Creating and Evaluating Goal Ordering Structures
for Testing Harbour Patrol and Interception Policies

Chris Thornton, Tom Flanagan, Jorg Denzinger
Department of Computer Science, University of Calgary
Calgary, Canada

Internal Report 2010 955-04
Department of Computer Science, University of Calgary

March 23, 2010

Abstract

In this article, we discuss a method for testing policies that guide
groups of agents in simulations for interactions with other agents and
the environment that reveal weaknesses of these policies. Our method
is based on learning interaction sequences using particle swarm sys-
tems and has as one crucial component so-called goal ordering struc-
tures that are used to guide the learning towards weakness-revealing
interactions. Our discussion centers around the different ways a new
measuring idea can be integrated into such an ordering structure using
the example of testing patrol and interception policies for harbours.
Our experimental evaluation reveals that the position of placement of
a new measure in an existing ordering structure can greatly influence
the testing results, positively and negatively, but mostly mirrors the
intuition associated with the placement.

1 Introduction

One of the key uses of simulations is to provide decision support to human
decision makers by giving them an idea of the consequences of particular
decisions without having to really implement the decisions in the real world
(see, for example, [18] or [2]). While often the decision makers evaluate their
decisions based on some quality measures, in early stages of their simulations
the focus is often on just testing certain decision strategies with regards
to producing some expected results. Especially for problems that involve
groups of agents and their interactions, simulation runs are first used to
see if the individual decision making of agents achieves the intended group
behavior (emergent behavior) and if the decisions regarding the environment
in which the agents interact produce the intended effects on the agents.

So, while the use of simulations to test if decisions, decision policies, or
cooperation concepts achieve the intentions behind them is a very estab-
lished use of simulations, in the last few years we have seen first approaches
that use simulations to find weaknesses in the policies that guide decisions or
the cooperation concepts for some or all the agents in a system. In contrast
to the established use of simulations for testing, this new use, if automated,
requires searching for agent behaviors or events and event sequences in the
environment that reveal weaknesses of a certain type, which obviously is
much harder than just running a single simulation. In fact, in works like
[14] or [7], simulation runs are the central piece of the evaluation of candi-
dates for behaviors or events that might reveal weaknesses. But the creation
of these candidates and the process of trying to improve them to reach one
that really reveals a weakness is the task of a system build around the simu-
lation system. Different evolutionary search (or learning) approaches are the
basic methods used in such testing systems and most of these approaches
need fitness measures that try to catch the particular test goals while also
reflecting the particular search method used. And the underlying simula-
tions usually offer many good candidates for such measures, so that creating
a good fitness function is a key problem for these kinds of testing systems.

Testing is not the only area where creating an appropriate fitness func-
tion is necessary (see, for example, [6] or [4]), and the experiences from these
other areas show that having to bring together several ideas what a good
individual (in our case of testing individuals represent behaviors or event
sequences) is is usually very difficult and, from a knowledge representation
point of view, very indirect, usually introducing additional parameters that
need to be chosen well to achieve the wanted results. For many complex
testing purposes, we need to be able to define things like subgoals and al-

ternatives within the guidance for a search, which needs to be kept explicit,
thus clashing with the idea of a single fitness function needed in many evolu-
tionary approaches. Fortunately, there are search methods that do not need
a fitness measure heavily involved in their search controls, needing only to
be able to compare two individuals and, in their multi-objective variants,
accepting uncomparability. One of these search methods is particle swarm
optimization (PSO). In [7], we used PSO to do a simulation based testing
of harbour security policies and their implementation.

A key component of the approach of [7] are so-called ordering structures
that are used to compare individuals (“particles”). Ordering structures al-
low to combine several measures by creating hierarchy levels of measures
where the measures within one level of the hierarchy are treated like mul-
tiple objectives (as in multi-objective optimization, see [20]). And only if
two individuals are identical with regard to one hierarchy level, the mea-
sures of the lower levels are used in the comparison. Thus, a sequence of
subgoals can be translated into the different hierarchy levels and measures
for individual agents can be put within a level as different objectives.

