
Automatic Computing Resource Awareness in
Resource Managers for Cognitive Radios

Ismael Gomez, Vuk Marojevic, Antoni Gelonch

Dept. of Signal Theory and Communications, Polytechnic University of Catalonia,
Av. Canal Olímpic s/n, 08860 Castelldefels, Spain

ismael.gomez@tsc.upc.edu

marojevic@tsc.upc.edu

antoni@tsc.upc.edu

Abstract— With all the potential flexibility of software-defined

radios, the flexibility of SDR terminals is currently limited to
design time flexibility. The capacity of the platform in terms of
processing resources and internal bandwidths is dimensioned for
the range of supported functionalities. In a platform-independent
design scenario, resource managers play the role of matching
waveform demands with platform capabilities. Predicting the
task execution times has been studied in grid and distributed
computing contexts with different objectives and assumptions.
Given the dynamic nature of waveform demands as a function of
the radio environment, an accurate characterization of the
consumed resources can increase the efficiency of resource
management strategies. In the SDR context, this efficiency
translates to less energy consumption and higher resource
utilization. Based on our experience acquired during the devel-
opment of an SDR execution environment, this work presents the
metrics that are needed by computing resource managers.

I. INTRODUCTION
Software-defined radio (SDR) has been introduced as an

alternative to proprietary, inflexible, and non-scalable radio
nodes. It is widely accepted that SDR is a technology enabler
for cognitive radio. SDR terminals are theoretically able to
dynamically change transmitting signal as a function of pre-
sent (and past) radio conditions. Mitola’s cognitive cycle [1]
assumes a continuous evolution of radio channel conditions,
e.g. interference and noise levels, time, space and spectrum
utilization. Practically, the radio terminals’ functionalities or
supported radio access technologies (RATs) are, however,
defined at design time. This means that the computing capa-
bilities are limited to a small set of RATs.

Following the desktop computing history, it is reasonable to
consider future radio terminals, where the functionalities are
designed without detailed knowledge about the computing
platform. Another scenario envisages shared-resource base
stations: infrastructure operators rent hardware resources
(digital signal processors, converters, RF frontends, and so
forth) to network operators in a pay-per-use fashion [2]. In
such a scenario, abstraction layers, virtualization mechanisms
and resource managers (RMs) play the role of matching the
waveform demands to the platform capacities optimizing
some metric.

In this paper we show how available resources can be dis-
covered and their utilization monitored. The management al-

gorithms and their performance evaluation are out of the
scope of this work. We present our resource awareness pro-
posal in a case study assuming our open-source middleware
ALOE (abstraction layer and operating environment [3]). Fi-
nally, a novel middleware interface (API) for radio resource
management algorithms is also presented. It can provide
hardware resource occupations in real-time as a function of
several variables.

II. RELATED WORK
The execution times of processes are highly dynamic as

they depend on many system parameters and circumstances.
The execution time prediction of processes or algorithms is a
topic which has been studied in the field of grid and distrib-
uted computing. Predictions can be static or dynamic [2].

Static methods use off-line profiling or code analysis
techniques to obtain, given a known processor model, an
estimation of the execution time. Conversely, dynamic
methods characterize the behaviour of the algorithm in terms
of statistical regression methods. During the execution of the
process, measurements are taken of the execution profile.
With these samples, the execution time under different
circumstances (system loads, processor clocks, etc.) of the
program is predicted.

To the best of our knowledge, all frameworks for task
execution time prediction address grid or distributed
computing applications. System conditions in these scenarios
are different than in signal processing:

• arrival times are dynamic but periods are much longer,
• processors perform background and non real-time ap-

plications,
• networks are more complex and have longer latencies,
• energy consumption is not a constraint,
• management complexity is not such an important issue,
• application model is arbitrary and more complex, and so

on [4].
Another important characteristic of SDR platforms is their

heterogeneity. Grid computing prediction assumes this [5], but
for some specific platform characteristics, such as processor
clock, memory size, and system load. In SDR, platform
heterogeneity implies different processor architectures,
instruction-sets, levels of parallelism, and so forth.

