Proceedings of the 2009 IEEE Symposium on Computational Intelligence
in Security and Defense Applications (CISDA 2009)

A Comparison of Techniques for On-line Incremental Learning of
HMM Parameters in Anomaly Detection

Wael Khreich, Eric Granger, Ali Miri and Robert Sabourin

Abstract—Hidden Markov Models (HMMs) have been shown
to provide a high level performance for detecting anomalies in
intrusion detection systems. Since incomplete training data is
always employed in practice, and environments being monitored
are susceptible to changes, a system for anomaly detection should
update its HMM parameters in response to new training data
from the environment. Several techniques have been proposed
in literature for on-line learning of HMM parameters. However,
the theoretical convergence of these algorithms is based on an
infinite stream of data for optimal performances. When learning
sequences with a finite length, on-line incremental versions of
these algorithms can improve discrimination by allowing for
convergence over several training iterations. In this paper, the
performance of these techniques is compared for learning new
sequences of training data in host-based intrusion detection.
The discrimination of HMMs trained with different techniques
is assessed from data corresponding to sequences of system
calls to the operating system kernel. In addition, the resource
requirements are assessed through an analysis of time and
memory complexity. Results suggest that the techniques for on-
line incremental learning of HMM parameters can provide a
higher level of discrimination than those for on-line learning, yet
require significantly fewer resources than with batch training.
On-line incremental learning techniques may provide a promising
solution for adaptive intrusion detection systems.

I. INTRODUCTION

ntrusion Detection Systems (IDSs) are used to identify,
Iassess, and report unauthorized computer or network ac-
tivities. Host-based IDSs (HIDSs) are designed to monitor
the host system activities and state, while network-based IDSs
monitor network traffic for multiple hosts. In either case, IDSs
have been designed to perform misuse detection — looking for
events that match patterns corresponding to known attacks —
and anomaly detection — detecting significant deviations from
normal system behavior.

Operating system events are usually monitored in HIDSs
for anomaly detection. Since system calls are the gateway
between user and kernel mode, early host-based anomaly
detection systems monitor deviation in system call sequences
[1]. Various detection techniques have been proposed to learn
the normal process behavior through system call sequences [2].
Among these, techniques based on discrete Hidden Markov
Models (HMMs) have been shown to shown to provide high
level of performance [2].

Wael Khreich, Eric Granger and Robert Sabourin are in the Laboratoire
d’imagerie, de vision et d’intelligence artificielle (LIVIA), Ecole de technolo-
gie supérieure, Montreal, QC, Canada, (email: wael khreich@livia.etsmtl.ca
{eric.granger, robert.sabourin}@etsmtl.ca). Ali Miri is with the School
of Information Technology and Engineering (SITE), and Department of
Mathematics and Statistics, University of Ottawa, Ottawa, ON, Canada,
(email:samiri @site.uottawa.ca).

978-1-4244-3764-1/09/$25.00 ©2009 IEEE

HMM is stochastic process for sequential data [3]. Given
an adequate amount of system call training data, HMM-based
anomaly detectors can efficiently model the normal process
behavior. A well trained HMM should be able to capture the
underlying structure of the monitored application using the
temporal order of system calls generated by the process. Once
trained, an HMM provides a compact model, with tolerance to
noise and uncertainty, which allows a fast evaluation during
operations'. A normal sequence presented to HMM should
produce a higher likelihood value than for a sequence that
does not belong to the normal process pattern or language.
Their ability to discriminate between normal and malicious
sequences have been discussed in literature [4], [5], [6]. The
effects on performance of the training set size, irregularity of
the process, anomaly types, and number of hidden states of
HMM were recently investigated in [7].

The primary advantage of anomaly-based IDS is the ability
to detect novel attacks for which the signatures have not
yet been extracted. However, anomaly detectors will typically
generate false alarms mainly due to incomplete data for train-
ing, poor modeling, and difficulty in obtaining representative
labeled data for validation. In practice, it is very difficult to
acquire (collect and label) comprehensive data sets to design a
HIDS for anomaly detection. Therefore, a major requirement
for an anomaly detection system (ADS) is the ability to
accommodate new data without the need to restart the training
process with all accumulated data.

Most research found in literature for HMM-based anomaly
detection using system calls assume being provided with a
sufficient amount of data. Furthermore, the monitored process
is not static — changes in the environment may occur, such
as application update. This is also the case when fine tuning
a base model to a specific host platform. Therefore, HMM
parameters should be refined incrementally over time by
accommodating newly acquired training data, to better fit the
normal process behavior.

Standard techniques for training HMM parameters involve
batch learning, based either on the Baum-Welch (BW) al-
gorithm [8], a specialized expectation maximization (EM)
technique [9], or on numerical optimization methods, such as
the Gradient Descent (GD) algorithm [10]. Both approaches
are iterative algorithms for maximizing the likelihood estimate

'In contrast, matching techniques that are based on look-up tables, e.g.,
STIDE (sequence time-delay embedding) must compare inputs to all normal
training sequences. The number of comparisons increases exponentially
with the detector window size DW, while for HMM evaluation the time
complexity grows linearly with DW.

