
Local Dimensionality Reduction For Locally Weighted

Learning

Sethu Vijayakumar
yz

and Stefan Schaal
xz

yDept. of Computer Science, Tokyo Institute of Technology, Meguro-ku, Tokyo-152.

sethu@cs.titech.ac.jp, http://ogawa-www.cs.titech.ac.jp/�sethu.
xCollege of Computing, Georgia Institute of Technology, Atlanta GA 30332-0280

sschaal@cc.gatech.edu, http://www.cc.gatech.edu/fac/Stefan.Schaal.

zATR Human Information Processing Research Laboratories, Kyoto, Japan 619-02.

February 19, 1997

Abstract

Incremental learning of sensorimotor transformations

in high dimensional spaces is one of the basic prereq-

uisites for the success of autonomous robot devices

as well as biological movement systems. So far, due

to sparsity of data in high dimensional spaces, learn-

ing in such settings requires a signi�cant amount of

prior knowledge about the learning task, usually pro-

vided by a human expert. In this paper we suggest a

partial revision of the view. Based on empirical stud-

ies, it can been observed that, despite being globally

high dimensional and sparse, data distributions from

physical movement systems are locally low dimensional

and dense. Under this assumption, we derive a learn-

ing algorithm, Locally Adaptive Subspace Regression,

that exploits this property by combining a local di-

mensionality reduction as a preprocessing step with

a nonparametric learning technique, locally weighted

regression. The usefulness of the algorithm and the

validity of its assumptions are illustrated for a syn-

thetic data set and data of the inverse dynamics of

an actual 7 degree-of-freedom anthropomorphic robot

arm.

1 Introduction

One of the outstanding characteristics of biological

systems is their ability to learn, in particular, to learn

incrementally in real-time from a multitude of sensory

inputs. Despite progress in arti�cial neural network

learning, statistical learning, and machine learning,

we are still far away from equipping an arti�cial sys-

tem of even moderate complexity with a \black-box"

learning system that can perform as autonomously

and robustly as the biological counterpart. Among the

most basic ingredients that are missing in most learn-

ing approaches are three critical components. First,

a learning system should possess the ability to learn

continually from incrementally arriving data without

the danger of forgetting useful knowledge from previ-

ously incorporated data, an e�ect called catastrophic

interference. Second, the system has to automatically

allocate the appropriate number of resources, e.g., hid-

den units in a neural network, to represent the learn-

ing problem at hand without the undesirable e�ects of

over�tting or oversmoothing. And third, the learning

system must be able to deal with a large number of

inputs that are possibly redundant or irrelevant.

In this paper we will address these goals in the

context of learning sensorimotor transformations, as

needed, for instance, in the control of biological or

robotic movement systems. From a statistical point

of view, this involves approximating a functional rela-

tionship f : RN ! RM from N inputs to M outputs.

A typical example is to learn the inverse dynamics

model of a robot, a highly nonlinear map that relates

joint positions, velocities, and accelerations to appro-

priate joint torques. Such function approximation can

be carried out in essentially three di�erent ways. A

classical control theoretic approach would model the

robot dynamics as accurately as possible based on the

system's equations of motion and estimate remaining

open parameters in these equation from data collected

from the machine, possibly using linear or nonlinear

regression techniques [1]. If the equations of motion

represent the real physics of the system accurately,

this method is going to provide an optimal solution to

the learning problem. Assuming no knowledge about

the often quite complex structure of the equations of

motion, an alternative approach would employ a gen-

eral nonlinear function approximator. Basis function

networks [20] have become a common tool for this

purpose, particularly in the form of sigmoidal neural

networks and radial basis function networks [10, 12].

