
2012 3rd International Workshop on Cognitive Incromation Processing (CIP)

Diffusion Gradient Temporal Difference
for Cooperative Reinforcement Learning with

Linear Function Approximation
Sergio Valcarcel Macua, Pavle Belanovic, Santiago Zazo

Abstract—We introduce a diffusion-based algorithm in which
multiple agents cooperate to predict a common and global state-
value function by sharing local estimates and local gradient
information among neighbors. Our algorithm is a fully dis­
tributed implementation of the gradient temporal difference with
linear function approximation, to make it applicable to multi-
agent settings. Simulations illustrate the benefit of cooperation
in learning, as made possible by the proposed algorithm.

Index Terms—TD, distributed reinforcement learning, dis­
tributed control, cooperative learning, multi-agent, distributed
decision making, distributed temporal difference

I. INTRODUCTION

Diffusion stochastic gradient descent algorithms have had
much success implementing distributed estimation and learn­
ing problems [1], [2], in particular in simulated bio-inspired
agents [3], [4]. Although many variations of these diffusion
adaptation algorithms exist, very recently they have been
unified as a general tool for distributed optimization of a sum
of local convex cost functions [5] by Chen and Sayed.

A common approach to achieve multi-agent systems that
exhibit self organized patterns (like those in [3], [4]) is to
give them some pre-designed behavior. Although these hard­
wire strategies are reasonable (e.g. behavioral genetics), we
believe that much improvement would be achievable if some
optimal policy learning mechanism is embedded in the agents
as well. Thus multi-agent adaptive systems must learn to make
decisions taking into account accumulated future expected
rewards that will depend, not only on their individual actions,
but also on the interactions and decisions made by other agents
of the system.

There are many domains of application for multi-agent
adaptive systems, ranging from sensor management to teams
of robots (e.g. control the power grid or any other distribution
network, vehicular networks, cognitive radio, network routing,
collaborative SLAM...). In many real applications, even with
the assumption that there is a Markov decision process (MDP)

This work was supported in part by the Spanish Ministry of Science and
Innovation under the grant TEC2009-14219-C03-01; the Spanish Ministry
of Science and Innovation in the program CONSOLIDER-INGENIO 2010
under the grant CSD2008-00010 COMONSENS; the European Commission
under the grant FP7-ICT-2009-4-248894-WHERE-2; the Spanish Mnistry of
Science and Innovation under the complementary action grant TEC 2008-
04644-E; and the Spanish Mnistry of Science and Innovation under the grant
TEC2010-21217-C02-02-CR4HFDVL.

underlying the system, usually the agents do not know a
dynamic model of the environment a priory and have to deal
with large number of states. Moreover they typically require
low complexity in order to save battery and be embedded in
myriads of low cost devices. Reinforcement learning [6] is a
tool well suited for this purpose.

Gradient temporal difference (GTD) algorithms are a break­
through in reinforcement learning showing convergence for
off-policy learning with linear [7] and non-linear [8] function
approximation, with performance comparable to temporal dif­
ference (TD) methods [9], and with eligibility traces [10]. In
particular we are going to focus on the so-called GTD version
2 algorithm (or simply GTD2) [9], though extension to other
variations should be straightforward. This algorithm combines
off-policy updates, TD learning, linear function approximation,
linear complexity in memory and per-time-step computations,
speed of convergence similar to standard TD, and guaranteed
stability.

Although this family of GTD algorithms has also been
extended to finding the optimal policy (control problem) [11],
in this paper we will only consider the problem of estimating
the state value function underlying some MDP (prediction
problem), leaving the cooperative control extension for future
work.

A. Related work

Distributed reinforcement learning is an important topic and
some solutions have been proposed. However they lack for a
combination of features (namely low complexity, off-policy
learning, function approximation and stability) that could
make them suitable for many real applications. Comprehensive
surveys on the topic are [12], [13]. Here we just mention two
approaches related to the one we propose.

