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Abstract—Assessment methods for rehabilitation and recovery
have recently been the focal point of research for medical
professionals and engineers alike. Current assessment protocols
rely on historical ordinal metrics which have been disputed
despite their inter-rater reliability. Contemporary kinematic
measures have allowed for new approaches to assess recovery
progress. However, the abundance of data has deterred medical
professionals from adopting these new protocols. This paper
presents a method, based on the RMSE-LWSS (Longest Warping
Subsequence) score, to distinguish outliers from systemic change
for updating the personalized exercise path for users. By treating
change detection as a classification problem, the incorporation
of a compromised path based on the user’s current capability
is possible. Experiments were conducted to verify the efficacy
of the method, comparing against statistical techniques for
change detection and classification of pre-determined paths. The
paper highlights how readily available data, rather than complex
sensor systems, can be utilized to improve the robustness of
personalization capabilities for robotic rehabilitation systems.

I. INTRODUCTION

Rehabilitation and recovery of limb capabilities after in-
juries, such as those arising from sports or stroke, is complex
due to the intricate nature of the human body. For the up-
per limb system, the inherent dexterity and maneuverability
magnifies the significance of post-injury rehabilitation.

Injuries, in particular limb impairment, are unique to each
patient. However, widely accepted neurological theories have
lead to the current protocols for recovery and rehabilitation of
limb capability. These protocols involve hierarchical exercise
regiments, relying on expert assessments to gate-keep progres-
sion in the rehabilitation program.

The assessments performed by medical professionals are
standardized based on the outcome measures used, and are
currently judged across the field by their inter-rater reliability
[1]. Termed ”functional measures”, due to their measurement
of the ability to perform functional movements for Activities
of Daily Living (ADL), these ordinal measures have long been
scrutinized due to their reliance on subjective opinions.

Recently, there has been heavy scrutiny on the historical
functional outcome measures due to their limited granularity
and their inability to profile the whole upper limb system
during assessment. The introduction of robotic systems in
rehabilitation have provided a fresh perspective in measuring
progress for recovery [2], most notably by providing access to
objective data that is conducive to cardinal measures. However,
the most widely used measures for progress still remains with
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functional measures such as the Fugl-Meyer Assessment and
the Barthel scale [3][4].

Introduced alongside the systems is the burgeoning field
of kinematic measures, using objective metrics to provide
limb capability assessment with fine granularity. However,
there have been concerns over their slow adoption due to the
overwhelming amount of data which therapists have to manage
and analyze to extract meaningful data [5].

Although it might seem straightforward to use all available
kinematic data for analyzing and assessing patient progress,
computational bottlenecks impede their feasibility in real-
world scenarios. Intuitively, in any recovery scenario, there
are unique attributes which provide an indication of progress
depending on the technology available. The effective utiliza-
tion of data is posited to provide similarly accurate results for
assessment when compared against using all available data.
Hence, using robotic systems can potentially lower the adop-
tion barriers for both rehabilitation and recovery assessment.
In this paper, a novel metric is introduced and compared with
different methods to detect change based on a pre-defined path.

This paper is organized as follows: Section II reviews related
works towards utilizing data for rehabilitation assessment
and learning models to detect change, Section III outlines
the experiment and data processing setup while Section IV
presents the results from the experiments. Section V discusses
the results and possible limitations, and Section VI provides
conclusions and suggests future work.

II. REVIEW OF RELATED WORKS

A. Data Utilization in Rehabilitation and Recovery

The rising trend in kinematic measures used for patient
assessment during neurorehabilitation has lead to new fron-
tiers in data utilization for patient progress assessment. With
Randomized Controlled Trials (RCT) conducted in the medical
field using contemporary kinematic metrics, results are starting
to indicate certain data are conducive to rehabilitation and
recovery assessment [6].

This is supplemented by earlier studies that suggest profiling
the capabilities of the upper limb system requires a multi-
lateral approach towards assessment [7]. Some studies even
suggest that current measures and therapy facilitation are
inappropriate for the assessment of limb progress [8].

Echoing these opinions, a study in personalized stroke
rehabilitation found a correlation between the severity of limb
impairment and the score obtained from a path-following
exercise [9]. It showed how scenario- and task-based selection
of metrics provide a more effective indicator for diagnosis.



From an extensive survey of upper-limb robotic rehabil-
itation systems [10], the most common method of obtain-
ing assessment metrics arise from medical theories and an
understanding of the human body. These include surface
electromyography activation, kinematic joint observers, and
wrench observers at the end-effector of robotic manipulators.

