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 Abstract - An autonomous system able to construct its own 
navigation strategy for mobile robots is proposed. The 
navigation strategy is molded from navigation experiences 
(succeeding as the robot navigates) according to a classical 
reinforcement learning procedure. The autonomous system is 
based on modular hierarchical neural networks. Initially the 
navigation performance is poor (many collisions occur). 
Computer simulations show that after a period of learning the 
autonomous system generates efficient obstacle avoidance and 
target seeking behaviors. Experiments also offer support for 
concluding that the autonomous system develops a variety of 
object discrimination capability and of spatial concepts. 
 
 Index Terms – intelligent autonomous navigation, neural 
networks, reinforcement learning, mobile robots, biologically 
inspired models. 
 

I.  INTRODUCTION 

Usually it is possible to understand mobile robot navigation 
as a problem of establishing trajectories, so that tasks (goals) 
are accomplished with acceptable performance. 
 Research about navigation systems has been done in 
several ways, depending on the characteristics of the 
environment, the robot model, the type of the task, and the 
performance criteria [1 and 11]. A class of navigation 
systems, the autonomous systems, has captivated the 
scientific community not only because of the challenge 
involved but also because of the strategic importance.  
 Such systems determine the robot trajectory in an 
unknown environment without external help. In this context, 
navigation systems learn their own navigation strategy from 
the environmental interactions (based on their own 
experiences) [1].  
 The autonomous robot navigation imposes strict 
difficulties to the traditional control engineering techniques 
due to the lack of a suitable environmental model. 
Computational intelligence based strategies have been 
disseminated as a viable alternative, e.g. neural networks and 
evolutionary systems. Important results have been achieved 
and impelled the research of the perspective of intelligent 
autonomous systems [2, 4, 5 and 7].  
 It is intrinsic to neural networks the potential for 
learning, becoming them very attractive to autonomous 
navigation systems projects [2 to 6]. Proposals in [4] and [5] 

present the behavior-based approach associated with the 
(classical) reinforcement learning. Two repertoires 
reproduce instinctive behaviors of target seeking and 
obstacle avoidance (basic behaviors). At first these 
repertories work independently, generating conflicting 
behaviors, e.g. if an obstacle is between the robot and the 
target. A third repertory is assigned for coordination of the 
innate behaviors. Initially the performance frustrates the 
expectations, since the autonomous system does not have an 
expert knowledge about navigation. As the navigation 
proceeds, environment interactions provide the bases for a 
reinforcement learning strategy.  In the end the navigation 
system guides efficiently the robot to the target. 
 In a different way, the system proposed in [7] does not 
have a behavior-based architecture, that is, there are not 
instinctive behaviors a priori. The classic reinforcement 
learning is integrated to a learning classifier system to 
conceive an evolutionary navigation system. The 
evolutionary system learns simultaneously obstacle 
avoidance and target seeking behaviors, and it learns to 
coordinate them as well. 
 Such as the aforementioned references, most research 
reports in the literature model the autonomous navigation 
problems considering robots are equipped with target and 
obstacle sensors, and learn to generate obstacle avoidance 
and target seeking behaviors. Here the problem model 
presents, at least, two innovative and curious aspects: a) 
there are different classes of objects in the environment, 
each of which associated with a respective color and; b) the 
sensors, to detect the colors of the objects as well as the 
distance from the objects to the robot, are not specific either 
for targets or obstacles. The autonomous system consists of 
a hierarchical and modular neural network with also 
innovations on the characteristics of neuron units and neuron 
connection arrangements. Exploiting navigation experiences, 
the autonomous system learns, becoming able to distinguish 
objects (generating specific behaviors for each one of the 
different classes of objects). Furthermore it learns to take 
navigation decisions to move the robot to the closer 
attractive objects (targets). Simulation results confirm the 
autonomous system capabilities.  
 This paper is organized as follows. Section 2 describes 
the robot model and the navigation environment. The 



proposed autonomous navigation system is described in 
Section 3. Simulation results are analyzed in Section 4. 
Section 5 concludes this paper with a brief discussion about 
the characteristics and potentialities of the proposed system.  

