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Abstract—We introduce a diffusion-based algorithm in which 
multiple agents cooperate to predict a common and global state-
value function by sharing local estimates and local gradient 
information among neighbors. Our algorithm is a fully dis­
tributed implementation of the gradient temporal difference with 
linear function approximation, to make it applicable to multi-
agent settings. Simulations illustrate the benefit of cooperation 
in learning, as made possible by the proposed algorithm. 

Index Terms—TD, distributed reinforcement learning, dis­
tributed control, cooperative learning, multi-agent, distributed 
decision making, distributed temporal difference 

I. INTRODUCTION 

Diffusion stochastic gradient descent algorithms have had 
much success implementing distributed estimation and learn­
ing problems [1], [2], in particular in simulated bio-inspired 
agents [3], [4]. Although many variations of these diffusion 
adaptation algorithms exist, very recently they have been 
unified as a general tool for distributed optimization of a sum 
of local convex cost functions [5] by Chen and Sayed. 

A common approach to achieve multi-agent systems that 
exhibit self organized patterns (like those in [3], [4]) is to 
give them some pre-designed behavior. Although these hard­
wire strategies are reasonable (e.g. behavioral genetics), we 
believe that much improvement would be achievable if some 
optimal policy learning mechanism is embedded in the agents 
as well. Thus multi-agent adaptive systems must learn to make 
decisions taking into account accumulated future expected 
rewards that will depend, not only on their individual actions, 
but also on the interactions and decisions made by other agents 
of the system. 

There are many domains of application for multi-agent 
adaptive systems, ranging from sensor management to teams 
of robots (e.g. control the power grid or any other distribution 
network, vehicular networks, cognitive radio, network routing, 
collaborative SLAM...). In many real applications, even with 
the assumption that there is a Markov decision process (MDP) 
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underlying the system, usually the agents do not know a 
dynamic model of the environment a priory and have to deal 
with large number of states. Moreover they typically require 
low complexity in order to save battery and be embedded in 
myriads of low cost devices. Reinforcement learning [6] is a 
tool well suited for this purpose. 

Gradient temporal difference (GTD) algorithms are a break­
through in reinforcement learning showing convergence for 
off-policy learning with linear [7] and non-linear [8] function 
approximation, with performance comparable to temporal dif­
ference (TD) methods [9], and with eligibility traces [10]. In 
particular we are going to focus on the so-called GTD version 
2 algorithm (or simply GTD2) [9], though extension to other 
variations should be straightforward. This algorithm combines 
off-policy updates, TD learning, linear function approximation, 
linear complexity in memory and per-time-step computations, 
speed of convergence similar to standard TD, and guaranteed 
stability. 

Although this family of GTD algorithms has also been 
extended to finding the optimal policy (control problem) [11], 
in this paper we will only consider the problem of estimating 
the state value function underlying some MDP (prediction 
problem), leaving the cooperative control extension for future 
work. 

A. Related work 

Distributed reinforcement learning is an important topic and 
some solutions have been proposed. However they lack for a 
combination of features (namely low complexity, off-policy 
learning, function approximation and stability) that could 
make them suitable for many real applications. Comprehensive 
surveys on the topic are [12], [13]. Here we just mention two 
approaches related to the one we propose. 

Authors in [14] introduced the concept of distributed value 
functions for Dynamic Programming (DP), in which every 
node exchanges their local estimate so they can be weighted 
in the update. Here we move from DP to TD, in particular 
to GTD2. Although we similarly propose to combine some 
intermediate estimates of the nodes in the neighborhood for the 
GTD2, our approach comes from the distributed optimization 
literature. Indeed we include a double combination of gradient 
information and estimated value function. This way we can 
benefit from all the advantages that GTD2 offer over DP and, 
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at the same time, get improvement over the non-cooperative 
solution. In addition, the combination coefficients that we use 
here come from gossip and consensus averaging algorithms, 
thus they are well grounded (see e.g. [15]–[17]). 

In [18] consensus averaging was introduced, for averaging 
experience and reward, into the learning process of a gradient 
search in the policy space. This approach is somehow related 
to ours since this kind of agreement can be seen as a particular 
case of the more general framework of distributed-gradient 
optimization [19]. Nevertheless solving the optimization prob­
lem in a really distributed manner has some advantages. For 
instance, it does not require perfect agreement over the entire 
network of agents, in each iteration, being more natural for 
many real models, such as the bio-inspired ones. Moreover, 
that algorithm was developed for problems with small state 
space (or at least small enough to be represented by a look­
up table), which might narrow its applicability in some real 
environments. 

