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Abstract— Learning motion models of a moving object is a
challenge for autonomous robots. We address the particular
instance of parameter learning when tracking object motions
in a switching multi-model system. We present a general
algorithm of joint parameter-state estimation based on multi-
model particle filter. We apply the approach to a specific ball-
tracking problem and extend the algorithm to learn model
parameters in a dynamic Bayesian network (DBN). We show
empirical results in simulation and in a team robot soccer
environment, as a substrate for applying the learned models
to object tracking in a team. The learning capability allow the
tracker to much more effectively track mobile objects.

I. INTRODUCTION

Many engineering applications are characterized by non-
linear or linear dynamic systems with a few possible modes
(models) [8]. For example, an industrial plant may have
multiple discrete modes of behavior, each of which has
approximately linear dynamics. These problems are often re-
ferred to as jump Markov or hybrid-state estimation problems
[6].

This paper addresses estimating state and learning motion
models in such a hybrid-state system. We are interested in
tracking the ball in a robot soccer domain. This is a highly
dynamic and multi-agent environment. All the robots in the
field can actuate over the ball, e.g., grab and kick the ball,
making the motion model of the ball very complex [11]. The
good news is that we can acquire information about the ball
motion from multiple sources besides the sensor. First, the
robot’s tactics provides valuable information and a tactic-
based motion modeling and tracking algorithm is introduced
in such scenarios [9]. Second, when the robot is playing a
game as a member of a team, the team coordination knowl-
edge provides further information that can be incorporated
into the motion modeling and tracking process. We based
our work upon a plan-dependent tracking algorithm called
play-based tracking [10].

Any model consists of one or multiple parameters. Usually
the model parameters are set by a human expert, based
upon the experience with the environment and the robot.
In this paper, we present a novel method of automating
the procedure of acquiring this probabilistic motion model.
This approach deals simultaneously with both unknown fixed
model parameters and state variables. This not only relieves
the work burden from the human expert, but can be very

useful when the environment changes (e.g., moving from
inside to outside). This approach can be applied to learn the
motion model of the teammate or even the opponent, as a
substrate for opponent modeling. Furthermore, this method
provides a refined motion model based on the current one,
resulting in more accurate tracking.

The paper is organized as follows. We first talk about
related work to this paper. We give a brief description
of the hybrid system model and joint parameter and state
estimation. Next we show our algorithm of parameter-
learning-based forward particle filtering and backward parti-
cle smoothing. We describe the learning algorithm, leading
to our experimental results and conclusions.

II. RELATED WORK

There are several areas of previous work related to this
research. We discuss them along the three main axes of our
approach: (i) adaptive estimation and maneuvering targets;
(ii) joint parameter and state estimation; (iii) learning algo-
rithms on switching linear models.

Adaptive estimation algorithms are considered to deal with
the uncertainty in a system. One type of uncertainty is the
case of unknown inputs into the system, typically maneu-
vering targets. The other type is a combination of system
parameter uncertainties with unknown inputs. One way to
accommodate this is by modeling maneuvers as random
process. Such approaches, including noise level switching
and usage of autocorrelated noise are simple and approximate
but quite effective sometimes. The second type of approach,
input estimation, is implemented assuming the input to be
constant over a certain duration. Such approaches, including
variable state dimension (VSD), have difficulty providing
noise reduction during the critical time of a maneuver. The
third type of approach, multiple model (MM) algorithms
assumes that the system behaves according to one of a finite
number of models. The models can differ in noise levels
or their structure. Among these MM algorithms, general-
ized pseudo-Bayesian (GPB) and interacting multiple model
(IMM) are two suboptimal approaches [2]. GPB carries out
merging after the measurement update step. IMM yields sim-
ilar performance to GPB, but by merging after the hypothesis
branching step, a lower complexity and computational load is
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achieved. The fourth type, particle filter applied to the multi-
model estimation problem, shows that the optimal multi-
model solution can be obtained with a constant number of
filters by taking the general Bayesian approach, and using
more complex non-Gaussian densities. Further, since the
particle filter is a general, recursive, Bayesian estimator, the
approach is also directly applicable to nonlinear and non-
Gaussian multiple-model case [13], [16]. Our approach is
based on a multi-model particle filter; hypothesis branching
is approximated by resampling from the system switching
probability distribution function, and multi-model parameters
are learned through tracking state variables.

