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Abstract—Effective sensor scheduling requires the considera-
tion of long-term effects and thus optimization over long time
horizons. Determining the optimal sensor schedule, however,
is equivalent to solving a binary integer program, which is
computationally demanding for long time horizons and many
sensors. For linear Gaussian systems, two efficient multi-step
sensor scheduling approaches are proposed in this paper. The
first approach determines approximate but close to optimal
sensor schedules via convex optimization. The second approach
combines convex optimization with a branch-and-bound search
for efficiently determining the optimal sensor schedule.

I. INTRODUCTION

The recent advances in miniaturization, wireless commu-
nication, and sensor technology make it possible to build
up and deploy sensor systems for a smart and persistent
surveillance. For instance, sensor networks consisting of nu-
merous inexpensive sensors are a popular subject in research
and practice for monitoring physical phenomena including,
temperature and humidity distributions, biochemical concen-
trations, or vibrations in buildings [1]. For many of such sensor
systems it is necessary to balance between maximizing the
information gain and minimizing the consumption of limited
resources like energy, computing power, or communication
bandwidth. Sensor scheduling, which is also referred to as
sensor selection, allows trading off these conflicting goals and
forms the basis for an efficient and intelligent processing of
the sensor data.

In this paper, the sensor scheduling problem for linear
Gaussian systems is studied, where one out of a set of
sensors is selected at each time instant for performing a
measurement. The main objective is to allocate the sensors
in a most informative way, which requires making decisions
involving multiple time steps ahead. Many of the existing
multi-step sensor scheduling approaches for linear Gaussian
problems are focused on efficiently traversing a decision tree
of sensor schedules. In order to avoid enumerating all possible
sensor schedules of the tree, optimal or suboptimal search
techniques are employed. While optimal techniques yield the
optimal sensor schedule by all means (see e.g. [2], [3]),
suboptimal methods as those in [4] allow more significant
savings in computational demands by abdicating the guarantee
of conserving the optimal schedule.

Alternatively to traversing the decision tree, which cor-
responds to solving a binary integer program, convex opti-

mization approaches have recently been proposed for solving
sensor selection problems, i.e., problems of selecting the
best n-element subset from a set of sensors (see [5], [6]).
These approaches can significantly improve the efficiency of
determining informative sensor schedules, but they are so far
not appropriate for optimal multi-step sensor scheduling for
arbitrary linear Gaussian dynamics and sensor models.

Both multi-step sensor scheduling approaches proposed in
this paper overcome these restrictions. For linear Gaussian
systems, the sensor scheduling problem is stated in Sec. II and
is formulated as a binary integer problem in Sec. III. In Sec. IV
it is formally proven that this optimization problem is a convex
optimization problem when employing continuous relaxation
of the decision variables. The first approach directly solves the
resulting convex program, which leads to suboptimal but valu-
able sensor schedules without demanding many computations
and memory. In order to provide the optimal sensor sequence,
the second approach described in Sec. V utilizes branch-
and-bound search for traversing a decision tree. To exclude
complete subtrees containing suboptimal sensor schedules as
early as possible, the solution of the convex optimization
is used for calculating tight lower and upper bounds to the
subtrees’ values. The performance of the proposed approaches
is demonstrated by means of simulations in Sec. VI, while in
Sec. VII conclusions and an outlook to future work are given.

II. PROBLEM FORMULATION

In this paper, the sensor scheduling problem for discrete-
time linear Gaussian models is examined. The dynamics model
of the observed system is given by

xk+1 = Ak ·xk +wk , (1)

where k = 0, 1, . . . , is the discrete time index. A finite set S
of sensors is considered for performing measurements, where
measurement zi

k from sensor i ∈ S = {1, . . . , S} is related to
the system state xk via the measurement model

zi
k = Hi

k ·xk + vi
k . (2)

Both Ak and Hi
k are time-variant matrices. The noise terms

wk and vi
k are zero-mean white Gaussian with covariance

matrices Cw
k and Cv,i

k , respectively. A measurement value ẑik
of sensor i ∈ S is a realization of zi

k. The initial system state
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x0 ∼ N (x0; x̂0,C
x
0) at time step k = 0 is Gaussian with

mean x̂0 and covariance Cx
0 .