However, it remains an open research issue how the

1

Sethu Vijayakumar
Proc. IEEE International Symposium on Computational Intelligence in Robotics and Automation (CIRA'97),
July 10-11,1997,Monterey, California, pp.220-225 (1997)

size and structure of these networks should be chosen

a priori such that the function approximation capabil-

ity matches the learning problem, an issue discussed

as the bias-variance tradeo� [7]. The third approach,

the one that is pursued in this paper, is grounded in a

statistical learning framework based on nonparametric

statistics. In essence, it assumes that after collecting

su�ciently many data points, the prediction of the

output for a lookup point (query point) can be ac-

complished by interpolating over data points that are

close to this query point. In the simplest form, this

approach becomes a nearest neighbor method where

the predicted output equals the output of the nearest

data point seen so far [6]. More sophisticated methods

use several neighbors to �t a simple parametric model

to smoothly interpolate predictions [3]. Function ap-

proximation with these nonparametric methods is in

the spirit of a Taylor series expansion at the query

point. An advantage is that no commitment needs to

be made as to how \large" the learning system has to

be { the local parametric model is calculated for every

query point from scratch using data stored in memory.

However, the critical dependency of these methods on

an appropriate set of neighbors must be addressed.

In previous work, we developed a learning method

that can automatically determine the size and shape

of the neighborhood for a nonparametric learn-

ing method, Receptive Field Weighted Regression

(RFWR), that uses locally weighted linear regression

to interpolate the neighboring data [15, 16]. RFWR

removed the need to store all the training data in mem-

ory by just retaining a su�cient number of locally lin-

ear models. It could be shown that this learning sys-

tem has favorable properties for incremental learning

in the spirit of the issues mentioned at the beginning

of this section, and it was successfully applied in real-

time learning tasks with an anthropomorphic robot

arm [17]. However, the computational complexity of

RFWR increases more than quadratic with the num-

ber of inputs to the system, a fact which con�ned the

application of RFWR to problems of low dimension-

ality. In addition, nonparametric learning methods

that depend on the notion of \neighborhood" gener-

ally scale unfavorably to high dimensions. The reason

for this behavior comes from the non-intuitive e�ect

that in high dimensional spaces, e.g., 20-dimensional,

all data points are approximately the same distance

away from each other [18], thus destroying the dis-

criminative power of neighborhood relations.

Given this \curse of dimensionality", nonparametric

learning systems { and actually all other general non-

linear learning systems { seem to have limited merits

for sensorimotor control. However, when one exam-

ines data distributions of high dimensional data sets

generated from real physical systems, one often no-

tices that locally such data is not high dimensional at

all and rarely exceed 5-8 dimensions. It is this ob-

servation which motivates the approach suggested in

this paper. Despite the fact that our previously de-

veloped learning techniques are theoretically able to

pro�t from such low dimensional distributions, they,

as mentioned above already, quickly become computa-

tionally infeasible and also tend to be numerically less

robust. This e�ect is due to only exploiting the low di-

mensional distributions implicitly by a regularization

technique called Ridge Regression [3]. However, if we

can exploit the low dimensional distributions explic-

itly by performing a local dimensionality reduction of

the data before we apply our nonparametric learning

techniques, we should be able to extend nonparametric

learning and its favorable incremental learning proper-

ties to high dimensional spaces within acceptable com-

putational costs.

To pursue this line of thought, this paper is struc-

tured as follows. Section 2.1 will brie
y review locally

weighted regression (LWR) [4, 2], an algorithm which

is the backbone of our function approximation tech-

niques. Section 2.2 discusses local dimensionality re-

duction and introduces locally weighted principal com-

ponent analysis (LWPCA). Section 2.3 combines LWR

and LWPCA to form our new learning algorithm, Lo-

cally Adaptive Sub-Space Regression (LASS). Finally,

Section 3 demonstrates the properties of LASS us-

ing synthetic data and learning the inverse dynamics

model of an actual 7-degree-of-freedom anthropomor-

phic robot arm.

2 Locally Adaptive Subspace

Regression

The assumed underlying statistical model of our prob-

lems is the standard regression model y = f(x) + �,

where x denotes theN dimensional input vector, y, for

the sake of clarity, a scalar output, and � the additive

mean-zero noise term. LASS consists of an automat-

ically adjusting number of elements, each of which is

processing data in the same way. The di�erent stages

and additional notation of the information
ow of one

element in the LASS system are shown in Figure 1.

In essence, the input is transformed into a predicted

output ŷk by two linear transformations,Wk and bk.

