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Abstract 
 

Current automatic facial recognition systems are not 
robust against changes in illumination, pose, facial 
expression and occlusion. In this paper, we propose an 
algorithm based on a probabilistic approach for face 
recognition to address the problem of pose change by a 
probabilistic approach that takes into account the pose 
difference between probe and gallery images. By using a 
large facial image database called CMU PIE database, 
which contains images of the same set of people taken 
from many different angles, we have developed a 
probabilistic model of how facial features change as the 
pose changes. This model enables us to make our face 
recognition system more robust to the change of poses in 
the probe image. The experimental results show that this 
approach achieves a better recognition rate than 
conventional face recognition methods over a much larger 
range of pose. For example, when the gallery contains 
only images of a frontal face and the probe image varies 
its pose orientation, the recognition rate remains within a 
less than 10% difference until the probe pose begins to 
differ more than 45 degrees, whereas the recognition rate 
of a PCA-based method begins to drop at a difference as 
small as 10 degrees, and a representative commercial 
system at 30 degrees. 
 

1 Introduction 
 

Many face recognition algorithms have been developed 
and some have been commercialized for applications such 
as access control and surveillance. Several studies have 
been reported in recent years [1, 2, 5] that compare those 
algorithms and evaluate the state-of-the-art of face 
recognition technology. These studies show that current 
algorithms are not robust against changes in illumination, 
pose, facial expression and occlusion.  

Of these, pose change is one of the most important and 
difficult issues for the practical use of automatic face 
recognition. For example, the Face Recognition Vender 

Test 2000 [1], sponsored by the Department of Defe1nse 
and the National Institute of Justice, reports that the 
recognition rate by representative face recognition 
programs drops by 20 percent under different illumination 
conditions, and as much as 75 percent for different poses. 

Most algorithms [3,7,10,11] proposed so far for pose 
invariant face recognition need several images of each 
subject. We propose an approach that can recognize faces 
in a variety of poses even if a gallery database includes 
images of only one pose per person.  

The method works as follows. When a probe image is 
given, the face region in the image is detected and its 
landmarks, such as the eyes, are localized. The resulting 
probe face region is registered with that of the face in the 
gallery. The face region is divided into a set of small 
subregions, and each subregion is compared with the 
corresponding subregion of the face in the gallery.  To 
compare the two, a similarity value for each subregion, 
defined by the sum of squared difference (SSD) after 
image normalization (so effectively the same as 
normalized correlation), is computed after finer alignment 
is done in order to compensate for the potential error in 
registration and the local deformation due to pose and 
other variations. The total similarity value between the 
probe face and the gallery face is then obtained by 
combining the similarity values of all subregions.    

The key idea of our approach is that in combining those 
similarity values of subregions we take into account how 
the similarity value of each subregion, and thus its utility, 
changes as the pose of the face changes. 

We have developed a probabilistic model of that change 
by using a large set of training images from the CMU PIE 
database [4], which consists of face images of a set of 
people from many viewing angles. In a face recognition 
task of different poses, it was shown that our algorithm 
outperformed a baseline algorithm (PCA) and a 
commercial product for face recognition.  
                                                 
1 This work was done while the second author was visiting the 
Robotics Institute of Carnegie Mellon. 
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2 Modeling Change of Local Appearance 
across Poses 
 

Our approach is categorically that of appearance-based 
template matching.  In template matching, if we use the 
whole face region for comparison, it is not easy to take 
into account changes in appearance due to pose 
differences, because the appearance in a different part of a 
face changes in a different manner due to its complicated 
three-dimensional shape. Instead, one can compare 
several subregions of the face separately, such as the eyes, 
nose and mouth [7,9]. It is not understood, however, 
which subregions provide stable and discriminative 
information, in particular, with respect to pose changes. 

Generally, when using a similarity value, such as SSD, 
the value varies by three factors: the differences in the 
identity, the poses, and the location in the face. We 
decided to perform a systematic study by computing 
similarity values of several subregions of a face for a large 
number of combinations of the same and different 
identities and poses. 