The aim of multi-step sensor scheduling is to minimize
the state covariance Cx

k and thus the uncertainty of the
state estimate under the consideration of the future behavior
of the observed dynamical system and long-term sensing
costs. For this purpose, the optimal sensor schedule u∗1:N =[
(u∗1)

T
, . . . , (u∗N )

T]T ∈ {0, 1}S ·N has to be determined
over a finite N -step time horizon. Here, the binary vector
u∗k = [uk,1, . . . , uk,S ]

T encodes the index of the sensor to
be scheduled for measurement at time step k, i.e., if sensor i
is scheduled at time step k then uk,i = 1 and uk,j = 0 for all
j 6= i.

III. CONSTRAINED OPTIMIZATION

To determine the optimal sensor schedule u∗1:N over a time
horizon of length N , the sensor scheduling problem for the
problem setting given in Sec. II can generally be formulated
as constrained optimization problem according to

u∗1:N = argmin
u1:N

J(u1:N ) (3)

subject to
N∑

k=1

cTk ·uk ≤ C , (4)

1T ·uk = 1 , k = 1, . . . , N , (5)

uk ∈ {0, 1}S , k = 1, . . . , N , (6)

where ck = [ck,1, . . . , ck,S ]
T contains the sensor costs ck,i,

e.g., energy or communication, of selecting sensor i at time
step k and J(u1:N ) =

∑N
k=1 gk(u1:k) is the cumulative

objective function to be minimized. The scalar functions gk( · ),
i.e., the summands of J(u1:N ), can be

• the trace operator trace (Cx
k(u1:k)) ,

• the root-determinant
√
|Cx

k(u1:k)| ,
• or the maximum eigenvalue λmax (C

x
k(u1:k))

of the state covariance and thus quantify the uncertainty
subsumed in Cx

k(u1:k). Due to the linearity of (1) and (2), the
state covariance itself is given by the Kalman filter covariance
recursion (given here in information form)

Cx
k(u1:k) =

((
Ak−1 ·Cx

k−1(u1:k−1) ·AT
k−1 +Cw

k−1

)−1

+

S∑
i=1

uk,i ·
(
Hi

k

)T · (Cv,i
k

)−1 ·Hi
k

)−1

, (7)

commencing from Cx
0 . The independence of the covariance

recursion from the measurement values ẑik, i = 1, . . . ,S,
allows the off-line calculation of the optimal sensor schedule.

With the contraint in (4) it is guaranteed that a feasible
sensor schedule does not exceed a maximum sensor cost C.
The constraints in (5) and (6) together ensure that one sensor
per time step is selected for measurement. The restriction to
one sensor per time step is made for brevity and clarity reasons
only. The extension to selecting multiple sensors per time step
can be achieved by replacing the right hand side of (5) with
the desired number of sensors. Alternatively, by modifying

(3) and (4), is also possible to minimize the sensor costs
regarding a maximum allowed value of J( · ), i.e., a maximum
allowed uncertainty. The results presented in the following can
be easily altered to cover this modified optimization problem.

IV. CONVEX RELAXATION

The optimization problem in (3)–(6) is a so-called binary
integer program. Problems of this type are known to be NP-
hard (see [7]) and thus, obtaining the optimal solution for large
N and/or large S is computationally prohibitive in general.
However, by replacing the binary non-convex constraints in
(6) with the linear constraints uk ∈ [0, 1]S for k = 1, . . . , N ,
a convex relaxation of the original problem is obtained. To
see this, it is important to note that the constraints (4) and (5)
are already convex. Furthermore, as shown in the following
theorem, the sum to be minimized in (3) is now convex as
well.

Theorem 1 The objective function J(u1:N ) in (3) is convex
in terms of u1:N ∈ [0, 1]S ·N .