Dealing simultaneously with both unknown fixed model
parameters and state variables is a challenging problem. The
initial idea is to augment the base state and put the unknown
parameters in the framework of nonlinear state estimation.
Then artificial process noise is added into the parameter
equation. The key issues of this approach is that pretending
the fixed parameters to be time-varying implies an artificial
“loss of information”. The kernel smoothing method resolved
this issue by shrinkage of kernel locations to retain the mean
θ̄t [12]. In this paper, we extend this algorithm to a multi-
model situation.

Switching multi-model and specifically, switching linear
dynamic systems (SLDS) has been studied in many fields
like statistics and target tracking. Ghahramani [7] introduced
a DBN-framework for learning and approximate inference
in one class of SLDS models. A switching framework for
particle filters applied to dynamics learning is described in
[3]. An HMM-based approach is described in [4]. Three
different approximate inference schemes: Viterbi, variational
method, and GPB2 has been derived and applied to figure
motion modeling [15]. Our approach uses the particle filter
scheme, in which a framework for switching multi-model
learning is presented.

III. THE PROBLEM OF LEARNING MOTION MODELS

A discrete-time hybrid system is given by:

xt = ft−1(xt−1, st,ut−1,vt−1) (1)

zt = ht(xt, st,nt) (2)

where f and h are the parameterized state transition and
measurement functions; xt,ut, zt are the state, input and
measurement vectors at time t; vt−1,nt are the process and
measurement noise vectors. The covariances of vt−1,nt are
respectively Qt−1 and Rt. The model index parameter s can
take any one of M values, where M is the number of models
in the system.

If the model variable is governed by a discrete-state
Markov chain with transitional probabilities

πij = P{st = j|st−1 = i}, (i, j ∈ S), (3)

where S = {1, 2, · · · ,M}, the transitional probability matrix
Π = πij is an M × M matrix, and we can represent such a
system in Figure 1 [14].

x1 x2 x3

z1 z2 z3

m 1 m 2 m 3

Fig. 1. A switching state-space model. For simplicity, we have omitted
the input u.

The problem of online parameter estimation can be repre-
sented by augmenting the parameters (θ) to the state space
[2], [12]. This can be modeled as shown in Figure 2.

x1 x2 x3

z1 z2 z3

m 1 m 2 m 3

   1    2    3

Fig. 2. Joint state-parameter estimation.

A. Tactic-Based Motion Model

When tracking is performed by a robot executing certain
tasks acting over the target being tracked, such as a Segway
RMP soccer robot grabbing and manipulating a ball, the
motion model of the target becomes dependent on the
robot’s own actions. We have previously introduced a tactic-
based motion model in such scenarios [9]. In short, tactics
encapsulate individual robot behavior and instantiate actions
through sequences of skills. Skills implement the focused
control policy for actually generating useful actions. The
approach includes the nonstandard information in terms of
the robot’s own behavior into a multi-model representation
of the motion of the target.

In our soccer robot environment, we define three mod-
els, namely Free-Ball, Robot-Grab-Ball, Robot-Kick-Ball,
to model the ball motion. Briefly, Free-Ball is a motion
model that describes the ball’s movement without external
actuation. Robot-Grab-Ball and Robot-Kick-Ball are the two
motion models that describe the robot’s own actuation effects
on the ball. The direction for how to infer which model to
use and how to transition from one model to another (πij)
are tactic-based. Therefore it is an extension of the ordinary
jump Markov model. For detailed explanations about tactic-
based motion tracking, please refer to [9].
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We use dynamic Bayesian network (DBN) to represent the
whole system for ball tracking. We apply the joint parameter-
state algorithm to this problem and extend the algorithm to
learn model parameters in a DBN. The new problem can be
modeled as shown in Figure 3.

x1 x2 x3

z1 z2 z3

m 1 m 2 m 3

   1    2    3

T 1 T 2 T 3

Fig. 3. Parameter learning in tactic-based motion modeling. For simplicity,
we have omitted the infrared sensor observation.