III. RESOURCE AWARENESS

A. Platform Resources Awareness
Typical SDR platforms assume a set of heterogeneous

processing elements (general-purpose processors, digital sig-
nal processors, dynamic reconfigurable areas, etc), which are
either integrated on a single silicon die or not. Devices are
usually interconnected using dedicated interfaces or routing
elements (Network On-Chip). Our computing resource man-
ager model considers processing devices and their inter-
processor communication bandwidths [6]. A vector of N ele-
ments represents each processor capabilities, whereas a matrix
of NxN elements specifies the network connectivity and
bandwidths. The RM automatically discovers vector C and
matrix B.

Before measuring capacities or bandwidths, it is necessary
to identify the network architecture, which involves (1) ob-
taining the number of processors, (2) uniquely identifying
each element, and (3) identifying the interfaces between them.

GENERATE NEW ID

IS UNIQUE?

HAS PARENT?

KEEP ORIGINAL

BOOT

SEND TO PARENT

NO

YES

YES

I AM THE TOP NODE

NO

IS FOR ME?

SEND TO SON

REPLACE ORIGINAL
WITH NEW ONE

REGISTERED
OK

SEND TO ALL
NODES IN THE NETWORK

IDENT NEIGBOURS
PACKET

FOR ALL OUTPUT DATA ITFS

SEND
MY ID AND ITF ID

WAIT FOR
INPUT IDENT

YES

NO

SEND TO TOP NODE

GENERATE B AND C

WAIT
REGISTER

Fig. 1. Network identification algorithm

This procedure is similar to the problem of automatic ad-

dressing in computer networks for which several protocols

have been studied. In computer networks, addressing and rout-
ing is managed by higher layer network protocols (e.g. IP,
DHCP), which usually assume a shared channel. The inter-
faces of SDR platforms are heterogeneous and lack of a
unique protocol for this purpose. What is more, such protocols
usually introduce intolerable latencies. Simplifications arise if
we constrain the network architecture of the control plane to
be hierarchical. In this case, a single element (at the topmost
level without a parent node) centralizes all the information of
all elements in the network. A hierarchical control-plane does
not constraint the data-plane network architecture (which uses
different physical or logical interfaces) or the application per-
formance.

Fig. 1 shows our algorithm proposal, which uniquely iden-
tifies a network of processors and their connectivity in a plug-
and-play fashion. When a new processor is attached to the
network, it obtains a unique id from the top parent node and
starts a periodic report of its status information (not repre-
sented in the figure). The top node sends a packet to all the
nodes requesting to send their unique id and interface id to
their neighbours. Data is collected by the top node and the
modelling matrices, B and C, are generated. The same proce-
dure is initiated when a processor fails to periodically com-
municate its status (not represented in the figure).

B. Waveform Consumption Awareness
Before discussing the resource consumption, it is necessary

to specify a general waveform model. A waveform is defined
in terms of a graph of M nodes. Nodes indicate computations
and arcs communications links. Nodes are executed periodi-
cally and synchronously (in the sense that their behaviour is
data-independent). On each invocation, a set of computing
resources are consumed, such as CPU time, energy, in-
put/output communications and silicon area. For simplicity,
we consider time and energy only. Then, invocation k of com-
ponent m in processor nP consumes a set of resources, i.e.:

(,)

(,)
(,)

m n
m n

m n

T P k
r P k

E P k
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 (1),

where T is resource “time” and E is resource “energy”.

Monitoring the processes’ CPU utilization is a challenging
task. Reference [7] compares several intrusive and non-
intrusive methods in PC-Linux platforms. Clearly, intrusive
methods exhibit lower variance (e.g. gettimeofday() vs. getr-
suage()) but need to modify application code. In a middleware
context, intrusive methods are naturally included in the API
(section IV.B).