(MLE) of the data. For a batch learning technique, the data
sequence is assumed to be finite. Each training iteration of
BW or GD involves observing all subsequences in the pre-
sented block? for training prior to updating HMM parameters.
Successive iterations continues until some stopping criterion
is achieved (e.g., likelihood drop on a validation set). Given a
new block of data, an HMM trained with BW or GD must be
trained from start using all cumulative training data.

As an alternative, on-line incremental algorithm updates the
HMM parameters after each subsequence, yet is allowed to
perform several iterations over all subsequences within the
block (refer to Figure 1). Some desirable characteristics for on-
line incremental learning include the ability to update HMM
parameters from new training data, without requiring access
to the previously-learned training data and without corrupting
previously acquired knowledge [11].

In contrast, for an on-line learning technique, the data
sequence is assumed to be infinite. Such techniques update
HMM parameters after observing each subsequence, with
no iterations. User-defined hyper-parameters remain constant
or they are allowed to degrade monotonically over time.
Given a new block, an HMM that performs on-line learning
continues the training seamlessly. In practice when learning
sequences with finite length, on-line learning may lead to poor
performance.

Several techniques have been proposed in literature for dif-
ferent real-world applications. Among these, on-line learning
techniques are based on the current sequence of observations
for optimizing the objective function (commonly the MLE),
and updating the HMM parameters. As with batch learning,
they can also be divided into EM-based [12] and gradient-
based [13], [14], [15] learning techniques. These on-line
techniques are extended in this work to on-line incremental
learning by allowing them to iterate over each block of data
and by resetting the learning rates when a new block is
presented. Another solution consists of learning an HMM for
each new block of data then merging it with old ones using
weight-averaging [16].

The objectives of this paper are to compare the techniques
for on-line and on-line incremental learning of HMMs pa-
rameters when applied for anomaly HIDS application using
system calls sequences. A synthetic generator of normal data
plus injection of anomaly has been utilized to avoid various
drawbacks encountered when experimenting with real data.
The receiver operating characteristics (ROC) curves and the
area under the ROC curve (AUC) are used as a measure of
performance [17]. Analytical comparison of convergence time
and resources requirements are also provided and discussed.

The rest of this paper is organized as follows. The next
section discusses the importance of on-line incremental update
for anomaly detection. Section 3 presents techniques for batch,
on-line and on-line incremental learning for HMM parame-
ters. The experimental methodology in Section 4 describes

2A block of data is defined as a sequence of system call observations that
has been segmented into overlapping subsequences according to a user-defined
window size.

data generation, evaluation methods and performance metrics.
Finally, simulation results are discussed in Section 5.

II. INCREMENTAL LEARNING IN ANOMALY DETECTION
SYSTEM

An crucial step to design an ADS is to acquire sufficient
amount of data for training. In practice however, it is very
difficult to collect, analyze and label comprehensive data sets
due to many reasons that range from technical to ethical.
In addition, even in the simplest scenario where no change
in the environment is assumed, characterizing the sufficient
amount of data required for building an efficient ADS is not
a trivial task. In practice, limited data is always provided for
training, and the computer environment is always susceptible
to dynamic changes. This work focuses on providing solutions
to the limited data problem as described with the following
practical scenarios.

Given some amount of normal system call data for training,
an ADS based on HMM could be trained, optimized and
validated offline to provide some acceptable performance
in terms of false and true positive rates. However, during
operations, monitoring a centralized server for instance, the
system is susceptible to produce a higher rate of false alarms
than expected and tolerated by the system administrator. This
is largely due to the limited data that is the provided for
training. The anomaly detector will have a limited view of the
normal process behavior, and rare events will be mistakenly
considered as anomalous. Accordingly, the HMM detector
should be refined, i.e., trained on some additional normal data
when it becomes available, to better fit the normal behavior
of process in consideration.

As a part of the detection system, the system administrator
plays an important role for providing such new data. When
an alarm is raised the suspicious system call subsequences are
logged and the system administrator starts an investigation into
other evidence of an attack. If an intrusion attempt is detected
the response team will act to limit the damage, and the forensic
analysis team try to find the cause of the successful attack.
Otherwise, it is considered as a false alarm and the logged
subsequences (which are possibly rare events) are tagged as
normal and collected for updating the HMM detector. One
challenge is the efficient integration of this newly-acquired
data into the ADS without corrupting the existing knowledge
structure, and thereby degrading the performance.