B. Contributions 

The central contribution presented here is a novel, fully dis­
tributed reinforcement learning algorithm that allows multiple 
agents to cooperate with each other in order to find the global 
optimal representation of a common state value function. No 
fusion-center is required, just local computation and one-hop 
communication among neighbors are enough for asymptotic 
convergence to the same optimal solution that a fusion-center 
would achieve. 

It is based on the well-known (but centralized) GTD2 
algorithm, which we distribute using the powerful diffusion 
adaptation methods. We illustrate the performance gain that 
individual agents achieve through coordination via simulations 
of several classical reinforcement learning toy problems. 

Doing so we move from estimation to control settings, get­
ting one step closer to a fully autonomous and self-organized 
multi-agent system. In particular we study a prediction prob­
lem which is an important part of the more general control 
problem. 

C. Outline 

This paper is structured as follows. In Section II we define 
the problem, summarize the diffusion adaptation scheme for 
optimization and present the centralized G T D 2 algorithm. 
Then, in Section III, we present our Cooperative GTD2 (C-
GTD2) algorithm. It is followed by three sets of simulation 
results in Section IV showing the benefit of cooperative 
learning. Finally, we draw some conclusions in Section V. 

I I . BACKGROUND 

A. Distributed optimization problem 

Consider a set of N agents with some communication 
constraints (e.g. distance, congestion, environment, etc.). Their 
interconnection defines a graph with links that can vary with 
time (e.g. because of mobility, link failures, etc.). We define 
the neighborhood of a node k as the set of nodes that can 

communicate with node k, included the node k itself, and 
denote it A4. 

Now suppose that every agent k seeks to estimate a global 
minimizer 0° of some global cost function Jglob(é>), which is 
defined as the sum of all the local cost functions, Jk(9), as 

N 

Jglob(e) = J2Jk(Q) (1) 
fc=l 

In other words, the agents are trying to learn a common and 
optimal parameter vector 0°, such that 

e° = &TgminJglob\e) (2) 
e 

B. Diffusion adaptation for distributed optimization 

As explained in [5], the global cost function Jglob(é>) can 
be efficiently optimized in a distributed fashion making some 
approximations in the local cost functions. In particular, every 
node k in the network aims to minimize its local estimate of 
the global cost function, J%lob (9), defined by 

Jglob(.°)= J2 ci,kJiW+ YJ hi,k\\e-e°\\2 (3) 

where c¡¡k and b¡¡k are weight coefficients used by node k to 
combine information diffused by its neighbors. Note that 0° 
is unknown to any node so it will be approximated by its best 
local estimate (i.e. the one obtained in the last iteration). 

Every node can cooperatively minimize (3) applying a 
steepest-descent approach, which leads to a 2-steps iterative 
algorithm named Adapt-Then-Combine (ATC). 

In the first step (4) of ATC every node k shares gradient 
information with its neighbors. This incoming information is 
applied to its own local estimate, Ok,i, in order to generate an 
updated intermediate estimate, V 'M+I , as 

'<Pk,i+i = 0k}i + ak ^ ci}kyJi{9k}i) (4) 
ieAfk 

where ak is a sufficiently small constant step size that assures 
convergence to a fixed value in the mean square error (MSE) 
sense. 

In the second step (5) every node k updates its own estimate, 
9k,i+i, as a convex combination of the intermediate estimates 
in its neighborhood 

Ok,i+i = J2 «i,fcV'M+i (5) 
ieAfk 

Note that we do not have to worry about b¡¡k anymore since 
they have been mixed into a new set of weights a¡¡k. 

The combination coefficients for every pair of nodes in the 
network, a¡¡k and c¡¡k, form two matrices A and C, being 
stochastic and doubly stochastic respectively, and with zero 
entries wherever nodes k and / are not neighbors. These 
stochastic matrices can be computed locally in different ways, 
leading to different performance in the speed of how informa­
tion diffuses through the network (see e.g. [15]–[17]). 

For a thorough explanation of diffusion adaptive algorithms 
see [1], [5], [20], [21] and the references therein. 
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C. Value prediction problem 

We assume the agents live in an environment which can 
be modeled as a MDP defined by a set of states S, a set of 
actions A, the transition probabilities of going from one state 
st to another s i + i given an action at, and the rewards r i+i 
associated to those transitions. 