Energy consumption measurements need specific device
support. It is measured in Joules per invocation. It can be as-
sumed that processing devices provide system calls or specific
registers to obtain instantaneous energy dissipation. In the
cases where energy cannot be obtained, it is estimated as
mean power consumption times the execution time.

Consumed resources are deterministic. The time spent run-
ning a process, for example, is a function of the instructions

that are executed plus the cache or memory wait states. As the
program complexity grows, also does the variability of the
number of instructions or branches (e.g. turbo-decoding, ray-
search, etc.). Moreover, under high processor loads, the under-
lying software (OS, middleware, or the like) exhibits higher
variances in the execution time. In general, the higher degree
of abstraction, the higher the variability in the execution time.
Therefore, a more general model assumes random contribu-
tions [5], for example,

(,) () ()m n m n mT P k T P z k= + , (2)

where ()mz k is a zero-mean uncorrelated random process

and ()m nT P is deterministic. The random effect is observed

in Fig. 2. It shows a histogram of (,)m nT P k for UTRAN
components, captured with the ALOE tools. The variance of

()mz k depends on the program (component) and the meas-
urement method. CHSIM adds random Gaussian noise to the
samples, implemented with rand() system calls (and others).
These functions execute a different number of instructions at
each call, which increases the variance. The INTERLEAVER,
on the other hand, always executes the same number of in-
structions. Its randomness might come from cache misses,
measurement and other system specific influences. The TUR-
BODECODER histogram shows two peaks corresponding to
the probability of doing 1 or 2 iterations (the decoder has an
early-stopping mechanism; therefore the iterations are func-
tion of the amount of errors in the received codeword). In this
case, the average of the execution time changes with the reali-
zation of the process, having two states with different prob-
ability. The same effect is observed in the CHSIM component
although in this case caused by the operating system instead of
the received data or signal quality.

Considering the aforementioned statistical nature of the re-
source consumption, the system has to decide which value
represents the set of possible values. A very conservative
strategy considers maximum resource consumptions. An ex-
ample is worst-case execution time (WCET) analysis, which
considerably overestimates the problem, implying poor re-
source utilization. On the opposite side, arithmetic mean
causes too much missed deadlines. Missing a deadline means
losing samples at the digital-to-analog-converter (DAC) input,
which increases the bit-error rate (BER). As opposed to clas-

sical hard real-time systems, wireless communications already
assume a certain BER; therefore, it is reasonable to choose a
value so that the BER is below the desired threshold.

At iteration K, the system estimates resource consumption
as a function of past measurements (component index m is
omitted):

ˆ(,) ((,)) , 0n nT P K f T P k k K= ≤ < (3)

so that at any time, the probability to miss a deadline is upper-
bounded by

()ˆ(,) (,) , 0n nP T P k T P K kε> < < < ∞ , (4)

assuming a strictly stationary process and known probability
density function (pdf).

Therefore, the larger the variance with respect to the mean,
the more extra resources will be allocated for a given BER. In
general, signal processing algorithms exhibit large means and
low variances. Small components with low consumptions,
however, make system function calls an equal number of
times. Therefore, the variance/mean relation increases. When
all consumptions are aggregated, small components are domi-
nant. The level of granularity, therefore, influences the total
effect of randomness, which reduces the mean resource utili-
zation (or increases the BER).

This effect is mitigated if fewer system calls are used or if
their behaviour is more deterministic (e.g., through real-time
OS extensions). If each component is implemented as a sepa-
rate process, the scheduler complexity must also be constant.
Nevertheless, many complex algorithms may still show ran-
dom or asynchronous behaviour. Moreover, flexible NoC
based multiprocessor chips also suffer from random commu-
nication latencies under high network loads [8]; this reinforces
the utility of an accurate statistical modelling of the resources
consumed by waveforms.