III. TECHNIQUES FOR LEARNING HMM PARAMETERS

A discrete-time finite-state HMM 1is a stochastic process
determined by the two interrelated mechanisms. A latent
Markov chain having comprising N states in the finite-state
space S = {57, 52,..., 5~ }, and a set of observation discrete
probability distributions b;(v), each one associated with a state
[3], [18]. Starting from an initial state .S;, determined by the
initial state probability distribution 7;, at each discrete-time
instant, the process transits from state .S; to state .S; according
to the transition probability distribution a;; (1 < 7,5 < N).
The process then emits a symbol v according to the output

probability distribution b;(v) of the current state S;. The
model is therefore parametrized by the set A\ = (7w, 4, B),
where vector m = {m;} is initial state probability distribution,
matrix A = {a;;} denotes the state transition probability
distribution, and matrix B = {b;(k)} is the state output
probability distribution. Both A, B, and ' are row stochastic,
which impose the following constraints:

N M
Zaij = 1VZ, ij(k)
j=1 k=1

Qs b](k), and m; € [0,

N
=1Vj, and Zm:1 (1)
i=1
1], Yijk 2)
A. Batch Learning

The target in HMM parameters learning is to train the model
A to best fit the observed batch of data o;.r. The estimation
of HMM parameters is frequently performed according to

the maximum likelihood estimation (MLE) criterion®. MLE
consists of maximizing the log-likelihood
{r(\) £ log Pr(o1.r | A) 3)
of the training data over HMM parameters space (A):
A" = argmax, c, 7 (N) 4)

Unfortunately, since the log-likelihood depends on missing
information (the latent states), there is no known analytical
solution to the training problem. In practice, iterative op-
timization techniques (briefly described below) such as the
Baum-Welch algorithm, a special case of the Expectation-
Maximization (EM), or alternatively the standard numerical
optimization methods such as gradient descent are usually used
for this task.

In either case, the optimization requires the evaluation of the
log-likelihood value (3) at each iteration, and the estimation
of the conditional state densities. That is, the smoothed a
posteriori conditional state density:

(i) £ Pr(g =i] oy,) 5)
and the smoothed a posteriori conditional joint state density:
(i) £ Pr(q =i, g1 = j | 011, A) (6)

The Forward-Backward (FB) [3] or the numerically more
stable Forward-Filtering Backward-Smoothing (FFBS) [18]
algorithms are typically used for computing the log-likelihood
value (3) and the smoothed state densities of Egs. (5) and (6).

The Baum-Welch (BW) algorithm [8] is an Expectation-
Maximization (EM) algorithm [9] specialized for estimating
HMM parameters. Instead of a direct maximization of the log-
likelihood (3) BW optimizes the auxiliary Q-function:

Or(M\ AWy =)

ZPr(OlzTaqltT ‘ A(k)) IOg Pr(OI:TaqlzT | >\)
q€S

3Other criteria such as the maximum mutual information (MMI), and
minimum discrimination information (MDI) could be also used for estimating
HMM parameters. However, the widespread usage of the MLE for HMM
is due to its attractive statistical properties — consistency and asymptotic
normality — proved under quite general conditions.

which is the expected value of the complete-data log-
likelihood and hence easier to be optimized. This is done by
alternating between the expectation step (E-step) and max-
imization step (M-step). The E-step uses the FB or FFBS
algorithms to compute the state densities (Egs. 5 and 6)
which are then used, in the M-step to re-estimate the model
parameters:

Y= 40G6)
1 (k). .
TSI Oyl 11515 (i,9) g
a;; = ¥
Zt 1 %(
E

Zt 17()()00, 0.,

Zt:l Y (4)

The Kronecker delta d;; is equal to one if ¢ = j and
zero otherwise. Starting with an initial guess of the HMM
parameters, A0, each iteration k, of the E- and M-step is
guaranteed to increase the likelihood of the observations giving
the new model until a convergence to a stationary point of the
likelihood is reached [8].

In contrast, standard numerical optimization methods work
directly with the log-likelihood function (3) and its derivatives.
Starting with an initial guess of HMM parameters \°, the
gradient descent (GD) updates the model at each iteration &
using:

b;k)+1) (m)

AFFD = \F) 4 Vol (AR))

where the learning rate 7 could be fixed, or adjusted at each
iteration. One way of computing the gradient of the likelihood
Valr(A*)) is by using the values of the conditional densities
(Egs. 5 and 6) obtained from the FB or FFBS algorithms:

otr(\®) i &) (10)
6aij a aij
(D) T ()orvn an
Ob;(m) bj(m)

However, with the numerical optimization methods HMM
parameters are not guaranteed to stay within their space
limits. As described next, the parameters constraints (Egs.
1 and 2) must therefore be imposed explicitly through a
re-parametrization, to reduce the problem to unconstrained
optimization.

Since, at each iteration, both BW and GD algorithms rely
on the fixed-interval smoothing algorithms (FB or FFBS)
to compute the state conditional densities, they are there-
fore performing a batch learning approach. This is because
these fixed-interval smoothing algorithms require an access
to the end of sequence in order to compute the smoothed
densities. Similarly, when learning from a block of multiple
subsequences, each iteration of the BW and GD requires the
averaged smoothed densities over all the subsequences in the
block. Therefore, the block must have a finite number of
subsequences, and all the subsequences are visited at each
iteration. Consequently, when provided with a new block of
subsequences the training process must be restarted using the
accumulated (old and new) data to accommodate the new data.