Wk performs the dimensionality reduction and bk �ts

a (hyper)plane to the reduced data. Additionally, a

weight wk is calculated with the help of the connec-

tions Dk. The weight, wk, indicates how much this

LASS element should contribute to the total predic-

tion of the entire system. The total prediction ŷ re-

sults from the weighted average of the individual pre-

dictions ŷk of all the K elements of the LASS system:

ŷ = (

KX
k=1

wk ŷk)=(

KX
k=1

wk): (1)

2

In the following section, we will introduce each of

the processing stages and explain their notation and

the learning rules. We will also drop the subscript

k since every LASS elements learns independently of

every other one and is updated by the same formulae.

2.1 Locally Weighted Regression

In this section, we focus on how to estimate the re-

gression parameters b and b0 which combined form a

linear mapping

ŷ = xTregb+ b0 = ~xT�; where ~x = (xTreg ; 1)
T :

We will leave the determination of the map, x to xreg
in Figure 1, to the next section.

Every training data point (x; y) has a corresponding

weight from a Gaussian activation function

w = exp(�
1

2
(x� c)TD(x� c)) (2)

whose center c is assigned at the time of creation of

the LASS unit (see below). The matrix D is called a

distance metric and determines the size and shape of

the \receptive �eld" created by (2). D can be learned

as shown in [16]. In this version of LASS, however,

we will assume that D has been chosen appropriately

beforehand.

A fast and e�cient calculation of � can be per-

formed by locally weighted regression [4, 3]. The ob-

jective function of locally weighted regression is the

minimization of the weighted mean squared error cri-

terion

J1 =
1Pp

i=1 wi

pX
i=1

wi kyi � ŷik
2: (3)

It will be useful to leave the incremental learning

framework for a moment and think in terms of a

batch update of �. If we summarize the input part

of all p training points in the rows of the matrix

X = (~x1; :::; ~xp)
T , the corresponding output part in

the rows of the vector y = (y1; :::; yp)
T , and the

corresponding weights in the diagonal matrix W =

diag(w1; :::; wp), the regression parameters � can be

calculated from a weighted regression:

� = (XTWX)�1XTWy = PX
T
Wy (4)

An incremental update for � is obtained by recursive

least squares [9, 16]. It results in exactly the same esti-

mation for � as (4) after one sequential sweep through

the training data and constitutes a very fast Newton

training method with guaranteed convergence to the

global minimum of (3). The equations for the incre-

mental update will be given in Section 2.3.

Inputs

Output

Weighted
Average

x1 x2 x3 x
4

x… xn

…

Linear
Unit

ŷ

Gaussian Unit
centered at ck

Dk

bk

b0,k

Wk

wk

ŷ
k

xreg

PCA

Figure 1: Illustration of the information processing stages of

LASS.

2.2 Locally Weighted Principal

Component Analysis

The new element to be introduced in the context

of local nonparametric learning is an incremental lo-

cal dimensionality reduction. Various candidate tech-

niques of dimensionality reduction can be considered

for this purpose, including principal component anal-

ysis (PCA), independent component analysis, and fac-

tor analysis [11, 5, 21]. At the time being, PCA seems

to o�er the best compromise for LASS in terms of com-

putational feasibility and its statistical assumptions.

As the computational complexity of the update of �

by recursive least squares is quadratic in the number

of inputs and, furthermore, linear regression is vul-

nerable to redundant input data, the goal of a PCA

preprocessing stage is to transform the original N di-

mensional input x by means of the matrix WPCA to

as low dimensional a representation as possible:

xreg =WPCAxmz ; (5)

where xmz = x� �x denotes the mean subtracted in-

put data. In other words, we want to locally project x

into a L dimensional subspace { a subspace which ac-

counts for the maximal local variance of the input data

up to a user de�ned threshold �PCA. This processing

stage can be accomplished by minimizing a weighted

cost criterion in the spirit of Minimum Description

Length (MDL) [13]:

J2 =
1

2

pX
i=1

wikxreconst;i � xmz;ik
2
; (6)

