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Feature Selection and Classification in Genetic Programming:

Application to Haptic-based Biometric data

Fawaz A. Alsulaiman, Nizar Sakr, Julio J. Valdés, Abdulmotaleb El Saddik, Nicolas D. Georganas

Abstract—In this paper, a study is conducted in order to

explore the use of genetic programming, in particular gene
expression programming (GEP), in finding analytic functions
that can behave as classifiers in high-dimensional haptic feature
spaces. More importantly, the determined explicit functions
are used in discovering minimal knowledge-preserving subsets
of features from very high dimensional haptic datasets, thus
acting as general dimensionality reducers. This approach is
applied to the haptic-based biometrics problem; namely, in user
identity verification. GEP models are initially generated using
the original haptic biometric datatset, which is imbalanced
in terms of the number of representative instances of each
class. This procedure was repeated while considering an under-
sampled (balanced) version of the datasets. The results demon-
strated that for all datasets, whether imbalanced or under-
sampled, a certain number (on average) of perfect classification
models were determined. In addition, using GEP, great feature
reduction was achieved as the generated analytic functions
(classifiers) exploited only a small fraction of the available
features.

I. INTRODUCTION

T
HE integration of haptics into immersive virtual en-

vironments, has been an active research area the past

decade. Immersive digital environments consist of computer-

created scenes within which users can immerse themselves

and interact with other users or various objects through a

virtual reality experience. Conversely, haptic systems enable

physical interactions with virtual three-dimensional objects

through the sense of touch, and are therefore expected to

become the next dimension of human-computer interaction.

Haptic-based applications are wide, and span many areas,

including medicine, rehabilitation, education and entertain-

ment. In recent years however, the possible use of haptic

devices in biometric systems has been suggested to enable

improved user identification/verification performance over

more traditional techniques, such as those based on hand-

written signatures. Biometric systems provide a solution to

ensure that protected services are solely accessible by a

legitimate user. This is achieved while relying on users’

behavioral and/or physiological characteristics. Conversely,

haptic data depict trajectory, cutaneous as well as kinesthetic

information which essentially consist of position, velocity,
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orientation, torque and force information, that are directly

acquired from a haptic interface upon a user’s interaction

with a predefined virtual environment. However, the mul-

tidimensional and time-varying nature of the data renders

haptic-based biometrics a challenging task, as the number

of acquired features is enormous (in the thousands range).

It is important to realize that this problem is not restricted

to haptic-based biometrics, but in fact to any application

that involves the analysis and interpretation of acquired

haptic information to reveal certain patterns in the data.

Consequently, this paper aims to investigate a technique

to determine relevant attributes in high dimensional haptic-

based datasets. The dataset considered in this study is gener-

ated using a haptic-enabled biometric application developed

at DISCOVER laboratory, at the University of Ottawa.

Relevant feature selection and generation in high dimen-

sional haptic-based biometric data is nearly unexplored in

the literature. In [1], [2], Orozco et al. make use of the same

dataset exploited in this paper in order to demonstrate the

feasibility of a haptic-based user authentication system. The

authors, however, distribute the high dimensional attributes

of each signature across different instances, i.e. position,

velocity, orientation, torque and force data acquired at time

t1 are assigned to instance Inst1, data acquired at time t2
are assigned to instance Inst2, etc. . . , yielding a number

of instances per user signature with only few attributes per

instance. It is evident, however, that a more logical and

adequate approach would be to assign all the generated haptic

data attributes per signature to a single instance, i.e. each

instance contains the entire (haptic-based) signature for a

single user. This approach can lead to better analysis and

interpretation of the haptic dataset, and improved discrimi-

nation between users. This, however, comes at the expense

of having to deal with instances that possibly consist of

thousands of attributes.

This paper explores the use of genetic programming, in

particular gene expression programming (GEP), with the

purpose of finding analytic functions that can act as superior

classifiers in high-dimensional haptic feature spaces. More

importantly, the generated explicit functions are used in dis-

covering minimal knowledge-preserving subsets of features

from the very high dimensional haptic datasets, thus acting as

general dimensionality reducers. This approach is applied to

the haptic-based biometrics problem; namely, in user identity

verification.