In this paper, we present a case study enhancing the ordering structure
from [7] by a new idea for a measure. We look at the consequences of placing
this new measure into different hierarchy levels and using it as measure for
individual agents versus a measure for the whole group of agents. Our ex-
perimental evaluation shows that the extensions mostly create the expected
effects, including improvements of success rate and speed in finding weak-
nesses, resp. deteriorating success for extensions that do not make a lot of
sense, but we also saw some effects that were surprising. The later were
more concerned with order structures that we did not expect much from
and the surprises were the fact that we had more testing success than we
expected, showing that the underlying testing idea is rather strong.

2 Basic concepts

In this section, we first present the basic concept of testing policies for
agents using learning of cooperative behavior in simulations (which we will
instantiate in the next section to testing harbour patrol and interception
policies). Then we introduce particle swarm system (PSS) based search,
especially PSS for multi-objective optimization, which will be the search
method we use for testing policies.

2.1 Testing by learning behavior

As already stated, simulations allow to evaluate decision or cooperation poli-
cies by having agents that follow these policies interact within a (naturally
also simulated) environment. Usually, policies and environment allow for
some leeway (or, for agents, individuality), so that there can be agents not
following a policy (or only sometimes following it) or several different inter-
pretations of a policy or events in the environment that might occur or not.
Also, there are often many possible start situations for a simulation. For
an actual simulation run, each agent needs a clear strategy that it follows
during the simulation, the events that should occur need to be given to the
simulation system and, naturally, a start situation for the run needs to be
given. If such a run then reveals an unexpected result, a weakness in the
policy employed by the agents (or the set of agents for which a policy is
evaluated) is found.

But, due to the leeway that we usually have, it is rather unlikely that
the first simulation run will result in finding a weakness. Human decision
makers will therefore vary all of the parameters that in the simulation system
express the possible leeway to produce several simulation runs and if none
of those runs reveal weaknesses at one point the decision makers will be
satisfied that the policy they test works. This naturally does not mean that
there is no weakness in the policy. In fact, it is highly dependent on the
decision makers and the available time how likely it is that a certain weakness
of a policy is detected or not. Therefore, an automated testing approach is
favorable, since it at least does not depend on whether a novice or expert
decision maker is doing the testing and whether the human decision maker
has a good or bad day.

Figure 1 describes the general structure of an automated policy testing
system on top of a simulation system. At the core of such a system is the
environment Env simulated by the simulation system. Within Enwv, there
can be three kinds of agents. The set A,o = {Agpoi,15---»AGpoi.m} is the
set of agents that represent the policy that we are testing. “Represent”
in this context means that these agents follow the policy in all their ac-
tions. The agents in the set Aopher = {AGother,1;---»AJother ke }>» Which can be
empty, are agents that do not follow the policy, are not under the control
of the tester, but still participate in the simulation. Finally, the set Asest =
{Agtest 1, AGtest.n } represents the agents in the simulation that the tester
can control. Again, A« can be empty (if the tester is only allowed to create
events in the environment, see below), but -as already stated- many policies
allow for some leeway and the agents in A;.s; model these agents for which

Simulation

System ‘ A pol,1 e ‘ A pol,m
L
ENnV :

A A A
7777777777777777777777777 .
| Y Y L :
|
: ‘ Hevents ‘ gtea,l ‘ ﬂy test,n :

;)) [
! |
| |
! feedback \
| |
| |
| |
| |

|

Figure 1: Testing policies by learning cooperative behavior

this leeway is to be explored. During a simulation, not only the actions of
the agents create events. It is also possible that events in the environment
are just happening, for example, it can become night (or, after that, day
again) in the simulation. And some of these events fall into the leeway area
that we want to explore, like, for example, it snowing in a traffic simulation.
For such events that can be caused by the tester, we model their schedul-
ing by having an explicit agent, Ageyents, that is able to tell the simulation
system when particular events are happening.