3

The variable xreconst is calculated from the in-

verse transformation xreconst = WPCA�1xreg =

WPCATxreg , since (7), the update for WPCA, en-

forces that WPCAT is an orthogonal transformation

and each of it's row has unit length. The minimiza-

tion of (6) is achieved by gradient descent with learn-

ing rate �

WPCAn+1

ij =WPCAn

ij + �
�J2

�WPCA
ij

: (7)

where

�J2

�WPCA
ij

= wxreg;i(

iX
r=1

xreg;rW
PCAn

ij � xmz;j):

This corresponds to a weighted version of the incre-

mental PCA algorithm of Oja[11] and Sanger[14]. In

order to speed up learning, we can also derive a sec-

ond order gradient descent minimization of (6) based

on [19] by assigning an adjustable �ij to each coe�-

cient W PCA
ij . �ij is updated according to

�n+1ij = exp(�n+1ij); (8)

where �n+1ij is de�ned as

�n+1ij = �nij � �
�J2

�WPCA
ij

hnij :

Here, hn+1ij is updated incrementally as

hn+1ij = hnij [1� �n+1ij

�2J2

�WPCA2

ij

]+ � �n+1ij

�J2

�WPCA
ij

;

where

[z]+ =

�
z if z > 0

0 otherwise
:

Computing this second order update adds only lit-

tle computation. It adjusts the learning rates �ij in

geometric steps by gradient descent in the meta pa-

rameter �ij with meta learning rate �. More details

are given in [19]. For the calculation of xmz , it is also

necessary to incrementally obtain the weighted mean

of x by

�xn+1 = (Wn�xn + wx)=(Wn + w) (9)

where Wn+1 =Wn + w:

2.3 The LASS Algorithm

Combining LWR and LWPCA, we can obtain the

LASS algorithm. It should be noted that the LW-

PCA pre-processing does not only yield a computa-

tional advantage in terms of providing a signi�cantly

reduced input to the LWR step; LWPCA also decorre-

lates the dimensions of xreg such that the matrix P in

(4) becomes diagonal. Thus, the regression step can

be decomposed into L+1 one dimensional regressions

[8] and the incremental update of � becomes linear

in the computational complexity with respect to the

number of regression inputs:

�n+1i = sn+1xy;i=s
n+1
xx;i (10)

where

sn+1xy;i = �snxy;i + w ~xiy

sn+1xx;i = �snxx;i + w ~xi
2

The variable � denotes a forgetting factor such that

initial input to the regression, stemming from a LW-

PCA which has not properly converged yet, will not

negatively in
uence the regression result in the long

run. Applying a forgetting factor is a standard tech-

nique in recursive estimation techniques [9].

The LASS algorithm then proceeds as follows. The

entire system is initialized with no processing element.

Every piece of training data (x; y) is used to update

all the existing elements. If no element is activated

(cf. Equation 2) more than a threshold wgen, a new

LASS element is created with its receptive �eld center

c in (2) initialized to c = x. All other parameters of

the new LASS element are initialized to zero, except

for D and WPCA. The distance metric D is set to a

user supplied value Ddef , while the coe�cientsWPCA
ii

are set to \1", and all other coe�cients to zero. The

initial dimensionality of the LWPCA starts out with

L = 2, although the regression will only use L � 1

inputs. Having one more LWPCA output than used in

the regression allows the algorithm to monitor when

the dimensionality of the regression stage should be

increased, as explained below.

The dimensionality of the regression stage is aug-

mented based on a variance threshold criterion. For

this purpose, each LASS unit keeps an incremental

record of the variances of its L LWPCA outputs:

vn+1PCA = (�WnvnPCA + wx2reg)=(W
n + w) (11)

If the condition vPCA;L=
PL

i=1 vPCA;i > �PCA is

true, the dimensionality L is incremented by one and

appropriate coe�cients are added in WPCA and b.

The learning rule (7) guarantees that the variances

vPCA are in descending order[14]. Thus, if the last

element, i.e, the L-th element, contains a large per-

centage of the total variance, it should be added to

the regression analysis. To avoid premature adding of

dimensions, it is useful to monitor the rate of change

of the variances and add dimensions only if the rate

of change is close to zero. It is important to note

that adding dimensions does not disturb the results

obtained by the previously trained LASS parameters.