However, most systems do not tackle current barriers to
adopt robotic assessment systems for therapists. Factors such
as complexity of the data analysis and the metrics used to
gauge process are rarely discussed [11]. A popular method to
approach complexity reduction is the use of machine learning
[12]. Using machine learning to build a model of a user’s limb
capability facilitates the potential to detect a change in user
limb capability.

B. Dataset Shift

In machine learning, the training data set used is assumed to
be representative of the distribution from which test samples
are generated. We can exploit this to capture the user’s limb
capability at a specific point in time, detecting any limb capa-
bility changes as a shift in the sample generation distribution.

Termed Dataset Shift, the field is split into two actions:
change detection of the sample generation distribution; and
model adaptation to encapsulate the new sample generation
distribution. While literature in Dataset Shift is abundant[13],
many works rely on benchmark data sets which have been
criticized for their detachment from real-world physical appli-
cations [14]. A notable exception is the predictive control of
interruptions in an industrial plant based on the Exponentially
Weighted Moving Average (EWMA) chart [15].

III. METHODOLOGY

This paper proposes a method to detect changes in limb
capability. To emulate the user experience during robotic
rehabilitation, a path-following exercise was conducted. The
nominal movements are extracted using machine learning,
allowing the use of statistical methods to detect change.

This paper models the scenario described in [16], targeting
the data center. To compare the proposed metric to conven-
tional methods, the collected data sequences are classified into
their class-labels and visualized.

A. Experiment Setup

In this experiment, 25 healthy subjects are asked to follow 4
paths using the Rethink Robotics Sawyer manipulator affixed
with a handle (Figure 1). The path is displayed on a screen,
indicating the relative position of the end effector.

Subjects are asked to perform path-following on 4 different
paths. In total, 6 unique paths were used: an original set of
4 paths for training the model, 1 modified path (acting as the
shifting class), and 1 path, which is novel to the classifier.

One hundred sequences were collected in total. 60 were used
for training, 20 as the holdout set during model validation, and
20 for testing (inclusive of the modified and novel paths).

Sensible data collection is a key factor to ease the adoption
of robotic systems for therapists. Conventional assessment
systems record neuro-physiological data from the user which

Fig. 1: The setup for the Sawyer manipulator constrained to
the X-Y plane with the target path shown on the screen.

are challenging to collect. In this experiment, only the endpoint
data from the manipulator was recorded, expediting the data
collection process. Updating the model of a user’s limb capa-
bility is computationally expensive. However, this is assumed
to be largely irrelevant since the process is expected to occur
between clinical visits.

B. Data Processing

The data collected is temporal due to different velocities at
which subjects followed the path. A common method to align
time-series data sets is Dynamic Time Warping (DTW) [17].
For two time-series data sets, Q and C, DTW provides a metric
distance and a warping matrix to best align the two data sets
temporally.

The minimization of the Euclidean distance from one point
in data set A to the corresponding point in data set B is used
for this experiment. Using DTW for multi-dimensional time-
series data set is non-trivial but can be naı̈vely done by taking
the DTW sum of each dimension independently for M number
of dimensions.

However, since the collected data is embedded in a mul-
tivariate environment (2-D planar points), a dimensional-
dependent DTW algorithm [18] is used to warp the data sets
(Equation 1). The time-series data set are z-normalized to fit
the algorithm’s recommendation.

Given M dimensions and N samples in each time series:

DTWdep =

M∑
i=1

N∑
j=1

(qi,j , ci,j)
2. (1)

A covariance matrix of the DTW distances between the
training data sets was created and averaged to determine the
reference data set for each path during DTW. The warped
paths are then temporally standardized and used to train a
Gaussian Process (GP) model using the GPML package [19]
to generalize the optimal path.

C. Gaussian Process

The non-linear target function f is assumed as:

Y = f(X) + ε, (2)



where Y is the training targets, X is the training inputs, and
ε ∼ N (0,Σε) is the observation noise, which is assumed to
be distributed normally with Σε = diag {σ2

1 , σ
2
2 , . . . , σ

2
dy
}.