B. On-line and On-line Incremental Learning

Figure 1 presents an illustration of the batch, on-line,
and on-line incremental learning approaches when provided
with subsequent blocks each comprises R observation subse-
quences. When the first block (£2;) is presented, all algorithms
start with the same initial guess of HMM parameters (\g). At
each iteration k, batch algorithms update the model parameters
using the averaged state densities (Eqs. 5 and 6) over all
the subsequences in the block until stopping criteria are met,
then the first operational model (A1) is produced. On-line
algorithms directly update the model parameters using the
stated densities based on each subsequence and output \; upon
reaching the last subsequence in the block. This constitutes
one iteration of the on-line incremental algorithms which then
re-iterate until reaching the stopping criteria before producing
A1

When the second block (£25) is presented, batch algorithms
restart the training procedure, using all accumulated training
data (€27 U €5). The on-line algorithms however resumes
training from the previous model (A1) using only the current
block (£25) without iterations, while the on-line incremental
algorithms will re-iterate on {25 until the stopping criteria are
met.

On-line On-line Incr.

) | el

A

A2 /\2(

AR ,\R(‘
- —ho]

Data Blocks
O

| el

Batch

Fig. 1.
approaches when learning from subsequent blocks (21,2, ..
servation subsequences, provided at different time intervals.

Illustration of batch, on-line, and on-line incremental learning
.) of R ob-

On-line learning techniques for HMM parameters can be
broadly divided into EM-based [12] or gradient-based [13],
[15], [14] optimization of the log-likelihood function. These
techniques are essentially derived from their batch counter-
parts, however the key difference is that the optimization
and the HMM update are based on the currently presented
subsequence of observations without iterations. EM-based
techniques employ an indirect maximization of log-likelihood,
through the complete log-likelihood (7), in which the E-step
is performed on each subsequence of observation and then the
model parameters are updated [12]. Gradient-based techniques

however directly maximize the log-likelihood function (3) and
then update HMM parameters after processing each subse-
quence of observation. Several gradient-based optimization
algorithms have been proposed, such as the GD algorithm [13],
the exponentiated gradient framework which also minimizes
the model parameters divergence [14], and the recursive esti-
mation technique [15].

The on-line learning technique proposed by Mizuno et al.
is based on the BW algorithm, however applies a decayed
accumulation of the state densities and a direct update of the
model parameters after each subsequence of observations [12].
Starting with an initial model)\, the conditional state densities
are recursively computed after processing each subsequence
(r) of observations of length 7" by:

ZE”“ = (1—n,) Zﬁt (i, 5) +m2£ﬁ1w
t=1 t=

12)

T
Zvr“ Sok = (1= 1) > _ 77 (j otk+m2¢“
t=1
(13)

and the model parameters are then directly updated using (8).
The learning rate 7y is proposed in polynomial form 7, =
(1) for some positive constants ¢ and d.

Based on the GD (9) of the negative likelihood, the on-
line algorithm for HMM parameters estimations introduced
by Baldi and Chauvin [13] employs a softmax parametrization
to transform the constraint optimization into an unconstrained
one. This is achieved by mapping the bounded space (a, b) to
the unbounded space (u,v):

elii evi (k)
Zk o and b;(k) = 7ZZ 70

The transformed parameters are then updated, after each
subsequence of observations, as follows:

r+1 r+1
- uzy + n E

(14)

Qi =

—agy (D) A5)

v (k) =

; — b (k) ()

(16)

T
B)+1) (37 (5)00sk

The objective function proposed by Singer et al. [14] mini-
mizes the divergence between the old and new model param-
eters penalized by the negative log-likelihood of each subse-
quence multiplied by a fixed positive learning rate (1 > 0):

AL argmgn (KL A7) = nlp(A™Hh) o))

The Kullback-Leibler (K L) divergence (or relative entropy) is
defined between two probability distributions Py) (01.;) and
Py(01.¢) by:

Ar(01:4)

KL(PAT || PA ZPI‘ 01:¢ 10gﬁ

(18)

KL is always non-negative and attains its global minimum
at zero for Pry — Pry-. This optimization is based on the
exponentiated gradient framework, therefore the parameters
constraints are respected implicitly. After processing each sub-
sequence of observations, the model parameters are updated
using the conditional state densities and the derivatives of the
log-likelihood ((10) and (11)):

1 (7 n BET(AT+1>)
1. Da.s
a;]TH:fZ a;je ST ij (19)
1
1 (- SH)
T Id - P
b (k) = b (k)e\ ETT0 (20)
2

where Z; and Zs are normalization factors.

The idea proposed by Ryden [15] is to consider successive
subsequences of 7' observations taken from a data stream,
o, = {0(—1)1+41,.--,0r7}, as independent of each other.
This assumption reduces the extraction of information from
all the previous observations to a data-segment of length
T. In fact, this has been considered implicitly with all the
above techniques that process multiple subsequences of T
observations. To enforce parameters stochastic constraints (1),
a projection (IP) on a simplex is suggested, which updates all
but one of the parameters in each row of the matrices. At each
iteration, the recursion is given (without matrix inversion)

N =Pg (X + k(041 | A7) 1)

where h(o,41 | A7) = Var log Pr(o,41 | A") and 1, = nor "
for some positive constant 79 and p € (3,1]. It was shown
to converge almost surely to the set of Kuhn—Tucker points
for minimizing the Kullback-Leibler divergence K Lj(\" ||
)\(”“e)) defined in (18). KL attains its global minimum at
AT — \(true) provided that the HMM is identifiable, therefore
the subsequence must contains at least two symbols (7" > 2).

