

s (M)= (Mo B)ND, 2)

where & denotes the dilation of M with structuring element
B and N is the point-wise minimum operation. The mor-
phological reconstruction by geodesic dilation with size n
is to perform the morphological reconstruction by geodesic
dilation n times and is defined as:

6 (M) =60 (M) o 60 (M)o--- 06 (M

n times

). 3

Finally, the seed points S of the original image [ are obtained
by computing regional maxima of D — §(™) (M):

S = regionalmax (D — 5 (M)) . 4)

Note that [14] proposed a sequential reconstruction algo-
rithm to obtain 6(™) (M). In that algorithm, instead of spec-
ifying the structuring element B explicitly, a neighborhood
system should be determined. In our case, an 8-connected
neighborhood system is used. The sequential reconstruction
algorithm repeatedly scans an image in raster order and anti-
raster order until stability so the value of n does not needed
to be determined. Fig. 2(d) shows the generated seed points.

C. Seed Point Grouping

The objective of seed point grouping is to cluster very
close seed points generated from the method above. We
expand the generated seed points into circles first and if an
overlapped area exists between the expanded circles, the seed
points of those expanded circles are considered to belong in
the same cluster. Let S,,, and .S,, be two seed points, and let
rm and r, represent the distance from .S, and S,, to their
boundaries, respectively. Now assume that C,,, and C,, are
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Fig. 2. Intermediate results of pre-processing process applied on an image.

two circles drawn from seed points S;, and S,, with radii
rm/a and 1, /a, where a is a positive constant. We say seed
points S, and S,, are in the same cluster, if

CrNCy #0. &)

In our experiments, the value of a was set to 4. Fig. 2(e)
shows the grouped seed points. The grouped seed points
serve as makers for the subsequent watershed transform
segmentation.

D. Marker-Controlled Watershed Transform Segmentation

The watershed transform algorithm [15] usually produces
small regions with similar properties, such as similar in-
tensities or textures of an image. In our method, instead
of applying an unsupervised watershed transform algorithm
of morphological gradient on SBF-SEM images, we used
the grouped seed points introduced above as markers in the
watershed transform segmentation of distance transform to
obtain small regions. The small regions generated in this way
retain the contour information as that in the original image.
The result of marker-controlled watershed transform using
grouped seed points as markers is shown in fig. 2(f).

III. 3D VOLUME EXTRACTION
A. Graph Cuts

3D volume extraction, similar to foreground/background
segmentation in 2D images, can be considered as a binary
labeling problem. Assume that an image is represented as a
graph G =< V, E, W > with a set of nodes V representing
pixels or image regions, a set of edges I connecting nodes
and W are the weights assigned to edges. The binary labeling
problem is to assign each node ¢ with a unique label x;, that
is, z; € {0 (background),1 (foreground)} such that X =
{x;} minimizes the following energy function [8]:

E(X)=X-E(X)+ Ez(X) (6)
where
Ey(X) =Y E;i(;) (regional term) (7)
eV

Ey (X) = Z w; ;- 0 (x5, ;) (boundary term) (8)
{i.5}eN;

where N; is the neighbors of node ¢, and the indicator
function 6 (2;, ;) is defined as:

1 if z; # x;
5(%’%):{ 0 ifa:,»zm;

The regional term, F; (x;), indicates the cost when a label x;
is assigned to a node i. The boundary term, Fy (X) captures
the cost when nodes ¢ and j are assigned different labels, i.e.,
there is a discontinuity between nodes ¢ and j. The binary
labeling problem described above is posed as a Maximum
A Posteriori estimation of a Markov Random Field (MAP-
MREF). [3] [2] proposed a combinatorial optimization frame-
work based on s/t graph cuts to solve the minimization prob-
lem in equation (6) for foreground/background segmentation.
S and T are two additional nodes denoting a foreground
terminal (a source S) and a background terminal (a sink 7),
respectively. For more information as to how to formulate
the minimization problem and to solve it, please refer to [3]
[2] [4]. Here, we concentrate on how to define the F; and
E5 terms based on our application.