Authors in [14] introduced the concept of distributed value
functions for Dynamic Programming (DP), in which every
node exchanges their local estimate so they can be weighted
in the update. Here we move from DP to TD, in particular
to GTD2. Although we similarly propose to combine some
intermediate estimates of the nodes in the neighborhood for the
GTD2, our approach comes from the distributed optimization
literature. Indeed we include a double combination of gradient
information and estimated value function. This way we can
benefit from all the advantages that GTD2 offer over DP and,

2012 3rd International Workshop on Cognitive Incromation Processing (CIP)

at the same time, get improvement over the non-cooperative
solution. In addition, the combination coefficients that we use
here come from gossip and consensus averaging algorithms,
thus they are well grounded (see e.g. [15]–[17]).

In [18] consensus averaging was introduced, for averaging
experience and reward, into the learning process of a gradient
search in the policy space. This approach is somehow related
to ours since this kind of agreement can be seen as a particular
case of the more general framework of distributed-gradient
optimization [19]. Nevertheless solving the optimization prob­
lem in a really distributed manner has some advantages. For
instance, it does not require perfect agreement over the entire
network of agents, in each iteration, being more natural for
many real models, such as the bio-inspired ones. Moreover,
that algorithm was developed for problems with small state
space (or at least small enough to be represented by a look­
up table), which might narrow its applicability in some real
environments.

B. Contributions

The central contribution presented here is a novel, fully dis­
tributed reinforcement learning algorithm that allows multiple
agents to cooperate with each other in order to find the global
optimal representation of a common state value function. No
fusion-center is required, just local computation and one-hop
communication among neighbors are enough for asymptotic
convergence to the same optimal solution that a fusion-center
would achieve.

It is based on the well-known (but centralized) GTD2
algorithm, which we distribute using the powerful diffusion
adaptation methods. We illustrate the performance gain that
individual agents achieve through coordination via simulations
of several classical reinforcement learning toy problems.

Doing so we move from estimation to control settings, get­
ting one step closer to a fully autonomous and self-organized
multi-agent system. In particular we study a prediction prob­
lem which is an important part of the more general control
problem.

C. Outline

This paper is structured as follows. In Section II we define
the problem, summarize the diffusion adaptation scheme for
optimization and present the centralized G T D 2 algorithm.
Then, in Section III, we present our Cooperative GTD2 (C-
GTD2) algorithm. It is followed by three sets of simulation
results in Section IV showing the benefit of cooperative
learning. Finally, we draw some conclusions in Section V.

I I . BACKGROUND

A. Distributed optimization problem

Consider a set of N agents with some communication
constraints (e.g. distance, congestion, environment, etc.). Their
interconnection defines a graph with links that can vary with
time (e.g. because of mobility, link failures, etc.). We define
the neighborhood of a node k as the set of nodes that can

communicate with node k, included the node k itself, and
denote it A4.

Now suppose that every agent k seeks to estimate a global
minimizer 0° of some global cost function Jglob(é>), which is
defined as the sum of all the local cost functions, Jk(9), as

N

Jglob(e) = J2Jk(Q) (1)
fc=l

In other words, the agents are trying to learn a common and
optimal parameter vector 0°, such that

e° = &TgminJglob\e) (2)
e

B. Diffusion adaptation for distributed optimization

As explained in [5], the global cost function Jglob(é>) can
be efficiently optimized in a distributed fashion making some
approximations in the local cost functions. In particular, every
node k in the network aims to minimize its local estimate of
the global cost function, J%lob (9), defined by

Jglob(.°)= J2 ci,kJiW+ YJ hi,k\\e-e°\\2 (3)

where c¡¡k and b¡¡k are weight coefficients used by node k to
combine information diffused by its neighbors. Note that 0°
is unknown to any node so it will be approximated by its best
local estimate (i.e. the one obtained in the last iteration).

Every node can cooperatively minimize (3) applying a
steepest-descent approach, which leads to a 2-steps iterative
algorithm named Adapt-Then-Combine (ATC).

In the first step (4) of ATC every node k shares gradient
information with its neighbors. This incoming information is
applied to its own local estimate, Ok,i, in order to generate an
updated intermediate estimate, V 'M+I , as

'<Pk,i+i = 0k}i + ak ^ ci}kyJi{9k}i) (4)
ieAfk

where ak is a sufficiently small constant step size that assures
convergence to a fixed value in the mean square error (MSE)
sense.