II. ROBOT MODEL AND ENVIRONMENT 

Repulsive and attractive objects compose the navigation 
environment. Each object is of a particular color, coherently 
with its respective class (for instance, repulsive and 
attractive objects may exhibit blue and green colors, 
respectively). Obstacles also belong to the repulsive class.  
 The robot model is shown in Fig. 1. The robot interacts 
with the environment by distance, color and contact sensors; 
and by one actuator system that controls the movement 
inclusive the direction. The sensors are organized in 67 
predefined positions in front of the robot (distributed at the 
interval of –90º a +90º). Thus, there are three distinct 
sensors for each one of the 67 predetermined positions. Each 
sensor provides specific information related to the closest 
object to the robot on the direction of the sensor (see Fig. 1). 
A distance sensor detects the distance between the robot and 
the closest object and emits values in the interval [0,1]. 
Color sensors also emit values in the interval [0,1] – the 
conversion is made by normalization of the “hue” 
component of the HSV system (Hue, Saturation, Value). 
Binary contact sensors detect the touches of the robot with 
any object in the environment.  
 The task of the robot is to reach attractive objects 
establishing a trajectory free of collision with obstacles. 
When the robot reaches an attractive object (a possible 
target), this object is removed from the environment 
(simulating a collector robot). 
 The velocity of the robot is constant during the 
navigation (0.35 distance units per iteration). At each 
iteration, the robot is able to execute no direction adjustment 
greater than 15º.  

III.  AUTONOMOUS NAVIGATION SYSTEM 

A. Introduction 
Biologic neuronal systems hold innate (instinctive) 
mechanisms (e.g., sucking, grasping; and hunger and fear 
sensations) to support the emergence of specific behaviors 
acquired from the interactions with the environment [8 and 
9]. Innate behaviours are essential to the integrity and 
development of the animal, although many can be evoked 
only in a short period of time after birth. They are not 
associated to particular life experiences established with the 
environment, but are a priori incorporated in the nervous 
system, during the epigenesis. 
 Considering biologic systems as a reference, innate 
(pre-incorporated) behaviors hold a function equally 
preponderant in intelligent autonomous systems [10]. Under 
this interpretation, the design of the proposed system is 
conducted, either referring to its learning scheme or to its 
architecture. 

B. Architecture 
The intelligent autonomous system corresponds to a neural 
network arranged in three layers (Fig. 2). At the first layer, 
there are two neural repertoires: Proximity Identifier 
repertoire (PI) and Colour Identifier repertoire (CI). Both 

repertoires receive stimuli from contact sensors. PI and CI 
repertoires receive stimuli from the two other sensor fields, 
distance sensors and colour sensors, respectively. The 
second layer comprehends two neural repertoires: Attraction 
repertoire (AR) and Repulsion repertoire (RR). Each one 
establishes connections with both networks at the first layer, 
as well as with contact sensors. The actuator network, 
connected to AR and RR repertoires, determines the 
direction adjustments. 
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Fig. 1 Robot model. 
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Fig. 2 Autonomous system architecture. 
 

PI and CI repertoires: The architecture of the neural 
network that composes each repertoire is presented in Fig. 3. 
Each column of neurons is fixed, topological, and one-
dimensional structured. There is no spatial influence among 
neurons of different columns. Each neuron of a column 
establishes connections with a group of sensors defined 
according to a specific probability distribution (Fig. 3).  

AR and RR Repertoires: A unique layer of neurons forms 
AR and RR neural networks. The size of each network 
corresponds to the number of columns in IP or IC networks. 
Each neuron in this layer connects to every neuron in the 
corresponding column of IP and IC networks, respectively 
(Fig. 4).  

Actuator Network: There are two layers in the actuators 
network. Each neuron in the first layer is associated to a 
fixed and predefined direction adjustment value. Each 
neuron receives stimuli from neurons in RA and RR 
networks and it is also connected to the unique neuron in the 
output layer (Fig. 5).  

Innate Repertoire: They are connected to the contact 
sensorial field (not shown in Fig. 1 to raise clarity), and to 
the AR, RR, and actuator networks. 
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Fig. 3 PI and CI architectures. 
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Fig. 4 Architecture overview showing only one PI and CI column as well as 

the corresponding AR and RR neuron.  
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Fig. 5 Actuator Network. 

C. Reasoning 
Different neuron models are adopted to design the intelligent 
autonomous system. The particular characteristics determine 
which neural network they compose. 

Repertoires PI and CI: The output of the jth neuron at the kth 
column of PI repertoire, at iteration n, is defined as in (1): 
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where: ))(( ni kk x  is the winner neuron; 
T

m
k xxxn ],...,,[)( 21=x  is the input vector (distance to 

objects); )(nu k
j  is the activation potential (defined in 

Section D. Learning); and k = 1,2,...q (q: numbers of 
columns). The winner neuron ))(( ni kk x  is defined by:  
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where: )(nk
jw  is the vector of synaptic weights and l is the 

number of neurons in each column.  