The state value function V" : S —> R gives the expected 
cumulative discounted return of following a policy n, when 
the agent is in state s. It is defined by 

V*(s)=R [ DO 

][>Viko = s 
i=0 

s G S (6) 

where the rewards r i + i come from the state transitions, from 
st to st_|_i, induced by actions taken according to policy n. 
And 7 £ [0,1] is a discount factor meaning that, though future 
expected rewards are taken into account, the farther they are 
in the future, the less they weight in the value function. 

In order to choose among different policies the agents 
should be able to evaluate how good those policies are, i.e. to 
predict their value. 

D. Linear approximation of value functions 

In many problems of interest the number of states is too big 
for us to estimate each one individually. One possibility is to 
learn an approximate state value function which depends on 
many fewer parameters than the number of states. In particular 
we consider linear approximations of the form 

V(s) « Vg(4>(s)) = 9J4>{s) (7) 

where V(s) is the real state value function for the state s G S, 
Vg((j)(s)) is its linear approximation, </>(s) G Mn is the feature 
vector that represents the state, with n <C |S|, and 6 is the 
vector of parameters to be learned. Since we are dealing 
just with prediction, instead of control, we have omitted any 
specific policy in the notation. Moreover let $ G M'5'xn be the 
matrix with rows 4>(s)T, then we denote Vg G M'5' the vector 
of approximated values for each state, such that Vg = &9. 

TD(A) is a powerful family of algorithms that iteratively 
refine the estimate of the value function while the agent is 
interacting with the environment. The tunable parameter A G 
[0,1] trades bias and variance of the predicted value. 

Although TD(A) is one of the most celebrated ideas in rein­
forcement learning, when it is combined with linear function 
approximation (named linear-TD(A)) and off-policy learning, 
stability of the solution is not guaranteed. Nevertheless, if 
linear-TD(0) converges, it is shown in [22] that the solution 
satisfies Vg = IVTVg, where T is a contraction mapping (the 
Bellman operator), and II is a projection operator that takes 
any value function and projects it to the nearest value function 
representable by the function approximation. 

Therefore a natural objective function that can be optimized 
is the mean-square projected Bellman-error (MSPBE) [9] 

J(6) = \\Vg-UTVe (8) 

where ¡J, is the state-visitation probability-distribution vector 
whose components represent the probability of visiting each 
state, and being \\v\\¿ 

¿—i p(s)v2(s). 

E. Gradient Temporal Difference learning: GTD2 

The GTD2 algorithm aims to minimize the MSPBE. It uses 
the set of triples (</>, r, </>') (i.e. feature vector of the current 
state, the transition reward and the feature vector of next state 
respectively) as data, which we assume drawn i.i.d. from ¡i. 

The MSPBE can be also expressed as 

j(e) = nm4>]Jn4>4>Jrlnm4>] (9) 

where 6(6) = r + 7#T4>' — 61"</> (i.e. the standard TD(0) iter­
ation update). Hence the direction opposite to the gradient of 
the MSPBE is 

-lyj(6) 
2 v ' 

E[(4> , / ^ - n j g r ^ - n - i E[6(6)4>] (10) 

One problem that arises when trying to apply gradient descent 
directly on (10) is that we can not sample each of the three 
expected values, since the samples would be correlated and 
their product would be biased. The solution proposed in [7] is 
to sample only one of the expectations while tracking a long-
term, quasi-stationary estimate of the others. In particular [9] 
noticed that w(6) = E[4>4>J]^1E[6(6)(p] is the linear predictor 
obtained with the Least Mean Square (LMS) algorithm [23]. 
Therefore (10) can be rewritten as 

~ V J ( * ) E[(4> i4>')4>J] w(6) (11) 

which directly leads to the two iterations of the GTD2 algo­
rithm 

6i+i = 6i + ai(4>i - ^¡)((f>Jwi) 

wi+1 =u,i+ Pi^Oi) - <j>Jwi)<j>i 

(12) 

(13) 

Following [9], we can aggregate (12) and (13) in a single 
iteration 

Pi+i = Pi + Oi(Gi+1pi + gi+1) (14) 

where p¡ = [wj, 6j] and gj+1 = \r}r\(f>l, 0 ] are the aggre­
gated parameter and aggregated reward vector, respectively, 
the coefficient matrix1 is 

Gi+1 -•n<t>i<fl vM-y<t>'i - ^ ¿ ) T 

-d4>'i -4>i)4>l o 
(15) 

and r¡ = /3¿/'a¿ > 0 is the ratio between step-sizes. 
For a complete presentation of gradient temporal difference 

learning see [24]. 