In the second step (5) every node k updates its own estimate,
9k,i+i, as a convex combination of the intermediate estimates
in its neighborhood

Ok,i+i = J2 «i,fcV'M+i (5)
ieAfk

Note that we do not have to worry about b¡¡k anymore since
they have been mixed into a new set of weights a¡¡k.

The combination coefficients for every pair of nodes in the
network, a¡¡k and c¡¡k, form two matrices A and C, being
stochastic and doubly stochastic respectively, and with zero
entries wherever nodes k and / are not neighbors. These
stochastic matrices can be computed locally in different ways,
leading to different performance in the speed of how informa­
tion diffuses through the network (see e.g. [15]–[17]).

For a thorough explanation of diffusion adaptive algorithms
see [1], [5], [20], [21] and the references therein.

2012 3rd International Workshop on Cognitive Incromation Processing (CIP)

C. Value prediction problem

We assume the agents live in an environment which can
be modeled as a MDP defined by a set of states S, a set of
actions A, the transition probabilities of going from one state
st to another s i + i given an action at, and the rewards r i+i
associated to those transitions.

The state value function V" : S —> R gives the expected
cumulative discounted return of following a policy n, when
the agent is in state s. It is defined by

V*(s)=R [DO

][>Viko = s
i=0

s G S (6)

where the rewards r i + i come from the state transitions, from
st to st_|_i, induced by actions taken according to policy n.
And 7 £ [0,1] is a discount factor meaning that, though future
expected rewards are taken into account, the farther they are
in the future, the less they weight in the value function.

In order to choose among different policies the agents
should be able to evaluate how good those policies are, i.e. to
predict their value.

D. Linear approximation of value functions

In many problems of interest the number of states is too big
for us to estimate each one individually. One possibility is to
learn an approximate state value function which depends on
many fewer parameters than the number of states. In particular
we consider linear approximations of the form

V(s) « Vg(4>(s)) = 9J4>{s) (7)

where V(s) is the real state value function for the state s G S,
Vg((j)(s)) is its linear approximation, </>(s) G Mn is the feature
vector that represents the state, with n <C |S|, and 6 is the
vector of parameters to be learned. Since we are dealing
just with prediction, instead of control, we have omitted any
specific policy in the notation. Moreover let $ G M'5'xn be the
matrix with rows 4>(s)T, then we denote Vg G M'5' the vector
of approximated values for each state, such that Vg = &9.

TD(A) is a powerful family of algorithms that iteratively
refine the estimate of the value function while the agent is
interacting with the environment. The tunable parameter A G
[0,1] trades bias and variance of the predicted value.

Although TD(A) is one of the most celebrated ideas in rein­
forcement learning, when it is combined with linear function
approximation (named linear-TD(A)) and off-policy learning,
stability of the solution is not guaranteed. Nevertheless, if
linear-TD(0) converges, it is shown in [22] that the solution
satisfies Vg = IVTVg, where T is a contraction mapping (the
Bellman operator), and II is a projection operator that takes
any value function and projects it to the nearest value function
representable by the function approximation.

Therefore a natural objective function that can be optimized
is the mean-square projected Bellman-error (MSPBE) [9]

J(6) = \\Vg-UTVe (8)

where ¡J, is the state-visitation probability-distribution vector
whose components represent the probability of visiting each
state, and being \\v\\¿

¿—i p(s)v2(s).

E. Gradient Temporal Difference learning: GTD2

The GTD2 algorithm aims to minimize the MSPBE. It uses
the set of triples (</>, r, </>') (i.e. feature vector of the current
state, the transition reward and the feature vector of next state
respectively) as data, which we assume drawn i.i.d. from ¡i.

