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Abstract— With all the potential flexibility of software-defined 

radios, the flexibility of SDR terminals is currently limited to 
design time flexibility. The capacity of the platform in terms of 
processing resources and internal bandwidths is dimensioned for 
the range of supported functionalities. In a platform-independent 
design scenario, resource managers play the role of matching 
waveform demands with platform capabilities. Predicting the 
task execution times has been studied in grid and distributed 
computing contexts with different objectives and assumptions. 
Given the dynamic nature of waveform demands as a function of 
the radio environment, an accurate characterization of the 
consumed resources can increase the efficiency of resource 
management strategies. In the SDR context, this efficiency 
translates to less energy consumption and higher resource 
utilization. Based on our experience acquired during the devel-
opment of an SDR execution environment, this work presents the 
metrics that are needed by computing resource managers. 

I. INTRODUCTION 
Software-defined radio (SDR) has been introduced as an 

alternative to proprietary, inflexible, and non-scalable radio 
nodes. It is widely accepted that SDR is a technology enabler 
for cognitive radio. SDR terminals are theoretically able to 
dynamically change transmitting signal as a function of pre-
sent (and past) radio conditions. Mitola’s cognitive cycle [1] 
assumes a continuous evolution of radio channel conditions, 
e.g. interference and noise levels, time, space and spectrum 
utilization. Practically, the radio terminals’ functionalities or 
supported radio access technologies (RATs) are, however, 
defined at design time. This means that the computing capa-
bilities are limited to a small set of RATs.  

Following the desktop computing history, it is reasonable to 
consider future radio terminals, where the functionalities are 
designed without detailed knowledge about the computing 
platform. Another scenario envisages shared-resource base 
stations: infrastructure operators rent hardware resources 
(digital signal processors, converters, RF frontends, and so 
forth) to network operators in a pay-per-use fashion [2]. In 
such a scenario, abstraction layers, virtualization mechanisms 
and resource managers (RMs) play the role of matching the 
waveform demands to the platform capacities optimizing 
some metric.  

In this paper we show how available resources can be dis-
covered and their utilization monitored. The management al-

gorithms and their performance evaluation are out of the 
scope of this work. We present our resource awareness pro-
posal in a case study assuming our open-source middleware 
ALOE (abstraction layer and operating environment [3]). Fi-
nally, a novel middleware interface (API) for radio resource 
management algorithms is also presented. It can provide 
hardware resource occupations in real-time as a function of 
several variables. 

II. RELATED WORK 
The execution times of processes are highly dynamic as 

they depend on many system parameters and circumstances. 
The execution time prediction of processes or algorithms is a 
topic which has been studied in the field of grid and distrib-
uted computing. Predictions can be static or dynamic [2].  

Static methods use off-line profiling or code analysis 
techniques to obtain, given a known processor model, an 
estimation of the execution time. Conversely, dynamic 
methods characterize the behaviour of the algorithm in terms 
of statistical regression methods. During the execution of the 
process, measurements are taken of the execution profile. 
With these samples, the execution time under different 
circumstances (system loads, processor clocks, etc.) of the 
program is predicted.   

To the best of our knowledge, all frameworks for task 
execution time prediction address grid or distributed 
computing applications. System conditions in these scenarios 
are different than in signal processing:  

• arrival times are dynamic but periods are much longer,  
• processors perform background and non real-time ap-

plications,  
• networks are more complex and have longer latencies,  
• energy consumption is not a constraint,  
• management complexity is not such an important issue,  
• application model is arbitrary and more complex, and so 

on [4]. 
Another important characteristic of SDR platforms is their 

heterogeneity. Grid computing prediction assumes this [5], but 
for some specific platform characteristics, such as processor 
clock, memory size, and system load. In SDR, platform 
heterogeneity implies different processor architectures, 
instruction-sets, levels of parallelism, and so forth.  