 Besides )(nu k
j , each neuron exhibits another inner 

parameter: )(nek
j  (degree of activity), defined as: 
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where: ϕ is the gain factor and σ is the loss factor. 
 Equation (4) defines the output of the jth neuron at the 
kth column of the CI repertoire: 
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where ))(( ni kk x is defined in the same manner as in (2). 

AR and RR Repertoires: The output of the jth neuron of both 
AR and RR repertoires is given by: 
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where: )()( nns jjj wx ⋅=  is the inner product between the 

input vector and the synaptic weights vector; α and φ are 
constants; and j = 1, 2, ..., q (q: size of the neural network). 

Actuator Network: The output of the jth neuron at the first 
layer of the actuator network is given by: 
 

( ) ,)(
2

1
��
�

�
��
	



= �

=

q

i
jijij wnxgny  (6) 

where: g(.) is the hyperbolic function. Observe that there are 
2q inputs corresponding to the total of 2q neurons in AR and 
RR networks. 
 The output of the actuator network has the following 
expression: 
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where: r is the number of neurons at the first layer ( jw is 

constant and equal to some value in the interval [-15, 15]; 
and this interval corresponds to the possible adjustments on 
the movement direction). 
  

D. Learning 
The learning procedure develops according to the classic 
reinforcement learning theory and is based on the activity of 
innate repertoires. The main concepts involved are inspired 
by the biological counterpart [9]. Once a contact with 
objects is detected, the innate repertoire generates one of the 
innate behaviors (attraction or repulsion) and it starts the 
learning process. The learning mechanisms, which deal with 
adjustments on the synaptic weights, are specific for each 
neural repertoire and are described next. 



PI and CI Repertoires: Each time a contact occurs (between 
the robot and objects) only the sensor (contact sensorial 
field) closest to the point of the contact detects it. The 
corresponding stimulus defines a unique column in CI and in 
PI networks (consider the kth column). The adjustment 
occurs on the synaptic weights from the selected column 
(there is a spatial correspondence between positions of 
contact sensors and columns in CI, as well as in PI 
networks). 
 The following procedures model the synaptic 
adjustment mechanisms on the PI repertoire:  

1- Competition by Similarity: calculate the winner neuron 
i(n) given by: 

.,...,2,1,)()(minarg)( ljnnni jj
=−= wx  (8) 

2- Adjustment: 
i) Adjust the synaptic weight vectors of all neurons by 
applying (9):  

)),()()(),(()()1( nnjnihnn jjj wxww −+=+ η  (9)  

where: η is the learning rate, and 
( )( ) ( )( )( )ljnijnih 2exp, −−=  is the neighbourhood function; 

ii) Adjust the following parameters for lj ,...,2,1= : 
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 Note that )(nu j  is the activation potential in the neuron 

reasoning model and, )(ne j  is also adjusted during 

reasoning, at each iteration n (see Section C. Reasoning). 

 The learning algorithm for the CI repertoire is described 
next: 
1- Competition by Similarity: calculate the winner neuron 
i(n) given by: 
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where ( )nmk
is the acceptance parameter of the neuron k. 

2- Adjustment: Adjust the synaptic weight vector and the 
acceptance parameter: 

))()(()()1( )()()( nnnn ninini wxww −+=+ η

)()( )()( nini nnm wx −= , 

 
(12) 

where η is the learning rate.  

AR and RR Repertoires: The synaptic weights of the jth 
neuron (AR or RR) correlated to the inputs connected to the 
PI repertoire are all unitary (constant values). Differently, 
the synaptic weights associated with the inputs connected to 
the CI repertoire are adjustable. 
 Consider that neurons at the kth column of the CI 
repertoire have adjusted their synaptic weights. Then, the 
learning mechanism acts on the kth neuron of the AR 
network if the innate behavior generated is of attraction type. 
Otherwise, it acts on the kth neuron of the RR repertoire.  
 The synaptic weights adjustment is given by (13): 

)),(1)(()()1( nnnn kkk wxww −+=+ η  (13) 

where η is the learning rate. 

Actuator Network: Only the synaptic weights of the neurons 
at the first layer of the actuator network are adjusted. The 
innate repertoire reproduces some of the innate behaviours 
(attraction or repulsion) when a contact between robot and 
some object occurs. To accomplish that, it coherently 
activates neurons (in the first layer of actuator network) to 
generate the respective behavior. 
 The adjustment of the synaptic weights of the jth neuron 
at the first layer of the actuator network is expressed in (14): 

)),(1)(()()1( nwnxynwnw jiijjiji −+=+ η  (14) 

where )(ny j is the output of the jth neuron, )(nx i is the ith 

input and η is the learning rate. 