B. Include Parameters into the State Space

Dealing simultaneously with both unknown fixed model
parameters θ and state variables x is a challenging problem.
The initial idea is to augment the base state and to put the
unknown parameters in the framework of nonlinear state
estimation. Then artificial process noise is added into the
parameter equation. That is,

θt = θt−1 + ζt, ζt ∼ N (0,Wt) (4)

for some specified variance matrix Wt and where θt and
ζt are conditionally independent give the information set
It. The key issue of this approach is that pretending the
fixed parameters to be time-varying implies an artificial “loss
of information.” The posteriors are actually far too diffuse
relative to the theoretical posteriors for the actual fixed
parameters. The kernel smoothing method resolved this issue
by a shrinkage of kernel locations to retain the mean θ̄t [12].

C. Particle Filtering for DBNs

Thus the problem of online parameter estimation can
be represented by augmenting the parameters to the state
space. In order to do state estimation and learn the model
parameters, we need to be able to perform inference in the
DBN. There have been several approximate inference tech-
niques proposed for DBNs, but they are designed primarily
for discrete domains. Sequential Monte Carlo methods are
currently the only approach that allow us to perform filtering
in general purpose hybrid DBN models. The particle filter
is a Monte Carlo scheme for tracking and smoothing in
dynamic systems [6]. It maintains the belief state at time
t as a set of weighted particles p

(1)
t , · · · , p(N)

t , where each
p
(i)
t is a full instantiation of the tracked variables.

Thus in a sample-based framework, standing at time t, we
have a sample of current states {x1

t , · · · ,xN
t } and associated

weights {w1
t , · · · , wN

t } that together represent a Monte Carlo
importance sample approximation to the posterior p(xt|It)
[1], where It = {It−1, zt} is the observed information set.
When fixed parameter θ is added into the state, we now have
a joint sample

{xi
t, θ

i
t : i = 1, · · · , N}

and associated weights {w1
t , · · · , wN

t }. Let θ̄t and Vt be the
Monte Carlo posterior mean and variance matrix of p(θ|It).
The smooth kernel density is given by [12]

p(θ|It) ≈
N∑

i=1

wi
tN (θ|κi

t, h
2Vt), (5)

where N (·|κ,S) is a multivariate normal density with mean
κ and variance matrix S, and h is chosen as a slowly
decreasing function of N . The following shrinkage of kernel
locations is introduced in [17]:

κi
t = aθi

t + (1 − a)θ̄i
t, (6)

where a =
√

1 − h2. An extension of [17] quantifies the
undesirable “loss of information” and presented a way to
determine h. h2 = 1 − ((3δ − 1)/2δ)2, where δ is a
discount factor in (0,1], typically around 0.95 - 0.99. A
general combined parameter and state estimation algorithm
is introduced in [12].

D. The Learning Algorithm

Our approach is based on the above algorithm and extends
it to a switching multi-model system. Suppose we have
M models in the system, each model (or a subset of
all the models) has unknown fixed parameters. Let θ =
(θ1, θ2, · · · , θM )′. Now standing at time t, we have a joint
sample

{xi
t, (θ

i
1,t, θ

i
2,t, · · · , θi

M,t)
′ : i = 1, · · · , N}

and associated weights {w1
t , · · · , wN

t }.
The pseudo code of the algorithm is shown below.

LEARN-MODELS (xi
t−1, s

i
t−1, θ

i
t−1, w

i
t−1, zt, Tt−1)

1 select model k to update its parameters
2 for i ← 1 to N
3 do calculate the ith kernel location of model k
4 κi

k,t ← aθi
k,t−1 + (1 − a)θ̄i

k,t−1

5 draw si
t ∼ p(st|si

t−1, Tt−1)
6 µi

t ← E(xt|xi
t−1, θ

i
t, s

i
t)

7 wi
t ∝ p(zt|µi

t, κ
i
t)

8 normalize-weight
9 [{−,−, ij}Ns

i=1]=RESAMPLE[{xi
t, w

i
t}Ns

i=1]
10 for i ← 1 to N

11 do θi
k,t ∼ N (·|κj

t , h
2Vt−1)

