Loading [a11y]/accessibility-menu.js
Bayesian and pairwise local similarity discriminant analysis | IEEE Conference Publication | IEEE Xplore

Bayesian and pairwise local similarity discriminant analysis


Abstract:

We investigate three extensions to the generative similarity-based classifier called local similarity discriminant analysis (local SDA): a Bayesian approach to estimating...Show More

Abstract:

We investigate three extensions to the generative similarity-based classifier called local similarity discriminant analysis (local SDA): a Bayesian approach to estimating the pmfs based on the assumption that similarities are multinomially distributed and on the Dirichlet prior distribution; a pairwise-similarity formulation of local SDA that accounts for all local pairwise similarities to estimate the pmfs; a combined Bayesian pairwise-similarity approach. We discuss how the proposed extensions afford more modeling flexibility than standard local SDA and less cumbersome model training than previously-published local SDA regularization strategies. Experiments with five benchmark similarity-based classification datasets show that the increased modeling flexibility and lighter computational burden of the proposed extensions are coupled with the good classification performance of the local SDA classification paradigm.
Date of Conference: 14-16 June 2010
Date Added to IEEE Xplore: 14 October 2010
ISBN Information:

ISSN Information:

Conference Location: Elba, Italy

Contact IEEE to Subscribe

References

References is not available for this document.