The rest of the paper is organized as follows. In Section II

the haptic data acquisition and preprocessing steps will

be illustrated. In Section III haptic feature selection and



classification using genetic programming will be discussed.

In Section IV the experimental settings are provided. In

Section V the experimental results are presented. Finally,

conclusive remarks and some directions for future work are

outlined in Section VI.

II. HAPTIC DATA ACQUISITION AND PREPROCESSING

In this section, the haptic-enabled virtual check appli-

cation, as well as the acquired data will be described.

Furthermore, techniques to solve the problem of imbalanced

data sets will also be presented.

A. Haptic-enabled Virtual Environment

The experiments are performed using the Reachin Display

[3], which integrates a haptic device with stereo graphics for

an immersive and high quality 3D experience. The Reachin

visuo-haptic interface enables users to see and touch virtual

objects at the same location in space. This approach enables

a superior integration of vision and touch than a conventional

2D screen-based display. The haptic stimulus is sensed using

the SensAble PHANTOM Desktop force-feedback device,

which is equipped with an encoder stylus that provides 6-

degree-of-freedom single contact point interaction and posi-

tional sensing. In the case presented here, the visual stimuli

consist of a virtual pen and a virtual check on which users can

record their handwritten signature. The latter haptic-enabled

virtual environment has been selected since handwritten

signatures have been widely accepted as a mean to prove

authenticity and authorship of a document. Conversely, the

haptic stimuli are force and frictional feedback that attempt

to mimic the tactile sensations felt when signing a traditional

paper check. More specifically, the check is built on an

elastic membrane surface with particular texture features,

providing the users with a user-friendly and realistic feel

of the virtual object. Moreover, similarly to conventional

dynamic signature verification technologies, the virtual check

application records a wide array of attributes that depict a

user’s physical and behavioral traits.

B. Haptic Datasets

The haptic-based handwritten signatures are diligently

obtained from 13 different participants, where 10 signatures

are collected per individual. A database is generated that is

itself composed of a set of flat files (users’ haptic-based

signatures), that were collected on a workstation equipped

with MS-OS 2000 and a XENON processor at the DIS-

COVER lab, at the University of Ottawa. The data acquired

depict various distinct haptic features as a function of time. A

number of haptic data types are considered that characterize

the instantaneous state of the haptic system, including, three-

dimensional position, force (pressure exerted on the virtual

check), torque, and angular orientation. Furthermore, the

multi-feature and multidimensional haptic data are recorded

at 100 Hz. As the data is time-varying, the resulting number

of attributes per signature is in fact the number of haptic

data types considered (position, force, torque, . . . ) times

the number of samples recorded per data type during each

signature acquisition. This evidently leads to significantly

large feature vectors that encompass thousands of haptic-

based attributes.

C. Imbalanced Datasets

Imbalanced datasets occur in two class domains when the

number of instances belonging to one class is significantly

larger than the number of instances of the other class. In real

life applications, it is not always possible to acquire the same

number of instances for every class. This might occur due

to a lack of sufficient knowledge about the minority class

(the class containing only few instances), e.g. difficulties to

collect information about rare species. Solving the problem

of imbalanced datasets is of utmost importance as it can

directly affect a classifier’s performance. In fact, in such

scenarios, classifiers can often predict the majority class with

relatively high accuracy yet always misclassify the minority

class; although in many data mining applications, such as

in medical diagnosis domains, classification of the minority

class is of crucial importance. Moreover, a classifier can

reach a very high overall accuracy, however, still performs

poorly when classifying the minority class. This can be

observed from the following accuracy measure:

Accuracy =
TP + TN

TP + FP + FN + TN
(1)

where TP, TN, FP and FN correspond to the true positive,

true negative, false positive and false negative values respec-

tively. In the case of a minority class where TN + FP ≫
TP + FN ≥ 0 , i.e. TP and FN are relatively small

values (which represent the minority class) in comparison to

TN and FP which are associated with the majority class.