C. Resource Manager Feedback
From the previous sections, we observe that the size of the

parameter space is very large when the number of processors
and tasks is high. Given all the captured data, it is impractical
(from a computationally point of view) to exhaustively search
for an optimum resource allocation. A more feasible strategy
is “divide and conquer”: several RMs coexist in the scenario,
each addressing a reduced number of parameters. The struc-

Fig. 2. Histogram of the execution time (in µs) of 384 kbps UTRAN components. Each component is executed periodically every 1 ms, during
aproximately 10 minutes. Measurements are taken with ALOE every 1 ms and displayed with ALOE GUI on an Intel 2,27 GHz Centrino.

ture can be layered, hierarchical, or cooperative. In this work,
we consider a layered structure with two RMs: a lower-layer
RM addressing computational efficiency issues (admission
control and task mapping/scheduling) and a higher-layer RM
addressing the interactions with the radio environment. This
section focuses on the lower-layer RM.

At system start-up, instance number k=0, the available in-
formation about the component demands is based on prior,
manually defined information. Static execution time predic-
tion methods or cycle-accurate processor simulators can be
used to improve the accuracy. Initial energy consumption can
be estimated as the mean device power consumption times the
execution time. The resource demands for a component to be
executed by processor nP at time 0 would then be:

0

0(,0) , 0 1n
T

r P n N
E

⎛ ⎞
= ≤ < −⎜ ⎟
⎝ ⎠

 . (5)

After the first mapping of the given application to proces-

sor nP , the first measurements are available and the resource
utilization can be computed. Let the system run for K=100
cycles. At time stamp 100,

ˆ(,100)

(,100)
ˆ (,100)

n
n

n

T P
r P

E P

⎛ ⎞
= ⎜ ⎟⎜ ⎟
⎝ ⎠

 , (6)

better approximates the real computing demands.

The more time the system runs, the more accurate will be
the resource occupation estimation. Several regression meth-
ods can be used to predict the execution time of the same ap-
plication module on another processor. The level of accuracy
will usually incur in more or less predictor complexity. The
prediction will be a function of the measurements performed
at the other processors. For example, the execution time on
processor with available real data for processor is a combi-
nation or function of real measurements and the characteristics
of both processors:

 ()ˆ(, ;) (,), ,j n n n jr P k P f r P k C C= . (7)

The prediction accuracy increases with processor architec-

ture homogeneity, which is generally low for SDR platforms.
RM actions (mappings) with predicted data can be incorrect in
several cases implying poor resource utilization or missed
deadlines. Therefore, the more real data is available to the RM,
the better will be its management actions.

IV. CASE STUDY: THE ALOE MIDDLEWARE
The Abstraction Layer and Operating Environment (ALOE)

is an open source SDR framework with real-time computing
resource management capabilities [3]. It is specifically de-
signed for signal processing applications, that is, data flow

based processing. The middleware targets general-purpose
processors (GPPs) and digital signal processors (DSPs)
through a lightweight static-memory implementation in plain
ANSI C. The GPP version requires an underlying POSIX OS,
while the DSP version (for TI C6000 DSP) resides on top of
the Texas Instruments DSP/BIOS RTOS. Hardware devices or
single-threaded processors are also supported through a small
VHDL version of some middleware services and APIs, cur-
rently targeted for Xilinx Virtex-5 FPGA devices.

A. Cognitive Services Architecture
ALOE distributes its functionalities and services in isolated

components. Figure 3 illustrates the concept: the RM repre-
sents a group of managers, which are instantiated once for the
entire platform. Another set, the sensors, are instantiated on
each processing device. The RMs collect the measurements of
the different sensors, which can also perform some actions.
Higher-level radio resource management (RRM) or combined
computing and radio resource management entities obtain data
from the system through the CMDMAN component (section
IV.C).