The MSPBE can be also expressed as

j(e) = nm4>]Jn4>4>Jrlnm4>] (9)

where 6(6) = r + 7#T4>' — 61"</> (i.e. the standard TD(0) iter­
ation update). Hence the direction opposite to the gradient of
the MSPBE is

-lyj(6)
2 v '

E[(4> , / ^ - n j g r ^ - n - i E[6(6)4>] (10)

One problem that arises when trying to apply gradient descent
directly on (10) is that we can not sample each of the three
expected values, since the samples would be correlated and
their product would be biased. The solution proposed in [7] is
to sample only one of the expectations while tracking a long-
term, quasi-stationary estimate of the others. In particular [9]
noticed that w(6) = E[4>4>J]^1E[6(6)(p] is the linear predictor
obtained with the Least Mean Square (LMS) algorithm [23].
Therefore (10) can be rewritten as

~ V J (*) E[(4> i4>')4>J] w(6) (11)

which directly leads to the two iterations of the GTD2 algo­
rithm

6i+i = 6i + ai(4>i - ^¡)((f>Jwi)

wi+1 =u,i+ Pi^Oi) - <j>Jwi)<j>i

(12)

(13)

Following [9], we can aggregate (12) and (13) in a single
iteration

Pi+i = Pi + Oi(Gi+1pi + gi+1) (14)

where p¡ = [wj, 6j] and gj+1 = \r}r\(f>l, 0] are the aggre­
gated parameter and aggregated reward vector, respectively,
the coefficient matrix1 is

Gi+1 -•n<t>i<fl vM-y<t>'i - ^ ¿) T

-d4>'i -4>i)4>l o
(15)

and r¡ = /3¿/'a¿ > 0 is the ratio between step-sizes.
For a complete presentation of gradient temporal difference

learning see [24].

1Note that we are slightly abusing the notation since 0 denotes both a
column vector and block matrix of zeros.

2012 3rd International Workshop on Cognitive Incromation Processing (CIP)

I I I . COOPERATIVE G T D 2

Consider a system where each agent collects its own expe­
rience and reward. In this section we derive an algorithm that
minimizes (1), with common minimizer 0, and with local cost
functions being the local M S P B E of each node

Jk(0) = \\V9tk-IlTVetk\\lk (16)

where Vg^ is the local estimate (at node k) of Vg.
The algorithm we propose consists of substituting (14) by

a distributed implementation using ATC, which leads to

^fc,i+i = Pk,i + « M J2 c'AGi,i+iPk,i + 9i,i+i)

(17)
pk,i+i = J2 «i,fcV-i,i+i

leMk

Note that, though using some information from its neighbors,
every node computes the update over its local estimate.

In order to obtain a more natural and easier to implement
form, let’s disaggregate (17) into the two iterations of GTD2.
To do so we first dissagregate the iterative update as

Giti+ipk,i + gi,i+i = I \ ¿ u ft w ' I (18)

where Si¿(6k¿) = ri¿ +"fdji4>'i ¿ — Qki4>i,i could be under­
stood as the local T D error of node /, evaluated with the last
estimate of node k, at iteration i.

Therefore the locally sampled expected value of the gradient
of the M S P B E is cooperatively estimated as

fffc,i+1 = 0fc,i + a M] T C í i f c (¿ M - 7^,i)(^M^fc,i)

(19)
Ok,i+i = ¿2 a',fc°"M+i

ieAfk

And the local long-term estimate of the global L M S solution
results in

Vk,i+i = u>k,i + I3k,i ^ ci,k{5iÁek,i) ~ <i>l,iWk,i)4>i,i

(20)
Wk,i+i = ¿2 ai,kn,i+i

leMk

Equations (19) and (20) can be seen as the equivalent dis­
tributed implementation of (12) and (13). Thus they constitute
each iteration of the C-GTD2 algorithm.

IV. SIMULATIONS

In this section we show some experiments with the proposed
C-CTD2 algorithm in order to compare its performance with
the (non-cooperative) GTD2 in terms of both M S P B E and
stability.

A. Problems description

We take some problems from the benchmark presented in
[9], namely three versions of a random-walk problem (with
different features each), the Boyan-chain problem and the
Baird’s counterexample.

The random-walk is a standard Markov chain. It includes 5
states, plus 2 more absorbing terminal states, one at each end.
The reward is zero in every transition except when ending in
the terminal state at the right end. The initial state is in the
middle of the walk. We try three different representations of
the problem. The first two sets of features, namely tabular
and inverted are represented with a feature vector with same
number of entries as the number of states; while the third set
of features, named dependent, uses only 3 features for the five
states.

The Boyan chain has 14 states. There is only one absorbing
terminal state, numbered 0 at the right end. State 13, at the
left end, is the initial one. States 13 to 1 can take two actions:
either go to the next in the right, or jump one position moving
two states to the right. State 1 can take only one action which
is to go to the terminal state.