 
 

III. RESOURCE AWARENESS 

A. Platform Resources Awareness 
Typical SDR platforms assume a set of heterogeneous 

processing elements (general-purpose processors, digital sig-
nal processors, dynamic reconfigurable areas, etc), which are 
either integrated on a single silicon die or not. Devices are 
usually interconnected using dedicated interfaces or routing 
elements (Network On-Chip). Our computing resource man-
ager model considers processing devices and their inter-
processor communication bandwidths [6]. A vector of N ele-
ments represents each processor capabilities, whereas a matrix 
of NxN elements specifies the network connectivity and 
bandwidths. The RM automatically discovers vector C and 
matrix B.  

Before measuring capacities or bandwidths, it is necessary 
to identify the network architecture, which involves (1) ob-
taining the number of processors, (2) uniquely identifying 
each element, and (3) identifying the interfaces between them.  
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Fig. 1.  Network identification algorithm 

 
This procedure is similar to the problem of automatic ad-

dressing in computer networks for which several protocols 

have been studied. In computer networks, addressing and rout-
ing is managed by higher layer network protocols (e.g. IP, 
DHCP), which usually assume a shared channel. The inter-
faces of SDR platforms are heterogeneous and lack of a 
unique protocol for this purpose. What is more, such protocols 
usually introduce intolerable latencies. Simplifications arise if 
we constrain the network architecture of the control plane to 
be hierarchical. In this case, a single element (at the topmost 
level without a parent node) centralizes all the information of 
all elements in the network. A hierarchical control-plane does 
not constraint the data-plane network architecture (which uses 
different physical or logical interfaces) or the application per-
formance. 

Fig. 1 shows our algorithm proposal, which uniquely iden-
tifies a network of processors and their connectivity in a plug-
and-play fashion. When a new processor is attached to the 
network, it obtains a unique id from the top parent node and 
starts a periodic report of its status information (not repre-
sented in the figure). The top node sends a packet to all the 
nodes requesting to send their unique id and interface id to 
their neighbours. Data is collected by the top node and the 
modelling matrices, B and C, are generated. The same proce-
dure is initiated when a processor fails to periodically com-
municate its status (not represented in the figure). 

B. Waveform Consumption Awareness 
Before discussing the resource consumption, it is necessary 

to specify a general waveform model. A waveform is defined 
in terms of a graph of M nodes. Nodes indicate computations 
and arcs communications links. Nodes are executed periodi-
cally and synchronously (in the sense that their behaviour is 
data-independent). On each invocation, a set of computing 
resources are consumed, such as CPU time, energy, in-
put/output communications and silicon area. For simplicity, 
we consider time and energy only. Then, invocation k of com-
ponent m in processor nP  consumes a set of resources, i.e.: 
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where T is resource “time” and E is resource “energy”. 

Monitoring the processes’ CPU utilization is a challenging 
task. Reference [7] compares several intrusive and non-
intrusive methods in PC-Linux platforms. Clearly, intrusive 
methods exhibit lower variance (e.g. gettimeofday() vs. getr-
suage()) but need to modify application code. In a middleware 
context, intrusive methods are naturally included in the API 
(section IV.B).  

Energy consumption measurements need specific device 
support. It is measured in Joules per invocation. It can be as-
sumed that processing devices provide system calls or specific 
registers to obtain instantaneous energy dissipation. In the 
cases where energy cannot be obtained, it is estimated as 
mean power consumption times the execution time. 