HW
SENSOR /

ACTUATOR

SW
SENSOR /

ACTUATOR

RM

HIGHER-LEVEL RMs

MULTI-PROCESSOR PLATFORM

CMDMA
N API

HW
SENSOR /

ACTUATOR

HW
SENSOR /

ACTUATOR

SW
SENSOR /

ACTUATOR

SW
SENSOR /

ACTUATOR

RRM

Fig. 3. Sensor / Manager Architecture

B. Computing Resource Management
ALOE supports an internal RM model de-scribed in [6].

The current model considers the resources time and bandwidth.
Time is divided in discrete slots and application modules are
executed in a pipelined fashion. This means that the data
block produced by some module (producer module) in time
slot n is not consumed before the beginning of time slot n+1
by the next module in the data flow chain (consumer module).
This facilitates synchronizing the distributed data processing
and ensures deterministic computing delays. The middleware
controls the start and the end of the execution on each module,
facilitating accurate measurements of the execution times
(modules run at maximum priority and can’t be preempted).

The measurement period equals the invocation period (time-
slot duration), which is usually in the order of milliseconds.

Initially, resources are manually defined. After the first
mapping, measurements are taken of time and bandwidth con-
sumption and arithmetically averaged over 100 samples (100
time-slots). The execution time on the other processors is ob-
tained with a simple predictor: after the component has been
successfully mapped to processor nP , the resources consumed

on processor jP , being nC and jC their capacities, meas-
ured in multiply-accumulate operations (MACs) per second
(MACS), are

ˆ(, ;) (,) , 0 1j
j n n

n

C
r P k P r P k j N

C
= < < − (8)

Equation (8) assumes that processors have identical intrin-

sic characteristics: instruction-set, memory architecture, en-
ergy consumption per operation, and so forth. The ratio of
capacities models the difference in performance. Table I
shows the prediction of the resource occupation on a DSP1
(P1) with available measurements on a PC2 (P2). The capaci-
ties are C1=9600 MACS (8 MACs per cycle) and C2=2270
MACS (1 MAC per cycle). The difference is due to the as-
sumption of a perfect scheduling of instructions (VLIW) in
DSPs. The real performance, though, depends on the program;
this reinforces the importance of the resource awareness.

TABLE I
RM PREDICTIONS IN MICROSECONDS

Component
1()r P 2 1ˆ(;)r P P 2()r P

CHSIM 252 59.58 630
INTERLEAVER 21 4.96 60
TDEC 158 37.56 480

C. ALOE CMDMAN API

The CMDMAN is a special component centralizing the in-
teractions between higher-level control applications and
ALOE. An API has been written in JAVA and C. Users can
then write RRM algorithms, load, run, and stop waveforms,
obtain and modify variables, get the information about the
occupied and the available computing resources, and so on
through a single interface.

Computing and networking resource usage is obtained as
any other application’s global variable, called statistic. Each
component generates a new statistic value per invocation,
once per time-slot. Table II lists the API functions.

TABLE II
DESCRIPTION OF THE CMDMAN API

1 T.I. C6454 DSP
2 Intel Centrino 2.27 GHz laptop

Function Description
Init Initialize and connect to the CMDMAN.

ProcList Get processor information and current status, in-
cluding slave devices energy consumption.

WaveList Lists the loaded waveforms.
WaveLoad Load a new waveform.

WaveStatus Set a new waveform status (INIT, RUN, PAUSE,
etc.).

WaveInfo
Get waveform execution information: per compo-
nent timestamp, mapped processor, scheduling
order, etc.

StatList Lists active statistics (includes resource consump-
tion).

StatGet Obtains a single sample, generated during the last
time-slot.

StatSet Sets a value of a variable for the next time-slot.

StatReport

Starts or stops a continuous report of the evolution
of variables over time. Values and the instant they
are generated (time-slot) are saved in a file for
postprocessing.