Consequently, the corresponding accuracy measure will be

misleading as follows:

Accuracy =
TP + TN

TP + FP + FN + TN
≈ TN

FP + TN
(2)

Many solutions have been proposed to tackle the problem

of imbalanced data sets. A trivial solution is to resample the

data by either over-sampling the minority class or under-

sampling the majority class. The re-sampling techniques are

either performed randomly or intelligently. In [4] Kubat and

Matwin adopted Tomek’s technique [5] where only instances

of the majority class are removed to solve the imbalanced

data sets problem. More specifically, it removes redundant

and border line instances. They named their technique One-

Sided Selection (OSS).

Chawla et al. [6] proposed SMOTE, an oversampling

approach that over-samples the minority class with synthetic

examples using k-nearest neighbors. The number of chosen

nearest neighbors depends on the oversampling rate. In

order to generate a synthetic sample, their technique initially

chooses at random one of the k-nearest neighbors of a

certain minority class sample. Then, it randomly generates a

synthetic sample that falls on the line separating the two



genuine samples. In addition, the authors combined their

approach with the randomly under-sampling (the majority

class) technique. Pazzani et al. [7] suggested assigning

costs to examples to reduce misclassification. The authors

considered both the predicted classes and the actual classes

in their costs assignment procedure. Japkowics and Stephen

[8] performed several experiments that tackle the problem of

imbalanced data sets. They concluded that the class imbal-

ance problem is affected by four factors, namely the degree

of class imbalance, the size of the training sets provided, the

complexity of the resulting concept, and the type of classifier

used. Hulse et al. [9] performed a comprehensive experiment

on different solutions for the problem of imbalanced data sets

using 35 real world bench mark data sets and 11 learning

algorithms. In their experiments, the authors compared seven

sampling techniques. It was observed that the performance

of the sampling techniques depends directly on the learning

algorithms used. Nevertheless, the authors ranked the random

majority under-sampling as the sampling technique with

best results followed by the random minority over-sampling

method. The latter technique is performed by randomly

replicating samples of the minority class based on the number

of instances of the majority class. It was concluded that the

two aforementioned simple sampling techniques performed

much better than other intelligent schemes such as SMOTE

[6] or OSS [4].

In this paper, we applied random under-sampling the ma-

jority class technique to solve the problem of imbalanced data

sets. This method is initiated by omitting random instances

from the majority class in order to obtain a balanced data

set, i.e. a majority class with equal or relatively comparable

number of instances to the minority class.

III. HAPTIC FEATURE SELECTION AND CLASSIFICATION

USING GENETIC PROGRAMMING

Analytic functions are among the most important build-

ing blocks for modeling, and consist of a classical form

of expressing knowledge. In data mining, however, direct

discovery of general analytic functions poses significant

challenges due to the (in principle) infinite size of the search

space. Within computational intelligence, Genetic Program-

ming (GP) techniques are a promising approach to overcome

this problem, as they aim at evolving computer programs,

which ultimately are functions. There are many variants of

GP algorithms in the literature; the one exploited in this

work is the so-called Gene Expression Programming (GEP)

[10], [11]. It is essentially an evolutionary algorithm as it

uses populations of individuals, selects them according to

fitness, and introduces genetic variation using one ore more

operators.

GEP individuals are nonlinear entities of different sizes

and shapes (expression trees) encoded as strings of fixed

length. For the interplay of the GEP chromosomes and the

expression trees (ET), GEP uses an unambiguous translation

system to transfer the language of chromosomes into the

language of expression trees and vise versa. The structural

organization of GEP chromosomes allows a functional geno-

type/phenotype relationship, as any modification made in

the genome always results in a syntactically correct ET

or program. The set of genetic operators applied to GEP

chromosomes always produces valid ETs.