Consumed resources are deterministic. The time spent run-
ning a process, for example, is a function of the instructions 



that are executed plus the cache or memory wait states. As the 
program complexity grows, also does the variability of the 
number of instructions or branches (e.g. turbo-decoding, ray-
search, etc.). Moreover, under high processor loads, the under-
lying software (OS, middleware, or the like) exhibits higher 
variances in the execution time. In general, the higher degree 
of abstraction, the higher the variability in the execution time. 
Therefore, a more general model assumes random contribu-
tions [5], for example, 

 
( , ) ( ) ( )m n m n mT P k T P z k= +  , (2) 

 
where ( )mz k  is a zero-mean uncorrelated random process 

and ( )m nT P  is deterministic. The random effect is observed 

in Fig. 2. It shows a histogram of ( , )m nT P k  for UTRAN 
components, captured with the ALOE tools. The variance of 

( )mz k  depends on the program (component) and the meas-
urement method. CHSIM adds random Gaussian noise to the 
samples, implemented with rand() system calls (and others). 
These functions execute a different number of instructions at 
each call, which increases the variance. The INTERLEAVER, 
on the other hand, always executes the same number of in-
structions.  Its randomness might come from cache misses, 
measurement and other system specific influences. The TUR-
BODECODER histogram shows two peaks corresponding to 
the probability of doing 1 or 2 iterations (the decoder has an 
early-stopping mechanism; therefore the iterations are func-
tion of the amount of errors in the received codeword). In this 
case, the average of the execution time changes with the reali-
zation of the process, having two states with different prob-
ability. The same effect is observed in the CHSIM component 
although in this case caused by the operating system instead of 
the received data or signal quality.  

Considering the aforementioned statistical nature of the re-
source consumption, the system has to decide which value 
represents the set of possible values. A very conservative 
strategy considers maximum resource consumptions. An ex-
ample is worst-case execution time (WCET) analysis, which 
considerably overestimates the problem, implying poor re-
source utilization. On the opposite side, arithmetic mean 
causes too much missed deadlines. Missing a deadline means 
losing samples at the digital-to-analog-converter (DAC) input, 
which increases the bit-error rate (BER). As opposed to clas-

sical hard real-time systems, wireless communications already 
assume a certain BER; therefore, it is reasonable to choose a 
value so that the BER is below the desired threshold.  

At iteration K, the system estimates resource consumption 
as a function of past measurements (component index m is 
omitted):  

 
ˆ( , ) ( ( , )) , 0n nT P K f T P k k K= ≤ <   (3) 

 
so that at any time, the probability to miss a deadline is upper-
bounded by 

 

( )ˆ( , ) ( , ) , 0n nP T P k T P K kε> < < < ∞  , (4) 

 
assuming a strictly stationary process and known probability 
density function (pdf).  

Therefore, the larger the variance with respect to the mean, 
the more extra resources will be allocated for a given BER. In 
general, signal processing algorithms exhibit large means and 
low variances. Small components with low consumptions, 
however, make system function calls an equal number of 
times. Therefore, the variance/mean relation increases. When 
all consumptions are aggregated, small components are domi-
nant. The level of granularity, therefore, influences the total 
effect of randomness, which reduces the mean resource utili-
zation (or increases the BER).    

This effect is mitigated if fewer system calls are used or if 
their behaviour is more deterministic (e.g., through real-time 
OS extensions). If each component is implemented as a sepa-
rate process, the scheduler complexity must also be constant. 
Nevertheless, many complex algorithms may still show ran-
dom or asynchronous behaviour. Moreover, flexible NoC 
based multiprocessor chips also suffer from random commu-
nication latencies under high network loads [8]; this reinforces 
the utility of an accurate statistical modelling of the resources 
consumed by waveforms.  

C. Resource Manager Feedback 
From the previous sections, we observe that the size of the 

parameter space is very large when the number of processors 
and tasks is high. Given all the captured data, it is impractical 
(from a computationally point of view) to exhaustively search 
for an optimum resource allocation. A more feasible strategy 
is “divide and conquer”: several RMs coexist in the scenario, 
each addressing a reduced number of parameters. The struc-

Fig. 2. Histogram of the execution time (in µs) of 384 kbps UTRAN components. Each component is executed periodically every 1 ms, during 
aproximately 10 minutes. Measurements are taken with ALOE every 1 ms and displayed with ALOE GUI on an Intel 2,27 GHz Centrino. 



ture can be layered, hierarchical, or cooperative. In this work, 
we consider a layered structure with two RMs: a lower-layer 
RM addressing computational efficiency issues (admission 
control and task mapping/scheduling) and a higher-layer RM 
addressing the interactions with the radio environment. This 
section focuses on the lower-layer RM.  