Proof: To prove the convexity of gk(u1:k) and thus of
J(u1:N ), it must be shown that (see for example [8])

gk(λ ·u1:k + (1−λ) · ũ1:k) ≤
λ · gk(u1:k) + (1−λ) · gk(ũ1:k) (8)

for k = 1, . . . , N , ∀u1:k, ũ1:k ∈ [0, 1]k ·S , and ∀λ ∈ [0, 1].
At first, it is proven by induction that the covariance

recursion (7) is a convex function of u1:k. The induction
starts with Cx

1(u1). Defining Mi
k :=

(
Hi

k

)T · (Cv,i
k

)−1 ·Hi
k

and P1(u1) :=
(
A0 ·Cx

0 ·AT
0 +Cw

0

)−1
+
∑

i u1,i ·Mi
1 and

utilizing the results in [9] on matrix convex functions, it
follows from the matrix convexity property of the matrix
inversion that

Cx
1(λ ·u1 + (1−λ) · ũ1) = (λ ·P1(u1) + (1−λ) ·P1(ũ1))

−1

≤ λ · P−1
1 (u1)︸ ︷︷ ︸

=Cx
1 (u1)

+(1−λ) · P−1
1 (ũ1)︸ ︷︷ ︸

=Cx
1 (ũ1)

∀u1, ũ1 ∈ [0, 1]S and ∀λ ∈ [0, 1]. Defining the predicted
covariance Cp

k(u1:k−1) := Ak−1 ·Cx
k−1(u1:k−1) ·AT

k−1 +
Cw

k−1, it generally holds that

Cx
k(λ ·u1:k + (1−λ) · ũ1:k)

=
(
Cp

k

(
λ ·u1:k−1 + (1−λ) · ũ1:k−1

)−1

+

S∑
i=1

(λ ·uk,i + (1−λ) · ũk,i) ·Mi
k

)−1

(a)

≤
(
λ ·
(
Cp

k

(
u1:k−1

)−1
+

S∑
i=1

uk,i ·Mi
k

)
+ (1−λ) ·

(
Cp

k

(
ũ1:k−1

)−1
+

S∑
i=1

ũk,i ·Mi
k

))−1

(b)

≤ λ ·Cx
k(u1:k) + (1−λ) ·Cx

k(ũ1:k) (9)



for k = 2, . . . , N , ∀u1:k, ũ1:k ∈ [0, 1]k ·S , and ∀λ ∈
[0, 1]. Here, (a) results from the induction hypothesis that
Cx

k−1(u1:k−1) is convex in u1:k−1, from the convexity of
the matrix inversion, and from rearranging terms; (b) is the
result of a repeated application of the convexity of the matrix
inversion.

As the trace is a linear matrix function and the root-
determinant as well as the maximum eigenvalue are convex
matrix functions (see for example [8]), the inequality in (8)
holds if these three functions are applied on (9). Thus, gk(u1:k)
is convex and the nonnegative sum J(u1:N ) =

∑N
k=1 gk(u1:k)

is convex as well, which concludes the proof.
Theorem 1 forms one of the main contributions of this

paper. It is important to note that the sensor scheduling
problem formulated by (3)–(7) and its convex relaxation
proven in Theorem 1 extends existing convex approaches [5],
[6] in many ways. Instead of one-step time horizons, i.e.,
myoptic/greedy scheduling, arbitrarily long time horizons are
possible. Furthermore, the dynamics model in (1) need not to
be restricted to regular system matrices Ak and to system noise
covariances Cw

k = 0. Especially the latter is of paramount
importance for realistic sensor scheduling problems. Finally,
there is no restriction to a specific scalar function gk( · ) as in
[5]. Instead, various functions for evaluating the quality of a
sensor schedule are considered here.

A. Solving the Relaxed Problem

The computational complexity of optimally solving the orig-
inal binary integer program is in O(SN ). A variety of methods
is available for efficiently solving the convex relaxation of the
sensor scheduling problem, e.g., interior-point methods [8].
These methods typically require only a few tens of iterations
for calculating the optimal solution even for large problem
sizes, e.g., length of time horizon and number of sensors
beyond 10. The computational complexity of one iteration is
polynomial in the number of variables in u1:N , which is S ·N .