To learn such a relationship from data, a GP is fitted with
the prior for each dimension of y as follows:

ya ∼ GP(0,Ka), (3)

for a = 1, 2, 3, . . . , dy . The observation noise is εa ∼
N (0, σ2

a).
The kernel used to calculate each covariance element is the

squared exponential as follows:

ka(x,x′) = σ2
a exp

(
− 1

2l2a
||x− x′||2

)
, (4)

where σ2
a is the variance of fa, and la is the scaling factor to

normalize the distance between x and x′.
As the maximum a-posteriori (MAP) estimate of the kernel

function hyperparameter set θa occurs where p(Ya | X, θa) is
greatest, θa is optimized as:

log p(Ya|X, θa) = −1

2
D − 1

2
log|Ka| −

N

2
log2π, (5)

where D = Ya
TK−1a Ya, and N is the number of training data

samples.
For regression inference of a Gaussian Process, the joint

probability P (Ya,y
∗
a
T ), inferring y∗a at x∗, is modelled as a

multi-variate Gaussian distribution:

P

([
Ya
y∗a

])
= N

(
0,

[
Ka KT

a∗
Ka∗ Ka∗∗

])
where Ka∗ = [ka(x∗,X1), ka(x∗,X2), ..., ka(x∗,XN )] and
Ka∗∗ = ka(x∗,x∗), respectively. The conditional distribution,
p(y∗a|Ya) = N (Ka∗K

−1
a Ya, Ka∗∗ − K∗K

−1KT
a∗) can be

derived from this multivariate Gaussian.

D. Gaussian Process Classification

The joint distribution for Gaussian Process classification is
non-Gaussian which is analytically intractable. Thus, approx-
imations or Monte Carlo sampling methods are required.

For binary Gaussian Process Classification, a Laplace Ap-
proximation to the posterior is used [20]. A second order
Taylor Series expansion around the maximum a posteriori
provides the approximation as follows:

q(f |X,y) = N (f |f̂ , A−1), (6)

where f̂ = argmaxf p(f |X,y), and A is the Hessian of the
negative log posterior at that point (−∇∇logp(f |X,y)|f=f̂ ).

Expanding the Laplace Approximation to multi-class classi-
fication extends the binary algorithm by utilizing the softmax
output π during training (Equation 7). The class probabilities
are calculated in a one vs. rest fashion:

πci =
expyic∑
c′ expyic′

, (7)

for i = 1, 2, . . . , n for n training samples, and c = 1, 2, . . . , C
for C classes.

Similar to the regression inference of GP, calculating the
approximate joint posterior distribution will allow for the
predictive mean for class c as follows:

Eq[f c(x∗)|X,y, x∗] = kc(x∗)
TK−1c f̂ c, (8)

where kc(x∗) is the covariances between the test point and
each training point of the cth covariance function, and f̂ c is
the subvector of f̂ in class c.

Unlike binary classification, a simple mean threshold does
not take variability between classes into account. The most
common way to overcome this is through Monte Carlo
sampling of the Gaussian Laplace Approximation, q(f∗|y),
performing the softmax, and averaging the probabilities.
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Fig. 2: A comparison of the warping path between two time-
series data sets: (a) the two near-identical data sets produce a
near-diagonal warping path representing a clear 1-to-1 match
between the data samples; and (b) the two different data
sets will cause long sequences in the warping path indicating
inability to find data sample matches.

E. Change Detection

Given two multi-dimensional data sets, conventional com-
parison methods compute a single scalar metric of similarity
between the two data sets. Common methods include the
paired t-test, Root Mean Square Error (RMSE), and the
Autoregressive Moving Average. However, these methods do
not indicate when and where the divergence occurs.

DTW provides a distance metric and a warping path,
describing how data samples are matched, using one data set
as a reference. Thus, change detection is possible using the
longest sequence in the warping matrix. A long sequence, as
shown in Figure 2, indicates a region of change.

The Longest Warping Subsequence (LWSS) is the ratio of
the longest sequence normalized to the data set sizes:

LWSS(w, z) =
n× Lmax(w, z)

m× argmax size(w, z)
, (9)

where w is a n×D data set, z is a m×D data set, and Lmax
is the longest sequence within the warping matrix.

In scenarios where two data sets are discordant, ascertaining
the magnitude of the difference is challenging with the warping
path. Thus, RMSE can be used as a complementary measure
of the difference between the two data sets.

When a changed path is detected, a buffer, W is initialized
to accumulate subsequent test paths. The buffer looks for



changes in a window of test paths, using the RMSE and the
LWSS ratio as follows:

g(W, c) =

A∑
a=1

{
RMSE(wa, zc)× LWSS(wa, zc)

}
, (10)

where A is the number of accumulated test paths and z is the
model of the trained path for class, c.

When the joint RMSE-LWSS score, g(W, c) is consistently
less than a specified threshold, the changes are assumed to be
a deviation from the learned model. Thus, the path’s model
can be updated to incorporate the changes.

Conversely, when the RMSE-LWSS score for all classes is
over an empirically specified threshold, the path is assumed
to be novel, allowing for a new model to be learned and
incorporated for future classifications.