The last problem is the Baird’s counterexample, a ”star” of
7 states. The reward is zero for every transition. Every state
can take two actions, one that leads to any other state, with
equal probability, or another that goes to state 7. The goal is
to learn a target policy different from the behaviour policy. In
particular the behaviour policy makes every state to evolve to
state 7.

Although different for each problem, we have used the
same parameters a and rj for both the non-cooperative and
cooperative cases (i.e. ak = a and rjk = rj). The distributed
setting consists of a network of 10 nodes, with average degree
5 and random topology. Finally, the M S P B E is computed
exactly using the optimal parameter vector learned by the
algorithms, and averaged over 10 independent runs.

B. Results

Our algorithm shows a clear improvement in all versions
of the random walk, as well as in the Boyan chain. All
nodes improve results with respect to the non-cooperative
case. Diffusion alleviates the gradient noise, leading to a lower
minimum of the M S P B E and to much less noisy and with less
variance estimates (see Figures 1 and 2, note that we plot the
root M S P B E) .

The Baird’s counterexample is a classical test that shows
how TD(0) can diverge when it is combined with linear
approximation. In this case we compare C-GTD2 with a
diffusion-based distributed implementation of the linear-TD(0)
(which we call C-LTD(0)), and show similar results as when
comparing with their non-cooperative versions: while C-
LTD(0) diverges, C-GTD2 converges to zero (see Figure 3).

V. CONCLUSIONS

In this paper we presented a cooperative version of the
GTD2 algorithm for coordinated learning in a multi-agent
setting. Our algorithm conserves all the desirable properties of

2012 3rd International Workshop on Cognitive Incromation Processing (CIP)

400 800
Episodes

2.5

1.5

0.5

50 100
Episodes

150 200

Fig. 2. Boyan chain. The Boyan chain is a Markov chain. We choose the
same version as [9], with 14 states. States are represented with only 4 features,
named interpolated, defined as follows: states 13, 9, 5, and 1 are defined
as 013 = [1,0,0,0]T , 09 = [0,1,0,0]T , 05 = [0,0,1,0]T and 0 1 =
[0,0,0, 1] respectively; and the others are obtained linearly interpolating
between these (i.e. 02 = [0, 0,1/4, 3/4]T , 03 = [0, 0,1/2, 1/2]T, 04 =
[0, 0, 3/4, 1/4] , and so on). We choose constant step-sizes a = 0.5 and
r\ = 8. Similar to the results of the Random Walk (see Figure 1), C-GTD2
achieves less error and the estimates are smoother and with less variance than
those of the non-cooperative version (GTD2).

200 400 600 800
Episodes

Fig. 1. Random walk for (left) tabular, (middle) inverted, and (right)
dependent features. We use the same standard Markov chain with the linear
arrangement shown in [9]. Tabular features are similar to a look-up table,
in which every state is represented by a vector with every entry equal zero
except the one of the state (e.g. 02 = [0, 1,0,0, 0]) . Inverted features are
still represented with the same number of features as number of states, but
opposite to the tabular case; only the entry corresponding with the actual
state is zero, while the rest are equal and normalized to make the vector
unitary (e.g. the second state is represented as 02 = [1

2, 0, 12,
 1
2,

 1
2]T).

Finally, dependent features represent the state with a vector of only 3 entries,
namely 0 1 = [1,0,0]T, 02

04

[1
2 , 1

2, 0]", 03 [1 1 1]T
0 3 , V3, V2 ,

[0 , 1 2 ,
1
2]

T and 05 = [0,0,1]T .In every case, the terminal states
are represented by all zeros, as usual. We choose constant step-sizes a = 0.06
and r¡ = 2. It is clear that the curves corresponding to the local estimates
obtained with C-GTD2 show considerable less MSPBE, are much smoother
and have much less variance than those obtained with the non-cooperative
version (GTD2).