12 Draw xj
t ∼ p(xt|sij

t , xij

t−1, θ
ij

t )
13 wj

t ∝ p(zt|xj
t , θ

ij

t )/p(zt|µij

t , κij

t )
14 sj

t ← sij

t

15 normalize-weight
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At the beginning, we select one of the models, say k,
and we will update the parameters of this model at current
time t. The selection criteria is to choose the model with
maximum associated weights over all the particles. Other
selection schemes are also considered, but we do not discuss
them in this paper. For each particle, we proceed by first
calculating the ith kernel location of model k at line 3. Next
we do a sequence of sampling following the DBN (lines 5-
6). We then identify the prior point estimates of (xt, θ) given
by (µi

t, s
i
t). Weights are updated and normalized. We apply

an extended version of the multi-model auxiliary particle
filter algorithm, incorporating the parameter with the state.
In detail, for each particle, we first sample a new parameter
vector θi

k,t from the jth kernel density at line 12. We sample
a value of current state vector xj

t from the system equation at
line 13. We evaluate the corresponding weight and normalize.

IV. EXPERIMENTAL RESULTS

In this section, we test our algorithm both in simulation
and in a team robot soccer environment. The simulated test
verifies the efficiency of our proposed algorithm. We then
give a brief description of our robot, followed by real robot
test and results.

A. Simulated 2D Object Tracking

In this section, the following methods of motion tracking
are illustrated and compared:

• Method A0: switching kalman filter which determinis-
tically know which model to use in each discrete time
step (assumes the tracker knows the model sequence,
which actually the filtering algorithm needs to estimate).
We include this method only as a performance bound
and we call it “magic KF” in the rest of this section.

• Method A1: our multi-model joint parameter-state esti-
mation

• Method A2: IMM.
Each simulation run uses the same random variables

for all the algorithms. To compare the performance of the
algorithms A1 and A2, we use the comparison technique
described in [2]. We take the comparison as a hypothesis
testing problem. The decision whether A1 is better than
A2 in the simulated scenarios is made upon the sample
performance differences

∆i = C2
i − C1

i ,

where Ck
i is the performance of algorithm k in run i. The

hypothesis H1 : A1 is better than A2 is accepted if

µ =
∆̄
σ∆̄

> µ0,

where

∆̄ =
1
N

N∑
i=1

∆i,

and

σ∆̄ =

√√√√ 1
N2

N∑
i=1

(∆i − ∆̄)2.

Assuming the error in ∆̄ to be normal, we have µ0 = 1.64
for a 5% level. The performance of interest will be the mean
square error in the estimate of one state component.

The simulation considers a target whose position is sam-
pled every T = 0.033s. The initial condition of the target,
with state

x = [ξ η ξ̇ η̇]′

is, with position and velocity units m and m/s, respectively

x0 = [10 10 0 0]′.

Positions are the sole measurements collected according to
the equation

zt = [1 0 1 0]xt + nt

with nt zero mean, white, independent of the process noise,
and with variance

E[n2
t ] = Q · I

where Q = 1m2.
Two types of motion models are employed. The first

assumes constant velocity (with a decay of 0.95) in the
Cartesian frame with small deviations in velocity on ξ-η axis
by zeros-mean, Gaussian white noise with covariance Qcv.
The second model, employed to track the motion actuated
by a robot, assumes a similar model except an external input
u with large deviations in velocty by zeros-mean, Gaussian
white noise with covariance Qca. The Markov transition
probability matrix is defined as

Π =
[

0.8 0.2
0.25 0.75

]

and the initial probabilities are set to

p(m0) =
[

0.95 0.05
]′

The first trial examines the RMS position error versus time
for the magic KF, multi-model particle filter and IMM. In
this trial, correct multiple dynamic models are provided with
each algorithm, that is to say, the parameters is known to
the trackers. The performance results are shown in Figure 4
where the three filtering algorithm achieved approximately
the same performance. This is due to the small process and
measurement noise.

In the second test, the process noise in the first model
is multiplied by a factor of 10, and the process noise in
the second model is multiplied by a factor of 20. Only the
“magic KF” algorithm can “feel” this change. Algorithm
A1 takes the noise level in both models to be the unknown
parameters and adapts parameters through joint parameter-
state estimation. Algorithm A2 does the same thing as in the
first trial.