Chromosomes in GEP itself are composed of genes struc-

turally organized in a head and a tail [10]. The head contains

symbols that represent both functions (elements from a

function set F) and terminals (elements from a terminal set

T), whereas the tail contains only terminals. Therefore, two

different alphabets occur at different regions within a gene.

For each problem, the length of the head h is chosen, whereas

the length of the tail t is a function of h, and the number of
arguments of the function with the largest arity.

As an example, consider a gene composed of the

function set F={Q,+,−, ∗, /}, where Q represents the

square root function, and the terminal set T={a, b}.
Such a gene looks like (the tail is shown in bold):

*Q-b++a/-bbaabaaabaab, and encodes the ET

which corresponds to the mathematical equation

f (a, b) =
√

b ·
((

a + b

a

)

− ((a− b) + b)
)

simplified as

f (a, b) = b·
√

b

a
.

Moreover, GEP chromosomes are usually composed of

more than one gene of equal length. For each problem the

number of genes as well as the length of the head has to be

chosen. Each gene encodes a sub-ET and the sub-ETs interact

with one another forming more complex multi-subunit ETs

through a connection function. As an evolutionary algorithm

GEP defines its own set of crossover, mutation and other

operators [11]. Furthermore, to evaluate GEP chromosomes,

different fitness functions can be used.

For the research described in this paper, GEP is exploited

in an attempt to generate explicit analytic functions that can

guarantee good discrimination capabilities between haptic-

based handwritten signatures. Equally importantly, these

functions are also used in discovering minimal knowledge-

preserving subsets of attributes from the very high dimen-

sional haptic-based biometric datasets, thus acting as general

dimensionality reducers. The GEP-generated analytic func-

tions are modeled as y = f(v1, · · · , vn), where (v1, · · · , vn)
is the set of independent or predictor variables (attributes),

and y the dependent or predicted variable (decision classes),

so that v1, · · · , vn, y ∈ R, where R are the reals. In general

terms, the model describing the program is given by y =
f(~v), where y ∈ R and ~v ∈ R

n.

IV. EXPERIMENTAL SETTINGS

The example high dimensional haptic dataset selected is

that of [1], [2], and that were briefly described in Sec-

tion II. They essentially consist of haptic-based handwritten

signatures recorded from 13 different participants, where

10 signatures were collected per individual. In order to

ensure accurate discrimination between the signatures, the

obtained feature vectors were normalized to a common

length of 10000. Essentially, the acquired haptic data types

are re-sampled (upsampled/downsampled) when necessary to
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Fig. 1. Average number (across all 13 subsets) of generated models with respect to their classification performance when the following datasets are
exploited: undersampled 60% datasets and imbalanced 60% datasets.

ensure a common feature vector length across all instances.

The latter feature vector length was selected in such a manner

to minimize the information loss that is most apparent when

downsampling is performed. Consequently, the computed

preprocessed dataset contains 130 instances, where each

consists of 10000 features. However, in this paper we are

concerned with biometric identity verification (as opposed

to identification), which is a two-class classification problem

(dichotomization), where a dichotomizer assigns class labels

A (accept identity claim) or B (reject identity claim) to

observed feature vectors x. The preprocessed dataset is

therefore rearranged into 13 distinct datasets (one for each

class), where in each only the instances of a single class are

labeled accept (A = 1), whereas the remaining instances are

labeled reject (B = 0). It is clear that the obtained datasets

are highly imbalanced as the number of instances belonging

to the accept class is much smaller than the number of

instances associated with the reject class. Nonetheless, the

obtained biometric identity verification datasets were then

first divided into 60% training and 40% test sets, and also

divided into 80% training and 20% test sets. Let’s refer

to the former datasets as imbalanced 60% datasets, and the

latter datasets as imbalanced 80% datasets. The rearranged

verification datasets were then under-sampled as illustrated

in Section II-C in order to obtain a balanced version. The

computed datasets, similarly to the imbalanced case, were

then divided into 60% training and 40% test sets, and also

divided into 80% training and 20% test sets. Let’s refer to

the former datasets as undersampled 60% datasets, and the

latter datasets as undersampled 80% datasets.