1) Data Term: In most cases, E; (z;) defines the cost
of node i belonging to the foreground or the background
according to the intensity similarity. However, in our case,
the obtained regions have very similar gray-scale intensities
and so it is hard to define the cost according to the regional
gray-scale intensities. As a result, instead of defining F; (x;)
based on regional gray-scale intensities, E; (z;) therefore
is defined based on which regions users would like to get
the 3D volume from. In other words, users indicate a set
of nodes (regions) ¢ from the first image slice for 3D
volume extraction. Those user-selected nodes are considered
as foreground (F') and the costs of the selected nodes when
they are assigned to foreground label are set to oo. On the
other hand, the rest of the regions in the first image slice
are all considered as background (B) and the costs of these



nodes when they are assigned to background label are oc.
The definition of E; (z;) is:

Ei(zi=1)=0 E;(z;=01=00 YiecB (9)

where U indicates the other nodes not in the first image slice.

2) Boundary Term: Although our nodes are regions ob-
tained from the watershed transform segmentation, a region
adjacency graph between regions within 2D image slices is
not used when constructing the graph. In our application,
edges connect between nodes ¢ and j if and only if an
overlapped area exists between node ¢ and node j, and nodes
¢ and j are in adjacent images t and ¢ + 1, respectively. That
is, edges only connect nodes between image slices, not nodes
within the same image slice. Two over-segmented images are
shown in fig. 3(a) and fig. 3(b) for image slices ¢ and ¢ + 1,
respectively. Fig. 3(c) shows the constructed graph for a set
of specific regions in fig. 3(a) and fig. 3(b). Different from
other methods defining edge weights based on gray-scale
intensities to indicate boundary discontinuities, we define the
weight of an edge w; ; between two nodes, ¢ and j, according
to the size of the overlapped area between them. The cost
w; ; is defined as:

1-0;,)°
w;,j = exp (—( 2027]) )

where O;, ; denotes the area overlap ratio of two nodes, ¢ and
J, ie., let A; and A; represents the area of nodes ¢ and j,
respectively, and A; ; indicate the overlapped area between
nodes 7 and j. O; ; is defined as:

Oi,j = min (Ai,j/Aia AiJ/Aj) y

(10)

(1)

The above equation penalizes a lot for edges with larger
overlapped area between nodes while it penalizes less for
those with smaller overlapped area between nodes. Also
note that in our method, edges between nodes ¢ and j are
undirected, that is, w; ; equals to wj ;.

B. Forward and Backward 3D Volume Extraction by Graph
Cuts

Branching of cells is a common property in SBF-SEM im-
ages. The proposed method to extract 3D volumes should be
able to handle cell branching. As mentioned above, the fore-
ground nodes are those chosen by a user from the first image
slice and others in the first images are set as background.
Because of these settings, our method can handle regions that
branch out (cell branching out), but cannot handle the case
where multiple regions are merged together. To overcome this
problem, a two-pass graph cuts on the minimization of an
energy function are applied. After minimizing equation (6)
by graph cuts in the forward direction, a backward direction
of the minimization of equation (6) is also performed. The
setting of nodes to either foreground or background in the
backward graph cuts is similar to that of the forward graph
cuts except that foreground nodes are now those regions in

(c) partially constructed graph

Fig. 3. Graph construction between two adjacent image slices. Letters in
fig. 3(a) and fig. 3(b) denote over-segmented watershed regions. Two regions
in adjacent images are connected if an overlapped area exists between them.
For example, regions A and E have an overlapped area, a connection is built
between them in the graph.

the last image slice obtained by forward graph cuts, and
background nodes are those not extracted by the forward
graph cuts. After the two-pass forward and background graph
cuts are performed, two 3D volumes are obtained. The final
3D volume is the union of these two 3D volumes.

IV. EXPERIMENTAL RESULTS

To show the ability of our method to extract 3D volumes
from image stacks, we conducted experiments both on syn-
thetic data and on SBF-SEM images.