C-LTD(O)

\
1

\ 1

"\ ^é^~
- \ * ^ ^

\v̂ _

/M^
/¡é%/

/¿%%y

¿fr

C-GTD2

i ~ ^ i

10
Sweeps

15 20

Fig. 3. Baird’s counterexample. We use the same 7-state version of the
problem shown in [9]. The target policy sets a probability of taking action
of going to any other state is 6/7, and of going to state 7 is 1/7. While
the behaviour policy is going to state 7 with probability 0.97. Every state is
represented with 8 features as follows: for states 1 to 6 there is 2 in the same
component as state, and 1 in component 8 (e.g. 03 = [0, 0, 2, 0, 0,0, 0, 1]),
but for state 7 we have 07 = [0,0,0,0,0,0, 1, 2] . Estimates are updated
in sweeps through the state-space, very much like in dynamic programming.
Parameters are 7 = 0.99, a = 0.05 and r¡ = 5. For C-LTD(0) convergence
is not guaranteed, while C-GTD2 shows to be stable.

0.16

2 0.12

0.08

0.04

0
1200

0 0.2 0

0.15

0.1

0.05

0
250 500 750 1000

9
0.1

0.05

6

3

0
5

2012 3rd International Workshop on Cognitive Incromation Processing (CIP)

its well-known centralized counterpart, but affords the agents
an added benefit in performance derived through cooperation.
This has been demonstrated practically on three classical
reinforcement learning problems.

Future work includes investigating the possibility to extend
this approach to other gradient based T D algorithms like
GQ(λ) [10]. Also, the extension to the policy improvement
(control) problem (such as greedy-GQ [11]) is also possible.
Moreover this same methodology of combining diffusion
strategies with T D learning can be applied to Least Squares
T D (LSTD) and its variations [25], [26].

Finally it is worth to mention that performance and con­
vergence analysis are still ongoing work. This is because
the M S E analysis derived for diffusion optimization does not
directly apply here. In fact the aggregated equation of C - G T D 2
(17) is not truly a gradient, but rather a diffusion stochastic
approximation. Nevertheless results with the Baird’s counter
example seem to be very promising (see Section IV) .

ACKNOWLEDGMENT

The authors would like to thank to Hamid Reza Maei for his
kind support in reproducing the centralized results showed in
[24], including explanations and snippets of code to understand
how the M S P B E was computed. We would also like to thank
Jianshu Chen and Ali H . Sayed for their kind help with the
details and analysis of the A T C algorithm. Finally we want to
thank Jose Ignacio Ronda for his insightful discussions.

REFERENCES

[1] F . S . Cattivelli and A . H . Sayed, “Diffusion L M S Strategies for
Distributed Estimation,” IEEE Transactions on Signal Processing, vol.
58, no. 3, pp. 1035–1048, 2010.

[2] Z . J . Towfic, Jianshu Chen, and A . H . Sayed, “Collaborative Learning of
Mixture Models Using Diffusion Adaptation,” in International Workshop
on Machine Learning for Signal Processing (MLSP), 2011.

[3] F . S . Cattivelli and A . H . Sayed, “Self-Organization in Bird Flight
Formations Using Diffusion Adaptation,” in International Workshop on
Computational Advances in Multi-Sensor Adaptive Processing (CAM-
SAP), 2009, pp. 49–52.

[4] Sheng-Yuan Tu and A . H . Sayed, “Cooperative Prey Herding Based
on Diffusion Adaptation,” in International Conference on Acoustics,
Speech and Signal Processing (ICASSP), 2011, pp. 3752–3755.

[5] Jianshu Chen, Sheng-Yuan Tu, and A . H . Sayed, “Distributed optimiza­
tion via diffusion adaptation,” in Computational Advances in Multi-
Sensor Adaptive Processing (CAMSAP), 2011 4th IEEE International
Workshop on, dec. 2011, pp. 281 –284.

[6] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction,
Adaptive computation and machine learning. M I T Press, 1998.

[7] R . S . Sutton, C . Szepesvari, and H . R . Maei, “A Convergent O(n) Algo­
rithm for Off-policy Temporal-difference Learning with Linear Function
Approximation,” in Advances in Neural Information Processing Systems
(NIPS), 2008.

[8] H . R . Maei, D . Silver, and R . S . Sutton, “Convergent Temporal-
Difference Learning with Arbitrary Smooth Function Approximation,”
in Advances in Neural Information Processing Systems (NIPS), 2009.