A new dimension in the LWPCA adds a row toWPCA,

4

-1

-0.5

0

0.5

1

x1
-1

-0.5

0

0.5

1

x2

-0.5

0

0.5

1

1.5

 y

-1

-0.5

0

0.5

1

x1

(a)

-1

-0.5

0

0.5

1

x1
-1

-0.5

0

0.5

1

x2

-0.5

0

0.5

1

1.5

 y

-1

-0.5

0

0.5

1

x1

(b)

0

0.05

0.1

0.15

0

1

2

3

4

5

1000 10000 100000 1000000

nM
S

E
 O

n
T

es
t S

et

#D
im

en
si

on
s

in
 R

eg
re

ss
io

n

#Training Iterations

2D-Data 10D-Data

(c)

Figure 2: (a) Surface plot of function to be approximated; (b) LASS approximation results for 10-dimensional input data set;

(c) nMSE(solid lines) and dimensionality of regression(dashed lines) as function of training iterations,averaged over 10 learning

trials. One training iteration corresponds to one incremental presentation of a training data. The black vertical bars denote one

standard deviation at the beginning and end of learning.

but the learning rule (7) ensures that updates of coe�-

cients ofWPCA are not a�ected by coe�cients whose

row index is larger. Thus, the new row is trained en-

tirely independently. Similarly, adding a coe�cient

to b just adds a new element to an additive regres-

sion. As shown in (10), the regression updates for

each dimension are independent of each other due to

the decorrelation of xreg in the LWPCA.

In sum, LASS is a constructive learning algorithm

in two di�erent ways. First, LASS elements are added

whenever a training point in input space does not su�-

ciently activate any existent LASS element. This pro-

cess will guarantee that the entire input distribution

of the training data is quickly covered by LASS. Sec-

ond, within each LASS element the dimensionality of

the regression stage can grow until the LWPCA mod-

els a user speci�ed fraction of the local variance of the

inputs. This feature ensures the quality of the regres-

sion result. The adjustable parameters in each LASS

element are the LWPCA weights WPCA and the re-

gression parameters �, both of which are trained with

second order learning techniques.

3 Empirical Results

In the �rst example we will use a synthetic data set
that allows to illustrate function �tting results with
LASS graphically. The task is to approximate

y = maxfexp(�10x21);

exp(�50x22; 1:25exp(�5(x
2

1 + x
2

2)))g+N(0; 0:01)

from noisy data drawn incrementally and uniformly

from the unit square. This function consists of a nar-

row and a wide ridge which are perpendicular to each

other, and a Gaussian bump at the origin, as shown

in Figure 2a. The test data set consists of 1681 data

points corresponding to the vertices of a 41x41 grid

over the unit square; the corresponding output values

are the exact function values. The approximation er-

ror is measured as a normalized mean squared error,

nMSE, i.e, the MSE on the test set normalized by

the variance of the outputs of the test set. The ini-

tial parameters of LASS are set to Ddef = 100I (I is

the identity matrix), wgen = 0:2, �PCA = 0:05. The

learning rates were � = 10, � = 1, and the forgetting

factor was set to � = 0:9995.

The initial test consisted of just �tting this function

of two variables. In the second test we augmented the

input space by 8 additional dimensions whose values

were zero, and transformed this input space by a 10

dimensional randomly chosen rotation matrix. Thus,

the task of LASS was to recover this low dimensional

function now embedded in a high dimensional space.

Figure 2b shows a typical example of the reconstruc-

tion of the function for the 10 dimensional test after

rotating the results back into the original low dimen-

sional space; the approximation results for the 2 di-

mensional test are very similar to this plot and are not

shown separately. Figure 2c illustrates the course of

learning for both tests. It takes about 50,000 iterations

until the LWPCA converges initially. At this point

the dimensionality of the regression starts to increase

and saturates at about 2. Simultaneously, the nMSE

drops quickly and converges at about nMSE = 0:025.