 
2.1 The CMU PIE Database 

 
The CMU PIE database [4] consists of face images of 

68 subjects x 13 poses x 21 different illumination 
conditions x 2 occasions. We will use part of this database 
in this paper.  We will use only those images with frontal 
illumination; thus 13 images per person x 13 poses for 68 
people. So, each image I in the study is labeled by (i,φ), 
where i  is identity of the person (|{i}|=68), and φ is pose 
(|{φ}|=13). Figure 1 shows a sample set of images of 
different poses for one person i=Yamada. Poses φ are 
denoted by symbols, like c34, c14, etc, where c27 is the 
frontal view and c37 and c11 are the views of about 45°. 

 
 
 
 
 
 
 
 
 
 
 
 

 

2.2 Local Subregions in Face and Their Similarity 
Values 
 

For our study, three facial landmark points, i.e., the 
pupils of both eyes and the midpoint of the mouth, are 
manually located. The image is rotated and resized in 
plane so that the line that connects left and right pupils is 
horizontal and its length is nominal.  The face region is 
then cropped to the size of 128 x 128 pixels. 

As shown in Figure 2, a 7-by-3 lattice is placed on the 
face, whose position and orientation are defined by the 
three landmarks. Finally, we create a 9 x 15 pixel 
subregion centering at each of the lattice points, resulting 
in 21 subregions in total. For each subregion the intensity 
values are normalized to have zero mean and a unit 
variance. 

As the similarity measure, the SSD (sum of squared 
differences) values sj between corresponding j–th 
subregions for all the pair of images Ik= (ik, φk) vs. Im= (im, 
φm)  in the training dataset were calculated. Note that since 
we compute the SSD after image normalization for each 
subregion, it contains effectively the same information as 
normalized correlation.  
 
 
 
 
 
 
 
 
 
 
 
 
2.3 Map of Similarity Values 
 

In order to comprehend how these similarity values 
vary with identity and pose of the face, we plot them in 
two-dimensional maps. The leftmost map in Figure 3 
shows the similarity values of the subregion at the right 
eye plotted as a two-dimensional image with gallery’s 
identity ik (all with φk=c27) as the horizontal axis and 
probe’s identity im (all with φm =c5) as the vertical axis. 
Pose c27 is the frontal and pose c5 is slightly left. The 
darker (the smaller SSD value) the “pixel” is, the more 
similar are the two corresponding regions in the gallery 
face and probe face. Naturally, along the diagonal of the 
map, that is, when ik=im, the map is dark, meaning the 
similarity is high. 

The other similarity maps are for (ik, φk =c27) vs. (im, 
φm=c37), (ik φk =c27) vs. (im, φm=c2), (ik, φk =c27) vs. (im, 
φm=c22). They correspond to cases where, while the  
 
 

 

Figure 1. An example set of face images in the CMU PIE 
database. The database has 68 subjects with 13 poses per 
person, taken almost simultaneously [4]. The 13 poses cover
from left profile (c34) to right profile (c22), and slightly up or 
down with c27 is the frontal view. 

Figure 2. The facial landmark points are hand-labeled and the 
7x3 lattice points are placed on the face based on their 
positions. The size of each subregion at the lattice points is 9 x 
15 pixels. 



 

 956

 
 
 
 
 
 
 
 
 
 
 
 
gallery remains to consist of frontal faces, the probe 
poses move  from gradually left to all the way to the left 
profile (c22). It is clear that the similarity decreases even 
for the same identity (i.e., at the diagonal) as the pose 
moves away from frontal. 
 

2.3 Prior Distributions of Similarity Values 
 

From each similarity map like in Figure 3, we compute 
two histograms of similarity values. One is for the 
diagonal part. It represents the distribution of similarity 
values between face images of the same person. The other 
is for the non-diagonal part, which is the distribution of 
similarity values between faces of different people. Figure 
4 shows these histograms, each one for the corresponding 
map in Figure 3. The histograms of the first type are 
shown by solid curves, and the second type by broken 
curves.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The favorable situation is that the two histograms be as 

separate as possible, because that means that the similarity 
values of that subregion have the discriminative power to 
tell whether two faces are of the same person or not. It is 
clear that for the frontal (c27) gallery, the discriminative 
power of the eye subregion decreases as the pose of the 
probe moves from slightly left (c5), more left (c37), 
further left (c2), and all the way to profile (c22). 