However, the solution ul
1:N of the convex problem only ap-

proximates the optimal solution u∗1:n of the original scheduling
problem. More specifically, ul

1:N is no longer binary and the
objective function value J l := J(ul

1:N ) is a lower bound of
the optimal value J(u∗1:N ). The latter finding follows directly
from the convexity of the relaxed problem and from the fact
that the relaxed solution set [0, 1]S ·N contains the binary set
of the original problem.

B. Conversion into Binary Solution

In order to allow selecting sensors for measurement, ul
1:N

has to be converted into a binary vector by employing
an appropriate conversion or rounding method. The value
Ju := J(uu

1:N ) of the resulting (binary) sensor schedule
uu
1:N has to be as close as possible to the optimal one in

order to provide informative sensor measurements. In the
following, two appropriate conversion methods are introduced.
Independent of the chosen conversion method, the value Ju of
the converted sensor schedule provides an upper bound to the
optimal value J(u∗1:N ).

1) Sampling: Each component ul
k of ul

1:N can be inter-
preted as a discrete probability distribution over the set of
sensor indices S. This is due to the constraint in (5), whereby
the elements ul

k,i, i = 1, . . . , S of ul
k are within the interval

[0, 1] and sum up to one. Hence, a sensor i corresponding to
an element ul

k,i with a large value can be considered as being
more likely in the optimal sensor schedule than sensors with
small values.

To convert ul
1:N into a feasible binary vector, for each k =

1, . . . , N a (single) sensor is randomly selected according to
the distribution ul

k. For being feasible, the resulting converted
schedule uu

1:k has to satisfy the cost constraint (4). Otherwise,
the schedule is discarded. This procedure is repeated multiple
times, where only the currently best feasible schedule, i.e., the
schedule that satisfies (4) and provides the currently smallest
objective function value Ju is stored. The sampling-based
conversion method can be terminated for example after a
predefined number of trials or when the currently best value
Ju remains unchanged for a predefined number of trials.

2) Swapping: A converted schedule uu
1:N can be improved

by adapting the swapping method proposed in [6]. A modified
sensor schedule is derived from uu

1:N by swapping a scheduled
sensor with one of the unselected sensors for each time
step k. The choice of an unselected sensor at time step
k is deterministically guided according to the probabilities
represented by ul

k, i.e., the sensors are selected for swapping in
descending order of the values in ul

k. If the modified schedule
is feasible and improves the objective function value Ju, it is
used as starting point for the next swapping trial.

In order to start the swapping method with a feasible
schedule, the sensor schedule that selects at each time step k
the sensor i = argminj ck,j with the smallest cost is chosen
initially. The method must terminate because there is only
a finite but very large number of swapping possibilities. To
bound the computational demand, the number of swapping
trials is limited by means of a predefined value.

V. OPTIMAL SCHEDULING

Determining the optimal sensor schedule and thus, directly
solving the binary integer program given by (3)–(6) can be
considered as searching a decision tree with depth N and
branching factor S. The problem here is that the optimal
solution often can be found at an early stage, while the proof
of its optimality requires evaluating most of the suboptimal
sensor schedules, which is infeasible for large problem sizes.
In this section, the previously introduced convex optimiza-
tion approach is combined with efficient search methods
for decision trees for early eliminating (pruning) suboptimal
schedules.

A. Branch-and-Bound

A search technique common for classical decision problems
like traveling-salesman or knapsack is branch-and-bound (BB)
search. The basic idea of BB is to assign lower and upper
bounds of the achievable objective function value to any
visited node. Based on these bounds, nodes and thus complete



Algorithm 1 Branch-and-Bound search algorithm utilizing
convex optimization for calculating lower and upper bounds.
The algorithm is initialized with Jmin =∞.