Both the low and high dimensional learning show the

same qualitative and quantitative behavior. LASS

properly detects that in the high dimensional test the

actual dimension of the input data is not more than

2. It should also be noted that the nMSE starts at a

fairly low value after only 1,000 iterations, despite the

system only employing one dimensional regressions at

this point. This fast approximation speed is due to the

second order learning of LWR. As a baseline compar-

5

Figure 3: Sketch of Sarcos Dextrous Arm

ison, a sigmoidal neural network requires about 100

hidden units and about 20,000,000 iterations to ac-

complish a similar function �tting result. In the sec-

ond example, we approximated the inverse dynamics

model of 7-degree-of-freedom anthropomorphic robot

arm (Sarcos Dextrous Arm, Figure 3). The input to

this model are 7 joint positions, 7 joint velocities, and

7 joint accelerations. The outputs are the correspond-

ing 7 joint torques. The data set consisting of 45,000

data points, collected at 100Hz from the actual robot

performing various rhythmic and discrete movement

tasks, was randomly split into half to obtain a train-

ing set and testing set. Figure 4 shows the learning

results in comparison to a parametric estimation tech-

nique based on the equations of motion [1]. After

about 100,000 iterations (roughly 2 passes through the

training set or 15 minutes of real-time data), LASS

already accomplished a nMSE (averaged over all 7

output dimensions) as good as the parametric model,

despite, on average, only 2 dimensions contributing

to the locally weighted regression. The system con-

verges at nMSE = 0:03, about 3 times better than the

parametric model. An average of 6 dimensions were

employed locally to accomplish this, a result that con-

�rms our hypothesis that physical systems have locally

low dimensional data distributions. However, care has

to be taken in interpreting the better nMSE results

of LASS in comparison to the parametric inverse dy-

namics estimation. Good performance on the nMSE

does not necessarily imply good tracking performance,

the ultimate test to judge the quality of estimated in-

verse dynamics models. Such evaluations have yet to

be performed.

4 Discussion

The goal of this paper is to emphasize one major point,

i.e, learning in high dimensional spaces may not be

as complicated and as previously thought. The ra-

tionale for this statement is based on the assumption

that data distributions, despite being globally high di-

0

0.05

0.1

0.15

0.2

0.25

0

1

2

3

4

5

6

7

8

9

10

10000 100000 1000000 5000000

nM
S

E
 O

n
T

es
t S

et

#D
im

en
si

on
s

in
 R

eg
re

ss
io

n

#Training Iterations

LASS

Parametric Model

Figure 4: nMSE(solid lines) and dimensionality of regres-

sion(dashed lines) as function of training iterations.

mensional, are locally often of only low dimensional

structure. Based on this assumption, we developed a

nonparametric learning algorithm which is targeted to

make use of such locally low dimensional distributions.

Our learning system, Locally Adaptive SubSpace re-

gression (LASS), preprocesses data by a local principle

component analysis (LWPCA) before handing it to a

locally weighted regression analysis (LWR). Learning

is thus accomplished by �tting low dimensional hy-

perplanes to the data. The entire function is �nally

approximated in a piecewise linear fashion. For a syn-

thetic and an actual data set, we illustrated that LASS

achieved the expected performance: in both cases, lo-

cally low dimensional data distributions were detected

and exploited appropriately. In contrast to our pre-

viously developed learning methods whose computa-

tional complexity is more than quadratic in the num-

ber of input dimensions, LASS scales linearly with the

number of inputs.

In future work, we will address a missing component

in the learning algorithm, the automatic adjustment of

the local region in which a locally linear model is valid.

Indeed, the way LASS has been designed already pro-

vides all the statistical values to perform such compu-

tations. Besides numerical stability, one of the major

reasons to break up the information
ow of the LASS

elements (cf. Figure 1) into two linear transforma-

tion was based on the necessity to derive higher order

statistics as shown in Equation (11). Another open

point of research concerns how the regression analy-

sis could in
uence the LWPCA. At the current stage

of LASS, LWPCA proceeds independently of LWR,

which, from a statistical point of view, is not satisfying

as the quality of the regression depends on the distri-

bution of the input data ([16]). Empirical evaluations

will provide insight into how much this shortcoming

a�ects the quality of learning. Performing LWPCA in

joint data space could o�er a possible way out. To ex-

plore all these issues, LASS will be further developed

and explored in learning various sensorimotor trans-

formations on our anthropomorphic robot.