IV. RESULTS

A. Model Validation

The paths performed by the subjects are indicated as Path
1-4. The 15-subject training data set produced a GP model
for each of the original 4 paths (with one seen in Figure 3).
The 5-subject holdout set used the original paths while the 5-
subject test set was obtained from 2 original paths, 1 modified
path, and 1 novel path.

All data sets were temporally normalized to 200 samples
through interpolation. Each of the 4 GP models in the training
data set was then trained on a GP Laplace Approximation
classifier in a one vs. rest fashion.

To avoid class imbalance, training samples were reduced to
keep a 1:1 ratio of positive and negative training samples. The
holdout set was tested against the classification models built
to confirm the validity of the trained GP classifiers.

During data processing, one of the data sets in the holdout
set was found to be erroneous, since it only consisted of half
a second’s worth of data, and was thus discarded. The results
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Fig. 3: The time-series GP model built for classification based
on the data sets for the path shown in the bottom right.

from the holdout set are shown in Table I along with the
calculated RMSE-LWSS score for comparison.

TABLE I: The posterior probabilities from the GP classifica-
tion and RMSE-LWSS score from the holdout set. Note that
the outlier sample from path 1 has been excluded due to human
error during data collection.

Path Mean Class Posterior Probabilities
No. Class 1 Class 2 Class 3 Class 4
1 0.6873 0.1644 0.2563 0.2706
2 0.2742 0.7942 0.1830 0.2225
3 0.2809 0.1795 0.7283 0.3063
4 0.3736 0.2978 0.3371 0.7172

Mean RMSE-LWSS Score
1 0.0019 0.2378 0.0957 0.0682
2 0.5341 0.0036 0.1451 0.0369
3 0.1162 0.1209 0.0014 0.0162
4 0.1426 0.0534 0.0164 0.0018

B. Novel and Drifting Class Detection
In the 5-subject test data set, Paths 1 & 2 are identical to

the learned models (Class 1 & 2), Path 3 was an amended path
of Class 3, and Path 4 was a novel path which has not been
seen by the GP classifiers.

The posterior probabilities from the GP Laplace Approx-
imation classification and the RMSE-LWSS scores can be
seen in Table II with the best results highlighted in bold. The
component measures of mean RMSE and mean LWSS score
is also presented in the table.

TABLE II: The mean posterior probabilities, RMSE-LWSS
score, RMSE, and LWSS score of each class/path in the testing
data set.

Path Mean Class Posterior Probabilities
No. Class 1 Class 2 Class 3 Class 4
1 0.7974 0.2288 0.3524 0.3573
2 0.2024 0.8117 0.2591 0.2971
3 0.2398 0.1848 0.5093 0.4052
4 0.2558 0.2678 0.4564 0.4926

Mean RMSE-LWSS Score
1 0.0042 0.2709 0.0211 0.1079
2 0.1143 0.0030 0.1331 0.2117
3 0.0416 0.1525 0.0230 0.0343
4 0.0177 0.0477 0.0511 0.0681

Mean RMSE
1 0.1641 1.0022 0.1370 0.4282
2 0.8564 0.1564 0.9740 1.2646
3 0.2143 1.1225 0.1776 0.2784
4 0.1144 0.8973 0.2803 0.4128

Mean LWSS
1 0.0249 0.2716 0.1801 0.2458
2 0.1333 0.0179 0.1363 0.1672
3 0.1930 0.1363 0.1303 0.1154
4 0.1552 0.0527 0.1841 0.1622

V. DISCUSSION
A. Classification vs. Calculation

From the holdout set in Table I, the RMSE-LWSS scores
supported the posterior class probabilities from the GP classi-
fication. We highlight that the RMSE-LWSS score is a viable
alternative to statistical methods for change detection.



In this experiment, a threshold RMSE-LWSS score of 0.01
was sufficient to classify the paths. While this threshold is
heuristically obtained, the reduced complexity allows for on-
line classification and threshold tuning, and even the possibility
of real-time classification.

The mean class posterior probabilities in Table II shows
the classifier’s capability to identify incorrect paths as seen
by the low probabilities for Path 3 & 4. However, there is no
discriminating factor between the shifted and the novel path.

While the RMSE-LWSS score provides the same capability
as that of the GP classifier, a cursory glance at the individual
measures of RMSE and the LWSS score highlights a distinc-
tion. The modified path is distinguishable by the combination
of low RMSE and a high RMSE-LWSS score. The novel path
can also be identified by both a high RMSE-LWSS score and
a high LWSS score.