On-line learning algorithms are therefore proposed for situ-
ations where a long (ideally infinite) sequences of observation
are provided for training. In this paper however, these tech-
niques are applied in an on-line incremental fashion, where
algorithms are allowed to converge over several iterations
of each new training block. However, when a new block is
provided all learning rates are reset.

IV. EXPERIMENTAL METHODOLOGY

The University of New Mexico (UNM) data sets are com-
monly used for benchmarking ADS based on system calls
sequences. Normal data are collected from a monitored process
in a secured environment, while testing data are the collection
of the system calls when this process is under attack [2].
Since it is very difficult to isolate the manifestation of an
attack at the system call level, the UNM test sets are not
labeled. Therefore, in related work, intrusive sequences are
usually labeled in comparison with the normal subsequences,
(e.g., using STIDE). This labeling process leads to a biased
evaluation of techniques, which depends on both training data
size and detector window size.

The need to overcome issues encountered when using real-
world data for anomaly-based HIDS (incomplete data for
training, and labeled data) has lead to the implementation of a
synthetic data generation platform for proof-of-concept simu-
lations. It is intended to provide normal data for training and
labeled data (normal and anomalous) for testing. This is done
by simulating different processes with various complexities
then injecting anomalies in known locations.

Inspired by the work of Tan and Maxion [19], [20], the data
generator is based on the Conditional Relative Entropy (CRE)
of a source. It is defined as the conditional entropy divided by
the maximum entropy (MaxEnt) of that source, which gives
an irregularity index to the generated data. For two random
variables x and y the CRE can be computed by:

=2, p(@) 3, ply | 2) logp(y | @)
- MaxEnt

where for an alphabet of size ¥ symbols, MaxEnt =
—Y.log(1/%) is the entropy of a theoretical source in which all
symbols are equiprobale. It normalizes the conditional entropy
values between C'RE = 0 (perfect regularity) and CRE =1
(complete irregularity or random). In a subsequence of system
calls, the conditional probability, p(y |), represents the
probability of the next system call given the current one. It
can be represented as the columns and rows (respectively)
of a Markov Model with the transition matrix M = {a;;},
where a;; = p(Si+1 = j | Sy = 1) is the transition probability
from state ¢ at time ¢ to state j at time ¢ + 1. Accordingly,
for a specific alphabet size ¥ and CRE value, a Markov
chain is first constructed, then used as a generative model
for normal data. This Markov chain is also used for labeling
injected anomalies as described below. Let an anomalous event
be defined as a surprising event which does not belong to
the process normal pattern. This type of event may be a
foreign-symbol anomaly subsequence that contains symbols
not included in the process normal alphabet, a foreign n-gram
anomaly subsequence that contains n-grams not present in the
process normal data, or a rare n-gram anomaly subsequence
that contains n-grams that are infrequent in the process normal
data and occurs in burst during the test*.

Generating training data consists of constructing Markov
transition matrices for an alphabet of size > symbols with the
desired irregularity index (CRE) for the normal sequences.
The normal data sequence with the desired length is then
produced with the Markov chain, and segmented using a
sliding window (shift one) of a fixed size, DW. To produce
the anomalous data, a random sequence (CRE = 1) is
generated, using the same alphabet size 3, and segmented into
subsequences of a desired length using a sliding window with
a fixed size of AS. Then, the original generative Markov chain
is used to compute the likelihood of each subsequence. If the
likelihood is lower than a threshold it is labeled as anomaly.
The threshold is set to (min(a;;))*%~1,V; ;, the minimal

CRE (22)

4This is in contrast with other work which consider rare event as anomalies.
Rare events are normal, however they may be suspicious if they occurs in high
frequency over a short period of time.

value in the Markov transition matrix to the power (AS — 1),
which is the number of symbol transitions in the subsequence
of size AS. This ensures that the anomalous subsequences of
size AS are not associated with the process normal behavior,
and hence foreign n-gram anomalies are collected. The trivial
case of foreign-symbol anomaly is disregarded since it is easy
to be detected. Rare n-gram anomalies are not considered since
we seek to investigate the performance at the detection level,
and such kind of anomalies are accounted for at a higher level
by computing the frequency of rare events over a local region.
Finally, to create the testing data another normal sequence is
generated, segmented and labeled as normal. The collected
anomalies of the same length are then injected into those
subsequences at random according to a mixing ratio.

In the presented experiments, a normal data sequence of
length 1,600 symbols is produced using a Markov model with
an irregularity index CRE = 0.4, and segmented using a
sliding window of a fixed size, DW = 8 [7]. The data are then
divided into 10 blocks, €2;, for ¢ = 1,...10, each comprises
R = 20 subsequences. A test set of 400 subsequences each
of size AS = 8 is prepared as described above. It comprises
75% of normal and 25% of anomalous data. Each block of
the normal data €; is divided into blocks of equal size —
one is used for training (Qf“”") and the other for validation
(Qvatidy which is used to reduce the overfitting effects (hold-
out validation).