Figure 5 shows the RMS error curves corresponding to
the three filters considered. From the graph, it is clear that
the performance of IMM without learning is poor compared
to the other two filters. Table I shows the test for the
difference of the MSE between the two algorithms over
several time intervals. Statistically significant improvements
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Fig. 5. Estimation errors in coordinate x for the three tracking filters (from
40 runs).

of our algorithm over the IMM without learning are observed
in position over all the intervals considered. For this problem,
it is sufficient to acclaim A1 is better than A2 at the 5% level.
Figure 6 shows the parameter learning curves corresponding
to the time step using algorithm A1.

The next test examines the error performance of the
particle filter for varying values of the number of particles.
Figure 7 shows the efficiency at the final time, as a function
of the number of particles for 500 ≤ N ≤ 4000. As
expected, we see an improvement in performance as the
number of particles is increased. However, note that as N
is increased beyond 3000, there is insignificant improvement
in performance. Thus we use N = 3000 in our simulations,
although note that the optimal value of N is scenario and

TABLE I

TEST OF MEANS FOR COMPARISON FROM 40 RUNS

Time interval ∆̄ σ∆̄ Test statistics
1-10 .476 .245 1.943
11-20 .597 .211 2.832
21-30 .569 .191 2.976
31-40 .580 .169 3.427
1-40 .555 .203 2.730

parameter dependent.
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B. Segway RMP Soccer Robot

Segway RMP, or Robot Mobility Platform, provides an
extensible control platform for robotics research. In our
previous work, we have developed a Segway RMP robot base
capable of playing Segway soccer [5]. The main sensor on
our robots are two cameras. One is a pan-tilt camera mounted
on the top of a customized unit. The other is a wide-angle
camera. The infrared sensor is added as a secondary sensor
to detect the ball when the ball is in the catchable area of the
robot. Its measurement is a binary value indicating whether
or not the ball is in that area. Our robot is also equipped
with a catcher to trap the ball and a kicker to kick the ball.

C. Learning Motion Models

In the robot test, two Segway RMP soccer robots are
included. One of the robots acts as the observer (A), who
is executing the tactic CatchBall. The other robot acts as
its teammate (B) who is executing the tactic PassBall. In
this test, we assume there is no uncertainty on the tactic
level. We are only interested to learn model parameters for
each motion model conditioned on the given tactic. Each



experiment trial starts from the state that the robot B holds
the ball and searches A. When B finds A, it passes the ball to
A. A then aims at the ball and catches the ball when the ball
is within its catchable area. The trial ends once the ball is
being catched or runs out of the field without being received.
In the beginning of each trial, A is at position (0,0) and B
is at position (2.5, 0).

There are two kinds of ball motion models to be learned in
this test. They are Free-Ball and Robot-Grab-Ball. We run 30
trials on the pair of robots. Vision sensor and infrared sensor
logs are generated for off-line learning usage. Obviously
there is only position information that can be obtained from
both sensors. The velocity (ẋ, ẏ) is unobservable through
the measurements. Robot A then reads the logs and runs
our learning algorithm in each trial. The robot learns the
measurement and process noise models

θ = (R,Qm) m = 1, 2 (7)

(see Eqn. 1, 2 for details). Figure 8 shows the first standard
deviation of the process noise along the x and y axes
respectively. In the progression from the initial iteration to
the final, the mean and variances are shifted significantly.
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Fig. 8. Comparing the initial process noise Free-Ball model and the learned
Free-Ball model .

To determine the performance of the learned motion
model, we also performed an experiment to apply the learned
process/measurement noise model to the existing tracking
system. We then runs the similar trials, and use two different
trackers simultaneously. One is the previous tracker, the
other is the new tracker that includes the learned model
parameters. We find that the tracker with learned model
performs significantly better than the tracker with initial
model.

V. CONCLUSIONS

Learning motion models of a moving object is a challenge
for autonomous robots. We address the particular instance
of parameter learning when tracking object motions in a

switching multi-model system. We present a general algo-
rithm of joint parameter-state estimation based on multi-
model particle filter. We apply the approach to a specific ball-
tracking problem and extend the algorithm to learn model
parameters in a dynamic Bayesian network (DBN). We show
empirical results in simulation and in a team robot soccer
environment, as a substrate for applying the learned models
to object tracking in a team. The learning capability allow
the tracker to much more effectively track mobile objects.
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