 
 

 
 
 
 
 
 
 
 
 
 
 
From the histograms, we create P(sj|same, φk ,φm), the 

conditional probability density of the j-th similarity value 
sj given that the images are of the class same identity and 
the poses of the two images are is φk and φm, respectively. 
Likewise we also create P(sj|diff, φk ,φm) for the class of 
different. 

In this paper, we approximate these distributions by 
a Gaussian distribution. Accordingly,  
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where µj

same
 and µj

diff, σj
same

  and σj
dif are the means and 

standard deviations of class same and diff, respectively, 
which are obtained from the histograms. Figure 5 shows 
how these Gaussian models fit to the histograms. 
 

 
3 Recognition 
 

Imagine that we have a gallery images {Ig=(ig, φg)} and 
a probe image Ip=(ip, φp). What we want to know is the 
probe identity ip. 

 
3.1 Posteriori Probability 

 
For the probe image Ip and an image Ig in the gallery we 

compute the similarity values of all subregions, i.e., 
{s1,s2,,…,sJ}. Once we have developed probabilistic 

Figure 3. The two-dimensional maps of similarity values of the subregion around an eye in Figure 2. The four maps 
from left to right correspond to the case where the pose of one of the images φk is c27 and the other pose φm is c5, c37, 
c2 or c22, respectively. The horizontal and vertical axes are the subject’s identity numbers of Ik and Im, respectively. 
The darker the pixel in the maps is, the more similar the corresponding subregion is in the two images. 

Figure 4. Each graph contains the two histograms of similarity 
values: their distribution for the same identity (solid curves) and 
that for the different identity (broken curves). The four graphs 
are for the combinations that corresponds to those in Figure 3.. 

Figure 5. Histograms (solid and broken curves) and Gaussian 
fits (dotted curves) to them. 
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models of similarity values of each subregion, they enable 
us to properly combine these similarity values, one 
computed for each subregion, to reach to the total decision 
for recognition whether the two faces are from the same 
identity or the different identity.  

The posteriori probability that the probe image and the 
gallery image are of the same identity, given the j-th 
similarity value and their poses, is 
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                                                                                  (2) 
The values P(same) and P(diff) are a priori probability 

of identify and non-identity, respectively, and the 
conditional densities, P(sj|same,φp,φg) and P(sj|diff,φg,φp), 
are from the models obtained beforehand in (1). 

 
3.2  Marginal Distribution for Unknown Pose of Probe 

 
It is reasonable to assume that we have good knowledge 

of gallery pose φg, but we may not have that for the probe 
pose φp. In that case we cannot use (2). 

One of the ways to deal with this is to determine the 
pose by using some pose estimation algorithms. However, 
the pose estimation may not be as easy. 

Another way is to compute the marginal distributions of 
(1) over φp as 
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Then, we can develop a posterior probability similar to 
(2), given the j-th similarity values and the pose of the 
gallery image (but not that of the probe): 
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3.3 Combining Similarity Values for Identification 
 

Given a probe image Ip, we compute for each image Ig 
in the gallery (whose pose φg is known) the similarity 
values of all subregions, i.e., Spg={s1,s2,,…,sJ}. Then, for 
each of the similarity values in Spg,  we compute (2) or 
(3), depending on whether the pose information of the 
probe is available or not. Let’s denote the resultant value 
as h(same|sj,Ig;Ip,).  

The total similarity between Ip and Ig is now ready to be 
computed. Since we have not yet modeled the 

probabilistic dependency among sj’s, we chose to use the 
sum rule [6] in order to obtain the total similarity value, 
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The identity ip is determined to be the identity ig of the 

gallery image that gives the highest value of H above. 
 

4  Recognition Results 
 
We evaluate our algorithm by comparing its 

performance with a standard PCA-based method and a 
commercial product.  
 
4.1 Training and Test Dataset 
 

We used half of the subjects (34 subjects) in the CMU 
PIE Database as a training dataset and obtained the 
statistical model described above. The images of the 
remaining 34 subjects were used as probe images in the 
recognition test. The test dataset, therefore, consists of the 
images of 13 poses x 34 subjects. As the gallery images, 
we use frontal (c27) images of all 68 subjects. This makes 
this recognition task a little more difficult than otherwise 
since the gallery includes images of 34 subjects that are 
not included in the testset, which no probe image should 
match.  

In this experiment below, we use P(same)<<1, 
P(diff)=1- P(same), P(φk) = 1/13, as there is no better prior 
knowledge. 
 