For batch algorithms (BW-batch and GD-batch), successive
blocks for training are accumulated and training is restarted
each time a new block is presented. That is, the HMMs are first
trained and validated on the first block of data (€2frain Qyalid),
The training is then restarted, by re-initializing the models
at random, and performing the batch algorithms using the
accumulated blocks of data (Q4in U QLrain Qualid | Qualid)
and so on. In contrast, the on-line incremental algorithms
resume training by starting with the corresponding models
produced from the previous block and by using the presented
block only (Qfrain Qualidy The stopping criterion for the
batch and the on-line incremental algorithms is set to a
maximum of 100 iterations or to when the log-likelihood
remains constant for at least 10 iterations for the validation
data. On-line learning algorithms are not allowed to iterate on
successive blocks of data. In this case, all learning rates are
optimized and reset with the presentation of each new block.
In all cases, the algorithms are applied to an ergodic (fully
connected) HMM with eight hidden states (/N = 8), and are
initialized with the same random model. For each algorithm,
the model that produced the highest log-likelihood value on
the validation data is selected for testing.

The log-likelihood of the test data (normal + anomalous)
are then evaluated using the forward algorithm. By sorting the
test subsequences decreasing by these log-likelihood values,
and updating the true positive rate (tpr) and the false positive
rate (fpr) while moving down the list, results in a Receiver
Operating Characteristics (ROC) curves [17]. The ROC curve
depicts the trade-off between the tpr — the number of anoma-
lous subsequences correctly detected over the total number of

anomalous subsequences — and the fpr — the number of normal
subsequences detected as anomalous over the total number of
normal subsequences in the test set. The Area Under the ROC
Curve (AUC) is used as a measure of performance. AUC =1
means a perfect separation between normal and anomalous
(tpr = 100%, fpr = 0%), while AUC = 0.5 means a random
classification.

This procedure is replicated ten times with different training,
validation and testing sets, and the resulting AUCs are aver-
aged and presented along with their standard deviations (error
bars). Although not show in this paper, various experiments
have been conducted using different values of N, CRE, DW
and X. These experiments produced similar results and hence
the below discussion hold.

V. RESULTS

The EM-based algorithm (Mizuno [12]), and the gradient-
based ones (Baldi [13], Singer [14], and Ryden [15]) are first
applied in an on-line learning approach as originally proposed
by the authors. Figure 2 presents the average AUC achieved
for on-line techniques for each block of training data. The
results of the batch BW and GD algorithms are presented for
reference.

1
0.95-

09r
0.85

/
o.s---%-

0.75

AUC

—<— BW(batch)
P —&— GD(batch)
% — = = Mizuno
- 3 - Baldi
— 77 — Singer
-7 - Ryden
T

0.7

0.65 I I I I
0 2 4 6 8 10 12

Number of Blocks

Fig. 2. Average AUC of on-line learning techniques vs the amount of training
data that are used to train an ergodic HMM with N = 8.

The performances of the on-line algorithms tend to be
equivalent with the increase of data. This is also confirmed
by the statistical tests, conducted at the final block of data
as shown in Figure 4. However, at the beginning, when few
blocks of data are presented, the EM-based algorithm performs
better than gradient-based ones. Due to one view of the data,
on-line algorithms require a large amount of data to achieve
good performance. Theoretically, an infinite amount of data
is assumed when trying to prove the convergence of such
on-line algorithms. Among the presented techniques, only
Ryden provided convergence analysis and proof of consistency
[15]. The average performances of the batch algorithms are

equivalent and increase with the number of blocks. This is
expected, since the batch algorithms are allowed to iterate on
the accumulated data, they have therefore a global (backward)
view.

Figure 3 presents the averaged AUC achieved by on-line
incremental techniques for each block of training data. The
average AUC of the on-line incremental algorithms are lower
than the performance of batch and higher than that of the on-
line ones. In fact, these algorithms have a local view of the
presented data. Although they are allowed to learn the new
data through several iterations, there is a loss of information
form the previously learned data. This is usually controlled
with the decaying learning rate, which assigns a weight to the
past information with reference to the future data contribution.

Among the on-line incremental algorithms, statistical testing
shows that Baldi’s algorithm [13] achieved slightly superior
performance than the others as shown in Figure 4. This is
possibly related to the short length of training subsequences
(DW = 8). The other on-line incremental algorithms may
require larger subsequences to accumulate enough information
from each one before updating the model parameters. For
instance, Ryden [15] suggests using a minimum subsequence
length of DW = 20.

1-
0.95

0.9

S o085
So

0.8

—>— BW(batch)

—&— GD(batch)

- [& = Mizuno

— 3 - Baldi

— 7 — Singer

=%/ — Ryden
BW(ib)
Hoang

0.7 L 1 1 1 T)

0 8

6
Number of Blocks

Fig. 3. Average AUC of on-line incremental learning techniques vs the
amount of training data that are used to train an ergodic HMM with N = 8.