A. Synthetic Data

The objective of experiments on synthetic data is to show
the ability to extract 3D volumes, especially those with
branches, so we generated a set of 2D image slices to
simulate a particular 3D volume structure.

For cell branching, 100 x 100 x 100 synthetic image slices
are generated. Fig. 4 demonstrates the shape of the cell’s
structure at some image slices where a cell branches. The
corresponding 3D volume structure obtained by our method
is shown in fig. 5(a). Fig. 5(b) shows a more complicated 3D
volume structure constructed from a stack of 300 x 300 x
100 synthetic image slices where two branches are merged
together and another branch emerge from the top of the
sphere. The 3D volume extraction result shown in fig. 5(b) is
the union of two 3D volumes obtained by the minimization
of equation (6) by graph cuts, forward and backward.

B. SBF-SEM Images

SBF-SEM images are first pre-processed by the method
mentioned in section II to obtain over-segmented watershed
regions. A graph is constructed, considering those regions as
nodes, and connected with edges between nodes in adjacent
image slices. While constructing the graph, the weight of
each edge is determined according to equation (10). In our
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Fig. 4. 2D image slices of a branching cell.

(@ (b)

Fig. 5. Extracted 3D volumes of synthetic data. (a) 3D reconstruction on
a stack of 100 x 100 x 100 images. (b) A more complicated 3D structure
reconstructed from a stack of 300 x 300 x 300 images.

experiments, the value of o in equation (10) was set to 0.2.
Users select nodes (regions) for 3D reconstruction and the
costs of E; (x;) are set based on equation (9). 3D volumes
are then extracted based on the minimization of equation
(6) according to user selected nodes (regions). Fig. 6 shows
the extracted 3D volumes from SBF-SEM image slices. Fig.
6(c) demonstrates a case where a cell is branching. Fig. 6(e)
shows the case where two cells are merged together. Fig.
6(a) and fig. 6(b) show the small bulb structures. As for fig.
6(d), it shows a larger extracted 3D volume structure.

V. DISCUSSION

The main contribution of this paper is in its extension and
integration of existing segmentation approaches for use in
3D reconstruction. We proposed novel methods for (1) seed
point grouping for marker-based watershed, which provides
different grouping range for each seed point rather than a
single fixed grouping range for all the seed points (2) use
of watershed regions instead of pixels, as nodes in graph
cuts, which results in computational efficiency (3) graph
construction by connecting between the nodes across images,
not within images, and automatic determination of weight
based on region overlap.

Our method takes user-selected nodes as hard constraints
in the minimization process. In most cases, users only need
to select the nodes from the first image slice and the rest of
the 3D volumes are extracted. However, for some thin and
elongated structures, more constraints are required. Another
limitation is that in our current method, only a single 3D
volume is extracted in a minimization process. To obtain
multiple 3D volumes, users have to indicate nodes separately
and run the two-pass graph cuts.

(b) (c)

©

Fig. 6. Extracted 3D volumes from SBF-SEM data. (a) and (b) shows the
small bulb structures. (c) demonstrates a case where a cell is branching. (d)
shows a larger extracted 3D volume structure. (e) shows the case where two
cells are merged together.

VI. CONCLUSION AND FUTURE WORK

In this paper, we presented a segmentation method based
on watershed and graph cuts to extract 3D volumes from
SBF-SEM images. The use of watershed generated over-
segmented regions as nodes in a graph instead of voxels
not only speeds up the computation of MAP-MRF energy
function, but also helps solve the missing or blurred boundary
problem occurring in SBF-SEM images when the cross
section regions are too close. We define the weights on edges
between nodes based on the overlapped area information
and perform two-pass (forward and backward) minimiza-
tion using graph cuts to obtain the 3D volume structures
according to the initial user input. Our method was tested
on synthetic data and SBF-SEM images, and the results are
very promising. Currently, our method extracts a single 3D
volume structure for each minimization process. If the user
wants to extract multiple 3D volume structures, our method
needs to be initialized and performs the minimization process
executed repeatedly. Future work will focus on extending



the current work to extract multiple 3D volume structures
simultaneously.
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