6

Acknowledgements

Support for S.Vijayakumar and S.Schaal was partially

provided by the ATR Human Information Process-

ing Research Laboratories. This work was funded

in parts by grants to S.Vijayakumar provided by the

Japanese Ministry of Education, Science and Culture

(Monbusho) and to S.Schaal provided by the German

Research Association, the Alexander von Humboldt

Foundation and the German Scholarship Foundation.

References

[1] An,C.H., Atkeson.C.G. & Hollerbach.J.M.,
Model based control of a robot manipulator, MIT
Press,Cambridge,MA,1988.

[2] Atkeson.C.G., \Using local models to control move-
ment", In:Touretzky,D.(Eds.), Advances in Neu-
ral Information Processing Systems 1, San Ma-
teo,CA:Morgan Kau�man (1989).

[3] Atkeson,C.G., Moore,A.W. & Schaal,S.(in press),
\Locally weighted learning", Arti�cial Intelligence
Review.

[4] Cleveland,W.S., \Robust locally weighted regression
and smoothing scatterplots", Journal of the Ameri-
can Statistical Association vol.74, pp.829-836 (1979).

[5] Deco,G. & Obradovic,D., An Information Theoretic
Approach to Neural Computing, Springer-Verlag New
York, (1996).

[6] Duda,R.O. & Hart,P.E., Pattern Classi�cation and

Scene Analysis, New York:Wiley (1973).

[7] Geman,S., Bienenstock,E. & Doursat,R., \Neural
networks and the bias-variance dilemma", Neural
Computation, No.4, pp.1-58 (1992).

[8] Hastie,T.J. & Tibshirani,R.J., Generalized additive

models, London:Chapman-Hall (1990).

[9] Ljung,L. & Soederstroem,T., Theory and Practice
of Recursive Identi�cation, Cambridge,MIT Press
(1986). .

[10] Moody,J. & Darken,C., \Learning with localized re-
ceptive �elds", In: Touretzsky,D., Hinton,G.,& Se-
jnowsk,T.(Eds.) Proceedings of the 1988 Connection-

ist Summer School, pp.133-143 (1988).

[11] Oja,E., \A simpli�ed neuron model as a principal
component analyser", Journal of Mathematical Biol-
ogy Vol.15, pp.267-273 (1982)

[12] Poggio,R. & Girosi,F, \Regularization algorithms for
learning that are equivalent to multilayer networks"
Science Vol.247 (1990).

[13] Rissanen,J., Stochastic complexity in statistical en-

quiry, Singapore:World Scienti�c (1989).

[14] Sanger,T.D., \Optimal unsupervised learning in a
single layer linear feedforward neural network", Neu-
ral Networks, Vol.2, pp.459-473 (1989).

[15] Schaal,S. & Atkeson,C.G., \From isolation to co-
operation : An alternative view of a system
of experts", In: Touretzky,D.S.,Mozer,M.C.& Has-
selmo,M.E.(Eds.) Advances in Neural Information
Processing Systems 8, Cambridge,MA:MIT Press
(1996)

[16] Schaal,S. & Atkeson,C.G., \Receptive �eld weighted
regression" Technical Report TR-H-209, ATR Human
Information Processing Labs., Kyoto 619-02, Japan
(1997)

[17] Schaal,S., \Learning from demonstration", Advances
in Neural Information Processing Systems 9 (in
press).

[18] Scott,D.W., Multivariate Density Estimation, New
York:Wiley (1992)

[19] Sutton,R.S., \Adapting bias by gradient descent:
An incremental version of Delta-Bar-Delta" Proc.
Tenth National Conf. Arti�cial Intelligence pp.171-
176 (1992).

[20] Vijayakumar,S. & Ogawa,H., \A functional analytic
approach to incremental learning in optimally gener-
alizing neural networks", Proc. IEEE Intl. Conf. Neu-
ral Networks, Perth, Australia, pp.777-782 (1995)

[21] Witten,I.H., Neal, R.M. & Cleary,J.G., \Arithmetic
coding for data compression", Communications of the
ACM, Vol.30, pp.520-540 (1997).

7