With a system as sketched above, testing the policies represented by the
agents in A, for weaknesses can be automated by having a machine learner
that learns behaviors for the agents in Ajes; and for Ageyents that reveal a
weakness when these agents interact with Env and the other agents in the
simulation system. A learning approach using feedback from simulation
runs is necessary, since usually there are a large number of behaviors for the
agents in Ass and also for event sequences for Agepents, SO that it is not
possible to systematically try out all possibilities. Instead, similar to human
decision makers, a learner needs to evaluate the results of simulation runs,
adjust the behaviors of the agents in Ajes; and of Agepents, and repeat this
cycle until a weakness is found or the resources set aside for testing are used
up.

In the following, we will denote with Act;cs; the set of possible actions
that an agent Agest; can perform and with Actepents the events Ageyents
can invoke in the simulation system. During a simulation run, the learner

receives feedback in the form of environment states e, so that, from the
learner’s perspective, a simulation run is represented by a sequence (or
trace) eg,e1,...,e; of such states. If the sequence of actions taken by Agiest i
is (ail,til),...,(aili,t,-ll.) with Q5 € ACttest,i and tij the time (Within the sim-
ulation run) that Agies; starts performing a;;, then obviously the environ-
mental state after each action is performed by any of the Agses: ;s should be
included into egp,eq,...,, (and the same should be true for the states after
each event triggered by Ageyents). But there can be more environment states
that are considered by the learner.

There are many possibilities how the machine learner can be realized.
Naturally, the concrete agent architecture(s) used for the Agics: ;s has some
influence on how the learning has to be performed, as have the application
area and the simulation system. The machine learning method we used in
our experiments is based on the concept of particle swarm systems, that we
introduce in the next subsection.

2.2 Particle Swarm Systems

Particle Swarm Systems (PSS, see [11]) are inspired by physics and biology,
enhancing the idea of a moving particle with the attraction behavior of
members of a swarm, to perform a search in a solution space (or an extention
of such a space). In a PSS, the search state is represented by a set of [
particles p; each of which is characterised by its current position pos;, its
current velocity v;, and its best position best; in the past. The position
of a particle is usually a vector of continuous variables that represent a
solution to the instance of the search problem the PSS is aimed at solving
and discrete variables are dealt with by rounding a continuous variable to
the nearest allowed value. In the basic case of a PSS there is a single function
f describing the quality of a solution/position and the goal of the search is
to find a solution that is as good as possible with regard to f.

The search in the basic case is performed by updating each particle in
the state according to the following equations:

v = Wo; + Cyr(best; — pos;) + Core(Best — pos;), (1)
posi® = pos; + v, (2)

where W is a weight parameter controlling the influence of the previous
velocity, C1 is the so-called cognitive learning factor, Co the so-called social
learning factor and r1,ro € [0,1] are random values chosen by the search
control. Best is the best position the whole swarm has found so far. If a

particle reaches a new best position, i.e. f(pos}“") is better than f(best;),
then best; is updated, i.e. best!*” = pos}'®?’, else it stays, i.e. best!“" =
best;. From the point of view of a particle, a sequence of updates has it
flying through the solution space and the whole algorithm terminates either
after a given number of update rounds (with Best being the output of the
system) or if Best fulfills certain conditions.

For many applications, including in a certain sense the testing of policies
we look at in this article, there is no single function f describing what is
searched for, but instead we have a vector f = (f1,...,fq) of quality or goal
functions, which moves these applications into the area of multi-objective
optimisation. In most of these cases, we are then not interested anymore in
a single solution (although in our application this is not exactly the case,
see Section 3.2), since there is not one position that is optimal for all goal
functions, instead positions that are very good for one f; often are not so
good for an f; (with ¢ # j). A key concept of multi-objective optimisation
(and for our ordering structures) is the domination of one solution z; over
a solution xo, denoted by x1 ~F o which is defined by f;(x1) > fi(zs) for

all 4 (if our goal is to maximise all functions in f) The subset PF of all
possible solutions Sol to a multi-objective optimisation problem where for
each x1 € PF we have that there is no xs € Sol, x1 # x2, such that xo
dominates x1 is the so-called Pareto-front of the particular instance of the
problem.