1Note that we are slightly abusing the notation since 0 denotes both a 
column vector and block matrix of zeros. 
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I I I . COOPERATIVE G T D 2 

Consider a system where each agent collects its own expe­
rience and reward. In this section we derive an algorithm that 
minimizes (1), with common minimizer 0, and with local cost 
functions being the local M S P B E of each node 

Jk(0) = \\V9tk-IlTVetk\\lk (16) 

where Vg^ is the local estimate (at node k) of Vg. 
The algorithm we propose consists of substituting (14) by 

a distributed implementation using ATC, which leads to 

^fc,i+i = Pk,i + « M J2 c'AGi,i+iPk,i + 9i,i+i) 

(17) 
pk,i+i = J2 «i,fcV-i,i+i 

leMk 

Note that, though using some information from its neighbors, 
every node computes the update over its local estimate. 

In order to obtain a more natural and easier to implement 
form, let’s disaggregate (17) into the two iterations of GTD2. 
To do so we first dissagregate the iterative update as 

Giti+ipk,i + gi,i+i = I \ ¿ u ft w ' I (18) 

where Si¿(6k¿) = ri¿ +"fdji4>'i ¿ — Qki4>i,i could be under­
stood as the local T D error of node /, evaluated with the last 
estimate of node k, at iteration i. 

Therefore the locally sampled expected value of the gradient 
of the M S P B E is cooperatively estimated as 

fffc,i+1 = 0fc,i + a M ] T C í i f c (¿ M - 7^,i)(^M^fc,i) 

(19) 
Ok,i+i = ¿2 a',fc°"M+i 

ieAfk 

And the local long-term estimate of the global L M S solution 
results in 

Vk,i+i = u>k,i + I3k,i ^ ci,k{5iÁek,i) ~ <i>l,iWk,i)4>i,i 

(20) 
Wk,i+i = ¿2 ai,kn,i+i 

leMk 

Equations (19) and (20) can be seen as the equivalent dis­
tributed implementation of (12) and (13). Thus they constitute 
each iteration of the C-GTD2 algorithm. 

IV. SIMULATIONS 

In this section we show some experiments with the proposed 
C-CTD2 algorithm in order to compare its performance with 
the (non-cooperative) GTD2 in terms of both M S P B E and 
stability. 

A. Problems description 

We take some problems from the benchmark presented in 
[9], namely three versions of a random-walk problem (with 
different features each), the Boyan-chain problem and the 
Baird’s counterexample. 

The random-walk is a standard Markov chain. It includes 5 
states, plus 2 more absorbing terminal states, one at each end. 
The reward is zero in every transition except when ending in 
the terminal state at the right end. The initial state is in the 
middle of the walk. We try three different representations of 
the problem. The first two sets of features, namely tabular 
and inverted are represented with a feature vector with same 
number of entries as the number of states; while the third set 
of features, named dependent, uses only 3 features for the five 
states. 

The Boyan chain has 14 states. There is only one absorbing 
terminal state, numbered 0 at the right end. State 13, at the 
left end, is the initial one. States 13 to 1 can take two actions: 
either go to the next in the right, or jump one position moving 
two states to the right. State 1 can take only one action which 
is to go to the terminal state. 

The last problem is the Baird’s counterexample, a ”star” of 
7 states. The reward is zero for every transition. Every state 
can take two actions, one that leads to any other state, with 
equal probability, or another that goes to state 7. The goal is 
to learn a target policy different from the behaviour policy. In 
particular the behaviour policy makes every state to evolve to 
state 7. 

Although different for each problem, we have used the 
same parameters a and rj for both the non-cooperative and 
cooperative cases (i.e. ak = a and rjk = rj). The distributed 
setting consists of a network of 10 nodes, with average degree 
5 and random topology. Finally, the M S P B E is computed 
exactly using the optimal parameter vector learned by the 
algorithms, and averaged over 10 independent runs. 

B. Results 

Our algorithm shows a clear improvement in all versions 
of the random walk, as well as in the Boyan chain. All 
nodes improve results with respect to the non-cooperative 
case. Diffusion alleviates the gradient noise, leading to a lower 
minimum of the M S P B E and to much less noisy and with less 
variance estimates (see Figures 1 and 2, note that we plot the 
root M S P B E ) . 

The Baird’s counterexample is a classical test that shows 
how TD(0) can diverge when it is combined with linear 
approximation. In this case we compare C-GTD2 with a 
diffusion-based distributed implementation of the linear-TD(0) 
(which we call C-LTD(0)), and show similar results as when 
comparing with their non-cooperative versions: while C-
LTD(0) diverges, C-GTD2 converges to zero (see Figure 3). 