The GEP experiments were performed with parameters

fixed at the following suggested values [11]: population size

= 1000, number of generations = 100000, genes/chromosome
= 3, gene headsize = 8, constants = allowed (in [0, 10]),
linking function = Addition, probabilities: inversion = 0.1,
mutation = 0.044, istransposition = 0.1, ristransposition-prob
= 0.1, onepointrecomb-prob = 0.3, twopointrecomb-prob =

0.3, generecomb-prob = 0.1, genetransposition-prob = 0.1,

rnc-mutation= 0.01, dc-mutation-prob = 0.044, dc-inversion=
0.1, dc-istransposition = 0.1. In addition, the function set was
very simple, composed only of basic arithmetic functions:

{+,−, ∗,÷}.

V. RESULTS

A series of multi- and single objective experiments were

performed in order to investigate some of the properties of

the data used within this study. For each of the 13 subsets

in imbalanced 60% datasets, 100 independent GEP runs

were conducted, i.e. 100 different analytical functions are

generated for the 1st subset, 100 different analytical functions

are generated for the 2nd subset, . . . . It is important to

mention that during each run, there are in fact 1000 different
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Fig. 2. Average number (across all 13 subsets) of generated models with respect to their classification performance when the following datasets are
exploited: undersampled 80% datasets and imbalanced 80% datasets.

functions that are obtained (since the process is initiated with

a population of size 1000), however, only the GEP model

with the best discrimination performance is selected. This

procedure is repeated with the three other computed datasets:

imbalanced 80% datasets, undersampled 60% datasets, and

undersampled 80% datasets. An example of one of the an-

alytic functions generated is illustrated in Equ. 3. More

specifically, this model is associated with the 1st subset of

undersampled 60% datasets, i.e. it is essentially a classifier

that considers that class 1 is the true (legitimate) identity,

whereas all the other classes are false identities.

f(v1, v2, · · · , v10000) =

((((v5047 + ((v2660 + v8848)/v6412))/(v9277 +

(v5147 ∗ v8733))) + ((((v9568 − v8608)/v3875) +

v5045)− ((v8753 ∗ v8685)/(v6054 + v2873)))) +

((v3786 ∗ ((v8460 + v1576)/v3911))−
((v1670/v9280)− v6762))), (3)

It can be observed that only few of the initial 10000 attributes

are exploited in this equation. Consequently, as aforemen-

tioned, GEP can in this case be used to perform both feature

selection, and generation of efficient classifiers. In Fig. 1 (a)

and (d), two histograms are plotted that illustrate the average

number (across all 13 subsets) of generated models with

respect to their classification performance, i.e. the number

of prediction errors, when undersampled 60% datasets and

imbalanced 60% datasets are exploited, respectively. For ex-

ample, in Fig. 1 (a), it can be shown that on average there are

6 models/subset that can achieve perfect verification results.

Conversely, in Fig. 1 (b) and (e), two other histograms

are plotted that illustrate the average number of generated

models with respect to the number of misclassifications of

the true class when undersampled 60% datasets and im-

balanced 60% datasets are considered, respectively. These

plots are necessary in order to present a fair comparison

between the results obtained with the imbalanced and the

undersampled datasets, as the former sets contain a signif-

icantly larger amount of instances that are associated with

the false class (120 instances as opposed to 10 instances).

Moreover, in Fig. 1 (c) and (f), two histograms are also

shown that illustrate the average number of models gener-

ated with respect to their classification performance when

undersampled 60% datasets and imbalanced 60% datasets

are considered, respectively. However, in the latter case,

only the number of misclassifications of the false class are

considered. Similarly, in Fig. 2, the same results described

above are generated for the following datasets: undersam-

pled 80% datasets and imbalanced 80% datasets.