However, the stochastic nature of the on-line incremental
algorithms allows them to escape local minima. This important
characteristic can be shown when both batch and incremental
algorithms are trained on the same data. For instance, this is
illustrated when learning the first block in Figure 3. It can be
seen that on-line incremental algorithms are capable of pro-
ducing superior results to their batch counterparts. Therefore,
they may be used as an alternative for batch training, especially
that they converge faster than the batch algorithms since they
update the model after each subsequence and hence exploit
new information faster.

Figure 3 also presents the results of the BW incremental

batch, BW(ib) for reference. That is, when learning €2;, BW
is initialized with a random HMM and the algorithm is applied
until it converges. For the subsequent block €25, BW is then
initialized with A\;. The performance of BW(ib) indicates data
corruption since it is prone to get stuck in a local minimum
from the previous block. Interestingly, this straightforward
EM-based solutions produced similar results to Mizuno [12].
This indicates that the learning rates employed by the latter
during the experiments may be better optimized to escape local
minima.

In addition, Figure 3 includes another incremental approach
based on learning an HMM for each new block of data
then merging it with old ones using weight-averaging [16].
This learn and merge approach performed statistically worse
than most of the on-line incremental techniques as shown in
Figure 4. This is due to averaging ergodic HMMs since the
states order may be mixed up between the HMM trained on
the first block and that trained on the second block of data.

\ \
BW —e—— -
GDf —e— -
Mizuno(OL) - —o— il
Baldi(OL) —_—]
Singer(OL) —— i
Ryden(OL) - - il
Mizuno(OIL) DS e i
Baldi(OIL) D]
Singer(OIL) - —_—— =
Ryden(OIL) —_— il
BW(ib) | S -
Hoang i

\ \ \ \ \ \ \

0 20 40 60 80 100 120
Fig. 4. Kruskall-Wallis (one-way analysis of variance) statistical test for

batch, on-line (OL) and on-line incremental learning (OIL) algorithms after
processing the final block 21¢ of data.

Table I compares the time and memory complexity of
EM-based and gradient-based algorithms each processing a
subsequence of 7' observations and then updating the model
parameters. This represents the core operations required by all
learning approaches. Time complexity represents the worst-
case number of operations required for one iteration of EM-
based and gradient-based algorithms. For both algorithms one
iteration involves computing one forward and one backward
pass with o1.,7. Memory complexity is the worst-case number
of 32 bit words needed by the algorithms to store the required
temporary variables in RAM. Since both algorithms rely on
the FB or FFBS to compute the state conditional densities
(Egs. 5 and 6), therefore they require about the same com-
putational time complexity, O(N?T'), and the same memory
requirements, O(NT). The additional computation time re-
quired by the gradient-based algorithms while updating HMM
parameters stems from the re-parametrization (Section 3).

For a block of R subsequences, batch learning involves R
times the computations of the state densities whereas only
one update of the parameters is performed at each iteration.
On the other hand, the on-line algorithms perform R times
the computation of state densities and R times the update of
the model, without iterating however. On-line algorithms are
therefore the fastest in learning HMM parameters. At each
iteration, the on-line incremental algorithms require the same

TABLE I
WORST-CASE TIME AND MEMORY COMPLEXITY ANALYSIS FOR EM- AND GRADIENT-BASED ALGORITHMS EACH PROCESSING A SUBSEQUENCE OF 1"
OBSERVATIONS, WITH AN N STATE HMM STATES AND AN ALPHABET OF SIZE 3 = M SYMBOLS. THIS REPRESENTS THE CORE OPERATIONS REQUIRED
BY BATCH, ON-LINE AND ON-LINE INCREMENTAL ALGORITHMS, THE DIFFERENCES STEM FROM ITERATING UNTIL CONVERGENCE.

Algorithms Estimation Time Memory
Multiplications # Divisions # Exponentiation
State Prob. (Eqs. 5 & 6) | 6N2T 4+ 3NT —6N? — N N2T 4+ 3NT — N2 - N NT + N2 + 2N
. 2 2 2
EM-based Transition Prob. (A) N N N
Emission Prob. (B) NM NM NM
2 _ 2
Total 6N"T +3NT — 5N N2T +3NT +MN — N NT +2N? + NM + 2N
+NM — N
State Prob. (Eqs. 5 & 6) | 6N?T +3NT —6N2 - N N2T+4+3NT — N2> - N NT + N2 + 2N
i 2 2 2 2
Gradient-based Transition Prob. (A) N N N N
Emission Prob. (B) NM MN NM NM
2 _ 2
Total 6N T]J:[;/][VTN5N N2T +3NT +MN — N N2+ NM NT +2N? + NM + 2N
+ —

computational time need by the on-line ones. Accordingly,
the on-line incremental techniques require more computational
time per iteration than the batch counterparts, however fewer
iterations are required to converge. The memory complexity
of the on-line algorithms is constant in time, O(NT'), and also
for the on-line incremental ones though it is R times greater.
However, for batch algorithms this value scales linearly with
the number of the accumulated subsequences.