Thus, using a combination of the joint score and its sub-
scores, the proposed method can detect and differentiate
between a shifted path and a novel path. This provides an
advantage over conventional comparison methods.

B. Effective Data Utilization

Intuitively, it may be assumed that using all available
data would improve results. However, with the abundance of
data generated from robotic systems, utilizing all available
data does not add insight into the results obtained from less
complex measures. Furthermore, with an increasing amount of
data to analyze and process, computational cost will need to
be considered for the application.

To test this hypothesis, another set of binary GP classifi-
cation models were built using position and force data. The
5-subject test set was then fed into the GP classifiers, with the
results shown in Table III.

The results indicate that the inclusion of force data did
mildly improve the classifier’s confidence for known paths.
However, the inclusion was detrimental to the classifier’s
confidence of shifted and novel paths. The inclusion also
provides no new insight when compared against results from
the position only GP classifiers.

C. Data Representation

The experiments conducted followed author recommenda-
tions for the dimension-dependent DTW [18], Z-normalizing
all data sequences. To determine whether data representation
will affect the use of RMSE-LWSS, another set of GP classi-
fiers were built, validated, and tested using raw data obtained
from the end effector.

Classification results from using raw data shows similar
behaviour with the Z-normalized experiments. Including all
available raw data during classification, however, is seen to
be even more detrimental to classifier confidence and results
as shown by the results for Path 4 where the posterior
probabilities for all 4 classes converge towards 50%.

A closer inspection into visualizing the two representations
of the paths in Figure 4c and 4d highlights the differences
between them. It can be seen that using raw data can improve

TABLE III: The GP Laplace Approximation classification
posterior probabilities for Z-normalized and raw test set, along
with position only data and force-inclusive position data.

Path Mean Class Posterior Probabilities
No. Class 1 Class 2 Class 3 Class 4

Z-normalized Position Data
1 0.7974 0.2288 0.3524 0.3573
2 0.2024 0.8117 0.2591 0.2971
3 0.2398 0.1848 0.5093 0.4052
4 0.2558 0.2678 0.4564 0.4926

Z-normalized Position & Force Data
1 0.8694 0.2128 0.3991 0.3231
2 0.2113 0.8810 0.3766 0.3084
3 0.2834 0.1436 0.4431 0.5137
4 0.3054 0.2787 0.4241 0.4052

Raw Position Data
1 0.7733 0.2002 0.3600 0.4138
2 0.2276 0.8152 0.2473 0.3450
3 0.2815 0.2715 0.5570 0.4429
4 0.3191 0.3784 0.4393 0.4349

Raw Position & Force Data
1 0.8499 0.5000 0.3338 0.2831
2 0.4064 0.8554 0.2978 0.2128
3 0.5881 0.4366 0.5828 0.4934
4 0.5478 0.5554 0.5490 0.5568

confidence when a correct path is presented. However, the loss
of size-invariance and robustness outweighs any confidence
gains during classification.

In the context of progress assessment, the normalization
of data will provide a more agnostic approach towards the
integration of RMSE-LWSS score in robotic systems for
rehabilitation and recovery.

VI. CONCLUSION

The rising trend to incorporate robotic systems in rehabili-
tation and recovery necessitates the current need to overcome
adoption barriers for recovery assessment.

One such area is the efficient use of data to find insights
into a patient’s limb capability. The conventional approach is
to use all available data to provide assessment and advice.
However, the presented results show that efficient utilization
of data can be posited to provide similar, if not the same,
amount of meaningful information to aid therapists.

A method to detect change using a novel metric (RMSE-
LWSS) on incoming data has been proposed. Experiments,
involving a path-following exercise, were conducted to test
its efficacy for classifying the paths. Further experiments
demonstrate that a combination of the RMSE-LWSS score and
its sub-scores can distinguish outliers from systemic change.

The ability to identify modified, novel, and prescribed
paths provides supplementary information for therapists dur-
ing progress assessment. Future works will include different
ways to utilize the RMSE-LWSS score for current assessment
protocols, and incorporate temporal data to further improve
the metric. Efficient data utilization will complement current
works related to Assistance-As-Needed (AAN) frameworks
[21], with the potential incorporation of musculo-skeletal
models for recovery assessment [22].
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Fig. 4: A comparison of (a) the original trained model and; (b) the modified path emulating a patient’s inability to follow the
path during recovery exercises. (c-d) Contour plot comparisons of how data representation can affect the posterior probabilities
from the learning model: (c) using z-normalized data; and (d) using raw data.
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