IV. SIMULATION RESULTS 

This section shows simulation results that enable analysis on 
characteristics and potentialities of the proposed controller. 
The experiments are executed on a computational 
environment provided with suitable simulation tools 
developed specifically to test the proposed controller. 
Concerning simulation, PI and CI networks configurations 
are: structured in 25 columns with 12 neurons each; )(ne j

∈ 

[0, 2]; ϕ  = 0.028 e σ = 0.013 and; )0(je = 0.06, )0(ju = 1 e 

)0(jm = 50. Regarding RR and AR networks: α =1.3 e φ= 

1.1. Every synaptic adjustment uses learning rate η = 0.4.  
Weights in PI and CI are initialised with random values. In 
the case of AR, RR and actuator network (first layer), the 
random values are restricted within the interval [0, 0.07]. 
The slope parameter for the hyperbolic function in (6) is 2.5. 
 The following figures show a global view of the 
navigation environment at some specific iterations and, in 
particular, the robot trajectories (a black line). The robot is 
represented by a semicircle. Repulsive and attractive objects 
are represented by dark and clear polygons, respectively 
(due to edition limitations it can be impossible to exhibit 
colour objects). Repulsive contacts (or collisions) are 
marked with clear circles. Attractive contacts are marked 
with black circles.  
 Before any environmental interaction, the robot does 
not have any particular behavior and the environment is 
unknown. The trajectories presented in Fig. 6 (a), (b) and (c) 
show progressive stages of the navigation strategy regarding 
repulsive objects. After several collisions (Fig. 6 (a)), the 
robot develops a more efficient trajectory (Fig. 6 (b)) where 
it drives suitably the vehicle inside large corridors 
(generalization of the acquired knowledge). In narrower 
corridors there are still some collisions since it is necessary 
better abilities to guide the robot. Fig. 6(c)) shows a 
trajectory with only two collisions. After interacting with 
different environments, the robot is placed in the 
environment at Fig. 6 (d), where there are attractive objects 
(targets). The robot needs touching two or three times each 
target until it reactively seeks them (each touching generates 
an attractive behavior and triggers a coherent learning 
process). 
 The subsequent experiments offer support for analysing 
the importance of PI and CI repertoires joint actuation in the 
autonomous system. 



 The environment at Fig. 7 (a) contains a target close to 
the robot and another far from it (on the left and the right, 
respectively). The trajectory exhibited at Fig. 7 (b) indicates 
that the robot behavior prioritises the closest object on its 
left. With the purpose to confirm this ability, the targets are 
re-positioned according to the situation at Fig. 7 (c). It is 
possible to observe in Fig. 7 (d) that the trajectory of the 
robot indicates the preference for the closest object (the 
closest objects appear neither in Fig. 7(b) nor in Fig. 7(d) 
because the robot captures them. 
 

   
a) b) 

  
c) d) 

Fig. 6 Obstacle deviation and target seeking learning. 

 

     
a) b) 

     
c) d) 

Fig. 7 Spatial discrimination. 

V. CONCLUSION 

Navigation systems with high degree of autonomy represent 
a field of great interest to the scientific community. This 
work proposes an autonomous navigation system that 
constructs its navigation strategy while it interacts  
 
 
 
 
 
 

with the environment. A neural network that functions in 
accordance with classical reinforcement learning theory 
composes the system. The neural network design tries to 
keep the biologic plausibility according to arguments 
asserted in [10], including neurophysiologic and 
psychological aspects [9].  
 The proposed system innovates in two aspects: it learns 
to discriminate distinct classes of objects (attractive and 
repulsive), exploiting the occult knowledge diffused in the 
stimuli coming from the environment; neuron models with 
inner dynamics provide the learning of spatial proximity 
concept, which makes possible the construction of a 
navigation strategy capable of prioritising the attractive 
closest objects.  
 Initially, the system is unable to distinguish attractive 
objects from repulsive ones as well as it is not able of 
prioritising the closest attractive objects. As navigation 
proceeds, the interactions with the environment (contacts 
with objects) occur, providing necessary conditions to the 
autonomous system continuously learns efficient attractive 
and repulsive behaviors. Simulation experiments consider 
general environments with different objects (attractive and 
repulsive) and show results that confirm the aforementioned 
system potentiality, as well as evidence the generalization 
capacity for navigation in distinct environments. 
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