1: For a given sensor schedule u1:k do:
2: if leaf node, i.e., k = N then
3: Jmin ← J(u1:N )
4: else
5: U ← ∅ // List of sensors to expand
6: for all sensors i ∈ {1, . . . , S} do
7: // u1:k and uk+1,i = 1 fixed
8: if costi ≤ C and Ji ≤ Jmin then
9: J l

i ← Solve convex optimization problem
10: Ju

i ← Calculate upper bound via conversion
11: U ← U ∪ {i}
12: end if
13: end for
14: U ← sort(U) // Sort sensors based on J l

i

15: for all sensors i ∈ U do
16: if J l

i ≤ Jmin and ∀ j ∈ U : J l
i ≤ Ju

j then
17: Expand i // Set uk+1,i = 1, call Algorithm 1
18: end if
19: end for
20: end if

subtrees can be pruned under the guarantee that the pruned
node is not part of the optimal sensor schedule.

For a particular node that was reached during the search by
employing the sensor schedule u1:k ∈ {0, 1}k ·S , the objective
function can be written according to

J(u1:N ) = J(u1:k)︸ ︷︷ ︸
known

+ J(uk+1:N )︸ ︷︷ ︸
unknown

, (10)

where only the value of the first summand is evaluated and
thus known. While the value of the second summand is not
calculated yet, a lower and upper bound can be easily assigned
to it by exploiting the results of Sec. IV-A and Sec. IV-B. The
value of the optimal solution ul

k+1:N of the convex relaxation
for minimizing J(uk+1:N ) serves as lower bound and the
conversion of ul

k+1:N into a binary-valued vector uu
k+1:N

provides an upper bound. Hence, the inequality

J(u1:k) + J(ul
k+1:N ) ≤ J(u1:N ) ≤ J(u1:k) + J(uu

k+1:N )

holds for the objective function value in (10).

B. Search Algorithm

The combination of BB search with convex optimization is
illustrated in Algorithm 1, which basically employs a depth-
first search. For a given sensor schedule u1:k it is checked
which child nodes should be expanded, i.e., it is checked
whether an element uk+1,i, i ∈ S of uk+1 could be set to
one or not. Therefore, for each child node i ∈ S the minimum
possible cost

costi :=
k∑

n=1

cn ·un + ck+1,i +

N∑
n=k+2

min
j
cn,j ,

the value Ji := J(u1:k+1) and the bounds J l
i := Ji +

J(ul
k+2:N ), Ju

i := Ji + J(uu
k+2:N ) are calculated, where

uk+1,i = 1 and uk+1,j = 0 for all j 6= i. A node i is expanded
only if following four requirements are fulfilled: (1) the cost
constraint can be met, i.e., a feasible solution exists (line 8),
(2) the value Ji of the node is below the value Jmin of the
currently best sensor schedule (line 8), (3) the lower bound J l

i

is below Jmin (line 16), and (4) the lower bound is below the
upper bounds of all neighboring nodes j 6= i (line 16).

Obviously, the third requirement implies the second one.
But in order to avoid an unnecessary calculation of the lower
and upper bound, the second requirement is checked separately
together with the first requirement (line 8–12). To further
accelerate the search, the remaining sensors in U are sorted
in descending order according of their lower bounds (line 12).
In doing so, the search is continued with the most promising
sensor first in order to force a stronger reduction of the
currently best value Jmin. This value is automatically reduced
once a leaf node is reached (line 2–3).

VI. SIMULATION RESULTS

The effectiveness of the proposed sensor scheduling
methods is demonstrated in the following by means of a
numerical simulation from the field of target tracking1. The
state xk = [xk, ẋk,yk, ẏk]

T of the observed target comprises
the two-dimensional position [xk,yk]

T and the velocities
[ẋk, ẏk]

T in x and y direction. The system matrix and noise
covariance matrix of wk of the dynamics model (1) are

Ak = I2 ⊗
[
1 T
0 1

]
and Cw

k = q · I2 ⊗

[
T 3

3
T 2

2
T 2

2 T

]
, (11)

respectively, where In indicates an n × n identity matrix
and ⊗ is the Kronecker matrix product. In (11), T = 1 s
is the sampling interval and q = 0.2 is the scalar diffusion
strength. Mean and covariance of the initial state x0 are
x̂0 = [0, 1, 0, 1]T and Cx