At system start-up, instance number k=0, the available in-
formation about the component demands is based on prior, 
manually defined information. Static execution time predic-
tion methods or cycle-accurate processor simulators can be 
used to improve the accuracy. Initial energy consumption can 
be estimated as the mean device power consumption times the 
execution time. The resource demands for a component to be 
executed by processor nP  at time 0 would then be: 
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After the first mapping of the given application to proces-

sor nP , the first measurements are available and the resource 
utilization can be computed. Let the system run for K=100 
cycles. At time stamp 100, 
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better approximates the real computing demands. 

The more time the system runs, the more accurate will be 
the resource occupation estimation. Several regression meth-
ods can be used to predict the execution time of the same ap-
plication module on another processor. The level of accuracy 
will usually incur in more or less predictor complexity. The 
prediction will be a function of the measurements performed 
at the other processors. For example, the execution time on 
processor   with available real data for processor   is a combi-
nation or function of real measurements and the characteristics 
of both processors: 

 
  ( )ˆ( , ; ) ( , ), ,j n n n jr P k P f r P k C C= .  (7) 

 
The prediction accuracy increases with processor architec-

ture homogeneity, which is generally low for SDR platforms. 
RM actions (mappings) with predicted data can be incorrect in 
several cases implying poor resource utilization or missed 
deadlines. Therefore, the more real data is available to the RM, 
the better will be its management actions.  

IV. CASE STUDY: THE ALOE MIDDLEWARE 
The Abstraction Layer and Operating Environment (ALOE) 

is an open source SDR framework with real-time computing 
resource management capabilities [3]. It is specifically de-
signed for signal processing applications, that is, data flow 

based processing. The middleware targets general-purpose 
processors (GPPs) and digital signal processors (DSPs) 
through a lightweight static-memory implementation in plain 
ANSI C. The GPP version requires an underlying POSIX OS, 
while the DSP version (for TI C6000 DSP) resides on top of 
the Texas Instruments DSP/BIOS RTOS. Hardware devices or 
single-threaded processors are also supported through a small 
VHDL version of some middleware services and APIs, cur-
rently targeted for Xilinx Virtex-5 FPGA devices. 

A. Cognitive Services Architecture 
ALOE distributes its functionalities and services in isolated 

components. Figure 3 illustrates the concept: the RM repre-
sents a group of managers, which are instantiated once for the 
entire platform. Another set, the sensors, are instantiated on 
each processing device. The RMs collect the measurements of 
the different sensors, which can also perform some actions. 
Higher-level radio resource management (RRM) or combined 
computing and radio resource management entities obtain data 
from the system through the CMDMAN component (section 
IV.C).   
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Fig. 3. Sensor / Manager Architecture 

 

B. Computing Resource Management 
ALOE supports an internal RM model de-scribed in [6]. 

The current model considers the resources time and bandwidth. 
Time is divided in discrete slots and application modules are 
executed in a pipelined fashion. This means that the data 
block produced by some module (producer module) in time 
slot n is not consumed before the beginning of time slot n+1 
by the next module in the data flow chain (consumer module). 
This facilitates synchronizing the distributed data processing 
and ensures deterministic computing delays. The middleware 
controls the start and the end of the execution on each module, 
facilitating accurate measurements of the execution times 
(modules run at maximum priority and can’t be preempted). 



The measurement period equals the invocation period (time-
slot duration), which is usually in the order of milliseconds. 