[9] R . S . Sutton, H . R . Maei, D . Precup, S . Bhatnagar, D . Silver, C . Szepes-
vari, and E . Wiewiora, “Fast Gradient-Descent Methods for Temporal-
Difference Learning with Linear Function Approximation,” in Interna­
tional Conference on Machine Learning (ICML), 2009.

[10] H . R . Maei and R . S . Sutton, “GQ(lambda): A General Gradient
Algorithm for Temporal-Difference Prediction Learning with Eligibility
Traces,” in Conference on Artificial General Intelligence (AGI), 2010.

[11] H . R . Maei, C . Szepesvari, S . Bhatnagar, and R . S . Sutton, “Toward Off-
Policy Learning Control with Function Approximation,” in International
Conference on Machine Learning (ICML), 2010.

[12] Liviu Panait and Sean Luke, “Cooperative multi-agent learning: The
state of the art,” Autonomous Agents and Multi-Agent Systems, vol. 11,
pp. 387–434, 2005, 10.1007/s10458-005-2631-2.

[13] L. Busoniu, R. Babuska, and B. De Schutter, “A comprehensive survey
of multiagent reinforcement learning,” Systems, Man, and Cybernetics,
Part C: Applications and Reviews, IEEE Transactions on, vol. 38, no.
2, pp. 156 –172, march 2008.

[14] Jeff Schneider, Weng-Keen Wong, Andrew Moore, and Martin Ried-
miller, “Distributed value functions,” in In Proceedings of the Sixteenth
International Conference on Machine Learning. 1999, pp. 371–378,
Morgan Kaufmann.

[15] R. Olfati-Saber and R.M. Murray, “Consensus Problems in Networks of
Agents with Switching Topology and Time-delays,” IEEE Transactions
on Automatic Control, vol. 49, pp. 1520–1533, Sep 2004.

[16] Lin Xiao and Stephen Boyd, “Fast Linear Iterations for Distributed
Averaging,” Systems and Control Letters, vol. 53, pp. 65–78, 2004.

[17] A. Olshevsky and J. N. Tsitsiklis, “Convergence Speed in Distributed
Consensus and Averaging,” SIAM Journal on Control and Optimization,
vol. 48, pp. 33–55, Jan 2009.

[18] Paulina Varshavskaya, Leslie Pack Kaelbling, and Daniela Rus, “Ef­
ficient distributed reinforcement learning through agreement,” in Pro­
ceedings of the 9th International Symposium on Distributed Autonomous
Robotic Systems (DARS), Tsukuba, Japan, November 2008.

[19] K. Srivastava and A. Nedic, “Distributed asynchronous constrained
stochastic optimization,” Selected Topics in Signal Processing, IEEE
Journal of, vol. 5, no. 4, pp. 772 –790, aug. 2011.

[20] J. Chen and A. H. Sayed, “Diffusion Adaptation Strategies for
Distributed Optimization and Learning over Networks,” ArXiv, , no.
1111.0034v1, 2011.

[21] Jianshu Chen and A.H. Sayed, “Performance of diffusion adaptation for
collaborative optimization,” in Acoustics, Speech and Signal Processing
(ICASSP), 2012 IEEE International Conference on, march 2012.

[22] A. Antos, C. Szepesvari, and R. Munos, “Learning Near-Optimal Poli­
cies with Bellman-Residual Minimization Based Fitted Policy Iteration
and a Single Sample Path,” Machine Learning, vol. 71, pp. 89–129,
2008, 10.1007/s10994-007-5038-2.

[23] A. H. Sayed, Adaptive Filters, John Wiley & Sons, 2008.
[24] H. R. Maei, Gradient Temporal-Difference Learning Algorithms, Ph.D.

thesis, University of Alberta, 2011.
[25] C. Szepesvari, “Algorithms for Reinforcement Learning,” in Synthesis

Lectures on Artificial Intelligence and Machine Learning. Morgan &
Claypool Publishers, 2009.

[26] D. P. Bertsekas, Dynamic Programming and Optimal Control, vol. 2, ch.
6 -updated online- of Athena Scientific Optimization and Computation
Series, Athena Scientific, 2005.