0 = 10 · I4, respectively.
A sensor network observes the target. It consists of six

sensors with measurement matrices

H1
k = H3

k =
[
1 0 0 0

]
, H2

k = H5
k =

[
0 0 1 0

]
,

H4
k =

[
0 0 0 1

]
, H6

k =
[
0 1 0 0

]
,

noise variances Cv,1
k = 0.2, Cv,2

k = Cv,3
k = Cv,4

k = 0.1,
Cv,5

k = Cv,6
k = 0.05, and costs ck = [1, 2, 3, 2, 3, 2]T for

each k. Furthermore, it is also possible to omit a measurement.
This option can be considered as having a seventh sensor
with infinite noise variance. Performing no measurement is
free of cost, i.e., ck,7 = 0. Altogether, the set S comprises
S = 7 sensors. The scalar functions gk( · ) are set to the root-
determinant for each k.

For comparison, six different scheduling methods are con-
sidered:

1Further aspects associated to target tracking such as target detection,
misses and false alarms, or track maintenance are omitted for simplicity.
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Fig. 1. (a) Number of nodes in the decision tree when applying the branch-and-bound-based scheduling methods BBC (black lines), BBL (green), and
BBZ (red) for different time horizons lengths N and for the cost functions C1 (dashed) and C2 (solid) in log-scale. (b) Objective function values J of the
scheduling methods BBC (black, solid), CONVEX (green, dotted), GREEDY (red, dashed), and GREEDY* (blue, dash-dotted) for maximum cost function C1.

CONVEX The approach described in Sec. IV, which directly
solves the convex optimization problem and employs the
swapping method for conversion.

BBC The BB approach described in Sec. V. For determining
the upper bounds via conversion, the swapping method
is employed.

BBL Like BBC but without utilizing upper bounds.
BBZ BB search that employs no upper bounds and bounds

the second summand in (10) from below with zero (see
for example [10]).

GREEDY In order to minimize the objective function J( · ),
at each time step k the sensor that leads to minimum
function value gk( · ) and allows meeting the maximum
cost constraint is scheduled.

GREEDY* Greedy scheduling, where the scalar functions
gk( · ) are modified to gk(u1:k) =

√
|Cx

k(u1:k)| · (1 +
cTk ·uk) (see for example [11], [12]).

For CONVEX and BBC, the number of swapping trials is set
to S ·N .

A. Comparison of Branch-and-Bound Methods
In Fig. 1 (a), the search performance of the three BB

methods is compared. For this purpose, two different maxi-
mum costs C1(N) = round(1.5 ·N) and C2(N) = 3 ·N are
considered, which depend on the change of the time horizon
length N = 1, . . . , 10. The maximum cost function C2(N) al-
lows sensor scheduling without omitting a measurement. With
the proposed optimal scheduling method BBC, the number of
nodes in the decision tree can be kept on a low level. Here,
the search performance clearly benefits from the tight lower
and upper bounds provided by the convex optimization and the
conversion, respectively. This can be seen in particular for C2,
where BBC only visits at most 92 nodes, while the complete
decision tree contains

∑N
k=1 7

k < 3.3 · 108 nodes. The higher
number of visited nodes for cost function C1 compared to C2

results from the effect that the more restrictive cost constraint
provided by C1 leads to looser bounds.

Without considering upper bounds for pruning as it is
the case for BBL, the number of visited nodes increases
significantly. But still, the search performance of BBL is much
better than BBZ as the lower bound provided by the solution
of the convex optimization is closer to the true values of the
subtrees.