Initially, resources are manually defined. After the first 
mapping, measurements are taken of time and bandwidth con-
sumption and arithmetically averaged over 100 samples (100 
time-slots). The execution time on the other processors is ob-
tained with a simple predictor: after the component has been 
successfully mapped to processor nP , the resources consumed 

on processor jP , being nC  and jC  their capacities, meas-
ured in multiply-accumulate  operations (MACs) per second 
(MACS), are   
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Equation (8) assumes that processors have identical intrin-

sic characteristics: instruction-set, memory architecture, en-
ergy consumption per operation, and so forth. The ratio of 
capacities models the difference in performance. Table I 
shows the prediction of the resource occupation on a DSP1  
(P1) with available measurements on a PC2 (P2). The capaci-
ties are C1=9600 MACS (8 MACs per cycle) and C2=2270 
MACS (1 MAC per cycle). The difference is due to the as-
sumption of a perfect scheduling of instructions (VLIW) in 
DSPs. The real performance, though, depends on the program; 
this reinforces the importance of the resource awareness. 

TABLE I 
RM PREDICTIONS IN MICROSECONDS 

Component 
1( )r P  2 1ˆ( ; )r P P  2( )r P  

CHSIM 252 59.58 630 
INTERLEAVER 21 4.96 60 
TDEC 158 37.56 480 

 
C. ALOE CMDMAN API 

The CMDMAN is a special component centralizing the in-
teractions between higher-level control applications and 
ALOE. An API has been written in JAVA and C. Users can 
then write RRM algorithms, load, run, and stop waveforms, 
obtain and modify variables, get the information about the 
occupied and the available computing resources, and so on 
through a single interface.  

Computing and networking resource usage is obtained as 
any other application’s global variable, called statistic. Each 
component generates a new statistic value per invocation, 
once per time-slot. Table II lists the API functions. 

 
 

TABLE II 
DESCRIPTION OF THE CMDMAN API 

                                                 
1 T.I. C6454 DSP 
2 Intel Centrino 2.27 GHz laptop 

Function Description 
Init Initialize and connect to the CMDMAN. 

ProcList Get processor information and current status, in-
cluding slave devices energy consumption. 

WaveList Lists the loaded waveforms. 
WaveLoad Load a new waveform. 

WaveStatus Set a new waveform status (INIT, RUN, PAUSE, 
etc.). 

WaveInfo 
Get waveform execution information: per compo-
nent timestamp, mapped processor, scheduling 
order, etc.  

StatList Lists active statistics (includes resource consump-
tion). 

StatGet Obtains a single sample, generated during the last 
time-slot. 

StatSet Sets a value of a variable for the next time-slot. 

StatReport 

Starts or stops a continuous report of the evolution 
of variables over time. Values and the instant they 
are generated (time-slot) are saved in a file for 
postprocessing. 

 
This interface serves for the purpose of the top-level RM 

entity which manages the interactions between the radio and 
the computing environment. When the resource demands of a 
waveform change as a function of radio parameters (SNR, 
sampling frequency, channel bandwidth, etc.), new measure-
ments are obtained and effectively characterize these changes.  

V. CONCLUSIONS 
This work introduced the concept of resource awareness 

within computing resource managers for SDR-based cognitive 
radios. The particular characteristics of radio environments 
make it difficult to employ grid or distributed computing 
frameworks. Future multiprocessor devices and platform-
independent development approaches need to accurately char-
acterize the platform capabilities and software performances.  

These features have been added to an open-source middle-
ware for SDR applications. An API is available to provide 
measurements as a function of the application’s variables. 
This information can be used by RRM algorithms or architec-
ture design managers [9] to calculate the cost of a selection as 
a function of the local computing resource occupation. The 
most promising feature enabled by this interface is the ability 
of integrating computing with the radio resource management. 
First, resource consumption can be considered as a cost asso-
ciated to the selected RAT and introduced in the minimization 
cost-function. Second, given the strong influence of signal 
quality in the consumed computing resources in iterative algo-
rithms, it is reasonable to integrate this cost in power-control 
algorithms in interference-limited channels. 
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