This interface serves for the purpose of the top-level RM

entity which manages the interactions between the radio and
the computing environment. When the resource demands of a
waveform change as a function of radio parameters (SNR,
sampling frequency, channel bandwidth, etc.), new measure-
ments are obtained and effectively characterize these changes.

V. CONCLUSIONS
This work introduced the concept of resource awareness

within computing resource managers for SDR-based cognitive
radios. The particular characteristics of radio environments
make it difficult to employ grid or distributed computing
frameworks. Future multiprocessor devices and platform-
independent development approaches need to accurately char-
acterize the platform capabilities and software performances.

These features have been added to an open-source middle-
ware for SDR applications. An API is available to provide
measurements as a function of the application’s variables.
This information can be used by RRM algorithms or architec-
ture design managers [9] to calculate the cost of a selection as
a function of the local computing resource occupation. The
most promising feature enabled by this interface is the ability
of integrating computing with the radio resource management.
First, resource consumption can be considered as a cost asso-
ciated to the selected RAT and introduced in the minimization
cost-function. Second, given the strong influence of signal
quality in the consumed computing resources in iterative algo-
rithms, it is reasonable to integrate this cost in power-control
algorithms in interference-limited channels.

ACKNOWLEDGMENT
This work was supported by the European Commission in

the framework of the FP7 Network of Excellence in Wireless
COMmunications NEWCOM++ (contract n. 216715).

REFERENCES

[1] J. Mitola, “Cognitive radio: an integrated agent architecture for soft-
ware defined radio,” Ph.D. dissertation, Royal Institute of Technology
(KTH), Stockholm, Sweden, May 2000. Ref 1

[2] Ari Ahtiainen, Kees van Berkel, David van Kampen, Orlando Moreira,
Antti Piipponen, Tommi Zetterman. “ Multiradio scheduling and re-
source sharing on a software defined radio computing platform”. Pro-
ceedings of the SDR ’08 Technical Conference and product Exposition,
2008 SDR Forum, Inc. Washington, D.C. on , October 26-30. 2008.

[3] ALOE Middleware Web Site http:// flexnets.upc.edu/trac/
[4] Huh, E., Welch, L. R., Shirazi, B., Tjaden, B. C., and Cavanaugh, C.

2000. “Accommodating QoS Prediction in an Adaptive Resource Man-
agement Framework“. In Proceedings of the 15 IPDPS 2000 Work-
shops on Parallel and Distributed Processing (May 01 - 05, 2000). J. D.
Rolim, Ed. Lecture Notes In Computer Science, vol. 1800. Springer-
Verlag, London, 792-799.

[5] Michael A. Iverson, Füsun Özgüner, Lee Potter, "Statistical Prediction
of Task Execution Times through Analytic Benchmarking for Schedul-
ing in a Heterogeneous Environment," IEEE Transactions on Com-
puters, vol. 48, no. 12, pp. 1374-1379, Dec. 1999

[6] V. Marojevic, X. Reves, A. Gelonch, "A Computing Resource Man-
agement Framework for Software-Defined Radios," IEEE Transactions
on Computers, pp. 1399-1412, October, 2008

[7] Huh, E., Park, H., “An Efficient Statistical Profile Technique for Moni-
toring of Grid Applications“. KSIAM IT series vol. 6, No. 1, 51-62,
2002

[8] Santi, S.; Lin, B.; Kocarev, L.; Maggio, G.M.; Rovatti, R.; Setti, G.,
"On the impact of traffic statistics on quality of service for networks on
chip," Circuits and Systems, 2005. ISCAS 2005. IEEE International
Symposium on , vol., no., pp. 2349-2352 Vol. 3, 23-26 May 2005

[9] Godard L, Moy C, Palicot J, “An Executable Meta-Model of a Hierar-
chical and Distributed Architecture Management for the Design of
Cognitive Radio Equipments”, Annals of Telecommunications. Special
Issue on Cognitive Radio, Volume 64, Numbers 7-8, 2009