Since calculating lower and upper bounds by means of
convex relaxation is computationally more demanding than
calculating the simple bound used for BBZ, the runtime of
BBZ is lower for short time horizons even if BBZ leads to
larger decisions trees. But with an increasing length of the
time horizon, the difference in runtime between BBZ and
the other BB methods becomes smaller and at some point,
both methods outperform BBZ. For example, with the current,
barely optimized implementation based on MATLAB version
7.9, BBC outperforms BBZ from horizon length N = 9 on for
cost function C1. It is expected that employing an optimized
implementation, e.g., with an optimized convex programming
toolbox like CVX [13], outperforming BBZ occurs for signif-
icantly shorter time horizons.

B. Comparison of Objective Function Values

In Fig. 1 (b), the objective function values of BBC are
compared with GREEDY, GREEDY*, and CONVEX for the
costs C1(N). Both greedy methods are the computationally
cheapest, but in turn provide highly suboptimal results. Due
to the myopic planning, GREEDY is not able to anticipate
the long-term effect of early selecting costly sensors. In this
simulation example, GREEDY omits measurements at the last
time steps of the horizon and not in between in order to
meet the maximum cost constraint. This effect is attenuated
by GREEDY* thanks to the modified scalar functions gk( · ),
where the sensor costs are minimized together with the state
covariance. In doing so, GREEDY* can for example utilize
sensor 1 instead of the more costly but also more accurate
sensor 3. This in turn enables GREEDY* to omit less mea-
surements at the end of the time horizon.
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solid) are employed over a time horizon of length N = 10.

The proposed suboptimal CONVEX method provides sensor
schedules close to the optimal ones, whereas the computational
demand is significantly smaller compared to BBC, especially
for very long time horizons. CONVEX trades scheduling
quality off against scheduling complexity, which is desirable
for computationally constrained sensor systems.

C. Tracking Error

For a time horizon of length N = 10 and for the cost
function C1(N), 100 Monte Carlo simulation runs are per-
formed for evaluating the target tracking error when employing
GREEDY, GREEDY*, CONVEX, and BBC. In Fig. 2, the
root mean square error (rmse) with respect to the target
position [x, y]T is depicted. Compared to the greedy methods,
both CONVEX and BBC provide the lowest tracking errors
together with the lowest uncertainty (consider Fig. 1 (b)),
whereas BBC performs best. The little bump in the curves
of CONVEX and BBC around time step k = 6 results from
omitting a measurement. Here, GREEDY* has the smallest
tracking error, which comes at the expense of a higher error
at the end of the time horizon due to omitting measurements.

However, in the simulation example considered here, the
tracking error of GREEDY* is relatively close to the errors
of the proposed convex optimization based approaches. More
significant benefits of multi-step sensor scheduling are ex-
pected for example in scenarios where sensors are temporarily
unavailable or in scenarios with nonlinear dynamics and sensor
models (consider for example the results in [10], [14]). The
application of the proposed approaches to nonlinear models is
subject of future work.

VII. CONCLUSIONS AND FUTURE WORK

Convex optimization is a promising direction for deter-
mining multi-step sensor schedules. In this paper, a general
sensor scheduling problem for linear Gaussian systems was
formulated and the convexity of its relaxation was proven.
Based on this result, a suboptimal and an optimal scheduling
approach utilizing convex optimization have been proposed.

While the suboptimal approach trades estimation quality off
against computational demand, the optimal one outperforms
existing optimal algorithms with regard to search speed.

Compared to existing approaches on sensor scheduling
via convex optimization, arbitrary linear Gaussian sensor
scheduling problems are covered. Furthermore, both proposed
scheduling methods are appropriate for long time horizons and
many sensors, where choosing the better suited approach for
a given scheduling problem depends on the requirements on
estimation quality and computational capabilities.

Future work is devoted to efficient sensor scheduling for
very long or even infinite time horizons, where the BB-
based approach is computationally intractable. Here, model-
predictive control (also referred to as moving horizon control,
see for example [15]) can be employed. Furthermore, it is
intended to extend the proposed convex sensor scheduling
approaches to nonlinear dynamics and sensor models. This
could be achieved for instance by employing model-predictive
control in combination with a conversion of the nonlinear
models into linear ones via linearization, e.g., first-order Taylor
series expansion or statistical linearization as proposed in [14].
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