V. CONCLUSIONS 

In this paper we presented a cooperative version of the 
GTD2 algorithm for coordinated learning in a multi-agent 
setting. Our algorithm conserves all the desirable properties of 
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Fig. 2. Boyan chain. The Boyan chain is a Markov chain. We choose the 
same version as [9], with 14 states. States are represented with only 4 features, 
named interpolated, defined as follows: states 13, 9, 5, and 1 are defined 
as 013 = [1,0,0,0]T , 09 = [0,1,0,0]T , 05 = [0,0,1,0]T and 0 1 = 
[0,0,0, 1] respectively; and the others are obtained linearly interpolating 
between these (i.e. 02 = [0, 0,1/4, 3/4]T , 03 = [0, 0,1/2, 1/2]T, 04 = 
[0, 0, 3/4, 1/4] , and so on). We choose constant step-sizes a = 0.5 and 
r\ = 8. Similar to the results of the Random Walk (see Figure 1), C-GTD2 
achieves less error and the estimates are smoother and with less variance than 
those of the non-cooperative version (GTD2). 
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Fig. 1. Random walk for (left) tabular, (middle) inverted, and (right) 
dependent features. We use the same standard Markov chain with the linear 
arrangement shown in [9]. Tabular features are similar to a look-up table, 
in which every state is represented by a vector with every entry equal zero 
except the one of the state (e.g. 02 = [0, 1,0,0, 0 ] ) . Inverted features are 
still represented with the same number of features as number of states, but 
opposite to the tabular case; only the entry corresponding with the actual 
state is zero, while the rest are equal and normalized to make the vector 
unitary (e.g. the second state is represented as 02 = [1

2, 0, 12,
 1
2,

 1
2]T). 

Finally, dependent features represent the state with a vector of only 3 entries, 
namely 0 1 = [1,0,0]T, 02 

04 

[ 1
2 , 1

2, 0]", 03 [ 1 1 1 ]T 
0 3 , V3, V2 , 

[ 0 , 1 2 ,
1
2 ]

T and 05 = [0,0,1]T .In every case, the terminal states 
are represented by all zeros, as usual. We choose constant step-sizes a = 0.06 
and r¡ = 2. It is clear that the curves corresponding to the local estimates 
obtained with C-GTD2 show considerable less MSPBE, are much smoother 
and have much less variance than those obtained with the non-cooperative 
version (GTD2). 

C-LTD(O) 

\ 
1 

\ 1 

"\ ^é^~ 
- \ * ^ ^ 

\v̂ _ 

/M^ 
/¡é%/ 

/¿%%y 

¿fr 

C-GTD2 

i ~ ^ i 

10 
Sweeps 

15 20 

Fig. 3. Baird’s counterexample. We use the same 7-state version of the 
problem shown in [9]. The target policy sets a probability of taking action 
of going to any other state is 6/7, and of going to state 7 is 1/7. While 
the behaviour policy is going to state 7 with probability 0.97. Every state is 
represented with 8 features as follows: for states 1 to 6 there is 2 in the same 
component as state, and 1 in component 8 (e.g. 03 = [0, 0, 2, 0, 0,0, 0, 1] ), 
but for state 7 we have 07 = [0,0,0,0,0,0, 1, 2] . Estimates are updated 
in sweeps through the state-space, very much like in dynamic programming. 
Parameters are 7 = 0.99, a = 0.05 and r¡ = 5. For C-LTD(0) convergence 
is not guaranteed, while C-GTD2 shows to be stable. 
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its well-known centralized counterpart, but affords the agents 
an added benefit in performance derived through cooperation. 
This has been demonstrated practically on three classical 
reinforcement learning problems. 

Future work includes investigating the possibility to extend 
this approach to other gradient based T D algorithms like 
GQ(λ) [10]. Also, the extension to the policy improvement 
(control) problem (such as greedy-GQ [11]) is also possible. 
Moreover this same methodology of combining diffusion 
strategies with T D learning can be applied to Least Squares 
T D (LSTD) and its variations [25], [26]. 

Finally it is worth to mention that performance and con­
vergence analysis are still ongoing work. This is because 
the M S E analysis derived for diffusion optimization does not 
directly apply here. In fact the aggregated equation of C - G T D 2 
(17) is not truly a gradient, but rather a diffusion stochastic 
approximation. Nevertheless results with the Baird’s counter 
example seem to be very promising (see Section IV) . 
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