Many observations can be made from the results presented

in Figs. 1 and 2. First, it can be seen that for all datasets,

whether imbalanced or under-sampled, a certain number
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Fig. 3. Number of operations with respect to the number of variables present in the generated analytic functions, for each of the 13 classes in (a)
undersampled 60% datasets and (b) imbalanced 60% datasets.
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Fig. 4. Number of operations with respect to the number of variables present in the generated analytic functions, for each of the 13 classes in (a)
undersampled 80% datasets and (b) imbalanced 80% datasets.

(on average) of perfect classification GEP models were

achieved. Furthermore, from the histograms (a) and (d) of

Figs. 1 and 2, it can be observed that a greater number

of perfect verification models are obtained (with respect

to the overall classification errors) when the imbalanced

datasets are considered. However, since the presented per-

formance results are simply an average of the number of

generated models (across all 13 subsets) with respect to

the classification errors, there are therefore no guarantees

that perfect classifiers were computed for each class. A

closer examination of the results revealed that perfect models

were in fact generated for all 13 classes associated with

the under-sampled datasets undersampled 60% datasets and

undersampled 80% datasets; however, this was not the case

for the imbalanced datasets. More specifically, perfect models

were not achieved for classes 1, 4, 6, 9, and 13 when

imbalanced 60% datasets were exploited. Similarly, models

with perfect classification performance were not achieved for

class 13 when imbalanced 80% datasets were used.

Furthermore, a larger number of perfect verification mod-

els were determined with the under-sampled datasets when

the classification performance is regarded with respect to the

number of misclassifications of the true class (see histograms

(b) and (e) of Figs. 1 and 2). Therefore, as expected, clas-

sification performance of the minority class improves when

the imbalanced datasets problem is resolved. Conversely, a



larger number of perfect GEP models are obtained with the

imbalanced datasets when the classification performance is

plotted with respect to the number of misclassifications of

the false class (see histograms (b) and (e) of Figs. 1 and

2). This result can also be expected as GEP-based classifiers

generated using the imbalanced datasets where trained using

a much larger number of instances that belonged to the false

class.

In Fig. 3 (a) and (b), a plot is presented to illustrate

the number of operations with respect to the number of

variables exploited in the generated GEP models for each

of the 13 classes in undersampled 60% datasets and imbal-

anced 60% datasets, respectively. It is, however, important

to mention that the number of variables refers to the number

of distinct variables used in the explicit equations (duplica-

tion of identical variables are not counted). Conversely, the

number of operations includes all arithmetic operations used

in each function (duplication are counted). The parameters

were selected as such in order to demonstrate simultaneously,

the complexity of the computed GEP models as well as

their feature reduction capabilities. Furthermore, the models

included in the plots are only those with which 100% training

accuracy was achieved. Similarly, Fig. 4 (a) and (b) illustrate

the number of operations with respect to the number of

variables present in the generated analytic functions, for

each of the 13 classes in undersampled 80% datasets and

imbalanced 80% datasets, respectively. It is evident that

models with the fewest number of operations and variables

are more desirable. It can be seen that in Figs. 3 and 4, for

both imbalanced or under-sampled datasets, a relatively large

number of the generated models (analytical functions) are in

fact low in complexity as only a few number of operations

are performed. Moreover, almost all the generated classifiers

use only a fraction of the 10000 attributes initially introduced

to the GEP algorithm.

VI. CONCLUSIONS

The genetic programming approach exploited in this study,

in particular gene expression programming, proved to be very

effective for generating analytic models that can simultane-

ously serve two important functions: behave as classifiers in

high-dimensional haptic feature spaces, and act as general

dimensionality reducers. The obtained experimental results

are very promising, but preliminary. A more thorough exper-

imental study of this approach is necessary in order to assess

the technique’s general behavior when applied in haptic-

based biometrics. For example, it would of interest to analyze

whether any overall improvements would be achieved if

the haptic datasets are over-sampled, as opposed to under-

sampled as it was performed in this work, when attempting

to overcome the class imbalance problem.
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