4.2 Case 1: When the Probe Pose is Known 
 

Let’s assume that the probe pose was known in 
advance, and thus we can use equation (2). Figure 6(a) 
plots the recognition scores with respect to the pose of the 
probe. Scores of three algorithms are shown: our 
algorithm, a PCA algorithm, and a commercial face 
recognition program. 

When a probe is at a frontal pose (c27), the scores are 
100%, since exactly the same images are included in the 
gallery for the frontal pose. As the probe pose moves 
away from the frontal, the scores deteriorate. The greater 
the width at which the scores remain high, the more pose 
invariant the algorithm is. 

The PCA algorithm drops as soon as the probe pose 
moves 15o away from frontal. The commercial program 
maintains its high performance till 30o.  Our algorithm’s 
score stays high till 45o  {c34, c31, c14, c25, c02 and c22} 

The difference in the scores by algorithms become 
larger as the probe poses pull away from the gallery pose 
c27. Especially, at poses such as φp={c34, c31, c14, c25, 
c02 and c22}. 
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Figure 6(b) is a two-dimensional plot where the 
gallery’s pose is also varied.  The width of the region with 
high scores along the diagonal indicates the degree with 
which the algorithm can accommodate the difference of 
the pose between the gallery and the pose. When 
compared with 7(a) and 7(b), which are the corresponding 
plots for a PCA algorithm and a commercial program, 
respectively, our algorithm clearly outperforms them.  

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
4.3 Case 2: When the Probe Pose is Unknown 
 

When the probe pose is unknown, we must use the 
marginal distribution method in Equation (3).  

The results for the case of unknown probes pose are 
shown in Figure 8. The two plots correspond to those in 
Figure 6. They indicate that even when the probe pose is 
not known at all, the recognition scores are not much 
lower than for the case of known probe poses. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. (a) Recognition scores with respect to probe poses, 
when the probe pose is known, by our algorithm, an eigenface 
(PCA) method, and a commercial product measured by using 
the CMU PIE database. (b) Recognition scores of our algorithm 
for all the combinations of gallery pose and probe pose. 

(a) 

(b) 

(a) 

Figure 7 (b) Recognition scores for all the combinations of 
gallery pose and probe by an eigenface (PCA) algorithm (a) and 
by a commercial program (b), when probe poses are known. 
These should be compared to Figure 6(b). 

(b) 

Figure 8. (a) Comparison of recognition scores by our 
algorithm between the case of known probe pose and the case 
of unknown probe pose. (b) Recognition scores by our 
algorithm for combinations of probe and gallery poses when 
the probe pose is unknown. Compared with Figure 6(a), one 
can observe that the performance remains relatively the same. 

(a) 

(b) 
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4.4 Discriminativeness of Subregions 
 

An interesting question is which subregion (or which 
part) of a face has the most discriminating power for 
recognizing faces.  We performed the recognition task for 
the gallery at the frontal c27 pose and the probe at one 
pose by using only one subregion at a time. This gives us  
7x3 recognition scores, which we can think indicate the 
discriminating power of each subregion for that particular 
combination of gallery and probe poses. We repeat this 
for all the probe poses. 

Figure 9 shows the results as a 7x3 “image” for each 
pose of probe; the brighter the “pixel” is, the more 
powerful is the corresponding subregion. As the probe 
pose changes from central to left, as shown in {c29, c11, 
c14…}, the right side of the face becomes more 
discriminating than the left side, which is very natural.  

On the contrary, the left side of the face becomes more 
discriminating at {c5, c37, c2, c22}. For the nodding 
faces, such as {c9, c7}, the right and left sides of the face 
have almost the same discriminating power.  

It is interesting to notice that the nose subregion and 
cheek subregion become less discriminating rather 
quickly, probably because the former is three-dimensional 
and thus changes its appearance quickly, and the latter is 
uniform and thus is less useful from the beginning. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5 Conclusion 
 

We have proposed a face recognition method based 
on a probabilistic model of how the each local subregion 
of a face changes it appearance (thus its utility for the task 
of face recognition, as the pose changes The algorithm 
outperformed a PCA method and a commercial product.  
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Figure 9. Maps of discriminating powers of subregions for 
various probe poses when the gallery pose is frontal (c27).  