VI. CONCLUSION

In this paper, the performance of several techniques is com-
pared for on-line incremental learning of HMM parameters
as new sequences of training data becomes available. These
techniques are considered for updating host-based intrusion
detection systems from system calls to the OS kernel, but apply
to other HMM-based detection systems that face the chal-
lenges associated with limited training data and environmental
changes. Results have shown that techniques for on-line incre-
mental learning of HMM parameters can provide a higher level
of discrimination than those for on-line learning, yet require
significantly fewer resources than with batch training. On-
line incremental learning techniques may provide a promising
solution for adaptive intrusion detection systems. Future work
includes in-depth investigation of the learning rates effects on
performances, which are sensitive parameters especially for
gradient-based techniques. Comparing these techniques with
models combinations at the training level or responses fusion
at the decision level is also an interesting direction to explore.

REFERENCES

[11 S. Forrest, S. A. Hofmeyr, A. Somayaji, and T. A. Longstaff, “A sense of
self for Unix processes,” in Proc. of the 1996 IEEE Symp. on Research
in Security and Privacy, 1996, pp. 120-128.

C. Warrender, S. Forrest, and B. Pearlmutter, “Detecting intrusions using
system calls: alternative data models,” in Proc. of the IEEE Computer
Society Symp. on Research in Security and Privacy, 1999, pp. 133-45.
L. Rabiner, “A tutorial on HMM and selected applications in speech
recognition,” Proc. of the IEEE, vol. 77, no. 2, pp. 257-286, 1989.

B. Gao, H.-Y. Ma, and Y.-H. Yang, “HMMs based on anomaly intrusion
detection method,” Proc. of 2002 Int’l Conf. on Machine Learning and
Cybernetics, vol. 1, pp. 381-385, 2002.

[2]

[3]
[4]

[5]

[6]

[7]

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]
[18]

[19]

[20]

X. D. Hoang, J. Hu, and P. Bertok, “A multi-layer model for anomaly
intrusion detection,” in IEEE Int’l Conf. on Networks., vol. 1, 2003, pp.
531-536.

W. Wang, X.-H. Guan, and X.-L. Zhang, “Modeling program behaviors
by HMMs for intrusion detection,” Proc. of 2004 Int’l Conf. on Machine
Learning and Cybernetics, vol. 5, pp. 2830-2835, 2004.

W. Khreich, E. Granger, R. Sabourin, and A. Miri, “Combining hidden
markov models for anomaly detection,” in International Conference on
Communications (ICC), Dresden, Germany, 2009.

L. E. Baum, G. S. Petrie, and N. Weiss, “A maximization technique
occuring in the statistical analysis of probabilistic functions of Markov
chains,” Ann. Math. Stat., vol. 41, no. 1, pp. 164-171, 1970.

A. Dempster, N. Laird, and D. Rubin, “Maximum likelihood estimation
from incomplete data via the EM algorithm,” Journal of the Royal
Statistical Society, Series B, vol. 39, no. 1, pp. 1-38, 1977.

S. E. Levinson, L. R. Rabiner, and M. M. Sondhi, “An introduction
to the application of the theory of probabilistic functions of a Markov
process to automatic speech recognition,” Bell System Tech. J., vol. 62,
pp. 1035-1074, 1983.

R. Polikar, L. Upda, S. Upda, and V. Honavar, “Learn++: an incremental
learning algorithm for supervised neural networks,” IEEE Trans. on
Systems, Man and Cybernetics (C), vol. 31, no. 4, pp. 497-508, 2001.
J. Mizuno, T. Watanabe, K. Ueki, K. Amano, E. Takimoto, and
A. Maruoka, “On-line estimation of hidden Markov model parameters,”
Proc. of 3rd Int’l Conf. Discovery Science, vol. 1967, pp. 155-69, 2000.
P. Baldi and Y. Chauvin, “Smooth on-line learning algorithms for hidden
Markov models,” Neural Computation, vol. 6, no. 2, pp. 307-318, 1994.
Y. Singer and M. K. Warmuth, “Training algorithms for hidden markov
models using entropy based distance functions.” in NIPS, 1996, pp. 641—
647.

T. Ryden, “Asymptotic efficient recursive estimation for incomplete data
models using the observed information,” Metrika, vol. 44, pp. 119-145,
1998.

X. Hoang and J. Hu, “An efficient hidden Markov model training scheme
for anomaly intrusion detection of server applications based on system
calls,” in IEEE Int’l Conf. on Networks., vol. 2, 2004, pp. 470-474.

T. Fawcett, “An introduction to ROC analysis,” Pattern Recognition
Letter., vol. 27, no. 8, pp. 861-874, 2006.

Y. Ephraim and N. Merhav, “Hidden markov processes,” IEEE Trans-
actions on Information Theory, vol. 48, no. 6, pp. 1518-1569, 2002.
R. Maxion and K. Tan, “Benchmarking anomaly-based detection sys-
tems,” in Proc. of the 2000 Int’l Conf. on Dependable Systems and
Networks, 2000, pp. 623-630.

K. Tan and R. Maxion, “Determining the operational limits of an
anomaly-based intrusion detector,” IEEE J. on Selected Areas in Com-
munications, vol. 21, no. 1, pp. 96-110, 2003.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