PSS is among the search concepts that can be easily extended to deal
with multi-objective optimization, in fact there are quite a few variants for
this extention (see [20] for an overview). Fortunately, for our application we
can use a rather primitive variant. We extend the definition of a particle to
a triple p; = (pos;,v;,Ownbest;), where the set Ownbest; is used to record
all previous positions of p; that are not dominated by any of the other
previous positions of p;. Instead of just one solution Best for the whole
particle swarm, we select the position Best in Equation (1) out of the sets
Ownbest(;_1) moq 1 and Ownbest (i 1) moq 1 0f non-dominated solutions of
the “neighbours” of particle p;. The selection is done randomly every time
Equation (1) is applied, as is the selection of an element from OQwnbest; to
play the role of best; in (1). After the new position of p; is created, it is
checked if it is dominated by an element of Ownbest;. If it is not, it is added
to Ownbest; and all elements in Ownbest; that are dominated by pos;“"
are removed from it. Again, the search is finished if a given time limit or
number of updates is reached or the union of all Ownbest;s fulfills certain
conditions.

3 Testing of harbour security policies

In this section, we will first present our application problem, testing harbour
patrol and interception policies, and the simulation system we use to do so.
Then we present the instantiation of our testing approach from Section 2.1
using particle swarm systems to implement the machine learner, after which
we will focus on different ordering structures.

3.1 Harbour simulations for patrol and interception policies

Due to the large number of goods that pass through them, large commer-
cial harbours represent an important part of a country’s infrastructure that
needs to be protected from harm. Some harbours additionally house mil-
itary installations that add to the possible targets for terrorists. And the
safety of harbours needs to be achieved with a lot of legitimate users of
these harbours following their own agendas and requiring access to various
parts of a harbour. As a consequence, various policies for different types
of harbour users and defenders are needed to ensure harbour security and
the interplay of these policies is in no way trivial and finding weaknesses is
an important task for the policy makers. Even more, already creating the
individual policies can be very difficult, due to various outside limitations
on them, like resource limitations in the number of defenders, and a wide
variety of events, as, for example, weather events.

Harbours are also a very good example for why we need to use simula-
tions to test policies. It is definitely too expensive to evaluate any policy
in a real harbour, so that the use of simulations is a must. In this article,
as in [7], we are interested in testing one particular policy around harbours,
namely the policy guiding the patrol and interception vessels whose tasks
are to detect threats to the harbour and to intervene to neutralize these
threats. Using our notations from Figure 1 and Section 2.1, the patrol and
interception vessesls are the Agy.; agents and the important features of
these agents that need to be simulated are their sensor capabilities and the
movement capabilities, the later essentially boils down to the speed with
which vessels do move.

The goal of any policy for the agents in A,, is to detect any possible
threat to installations (or ships) in the harbour, investigate a possible threat
and, if the threat is real, neutralize the threat. The investigation part is
necessary, since there are usually many possibilities how a legitimate harbour
user can look like a threat and “neutralizing” a harmless pleasure boat that
drifted a little bit out of the way, for example, is not an acceptable practice.

In our notations, this means that we have as agents in Ay, the legitimate
users of a harbour and our Ag.s; are the agents that try to attack the
policy used by the defenders in A,,. Naturally, our Ag, ; can initially not
distinguish agents from Agper and Ases;. In our experiments, the agents
in Agese will try to get one of them into a particular spot (target) in the
harbour, which could be the docking slip of a particular ship or a position
from which a certain harbour facility could be destroyed.

The environment Env at the center of our simulation system uses GIS
(Geographic Information System) technology (see [17]) enhanced to simu-
late movement and (sensor-based) perception of all agents. The necessary
geographical data for the GIS for our experiments came from the National
Topographic Data Base (of the Government of Canada) which is available
from [16]. Given our application where the agents are often constantly mov-
ing, we had to decide on how to update the positions of the agents in the
GIS. In our experiments, the movement of all agents is computed in frames
of 1/10ths of a second using Euler integration on forces acting on the vessel.
These forces are boat drag, throttle and the rudder positions as provided by
the vessel. This means that all of these updates are available as environment
states to the learner.

3.2 Using PSS to test harbour patrol and interception poli-
cies

For instantiating our general policy testing scheme from Section 2.1 to test
harbour patrol and interception policies, we need an agent architecture to
realize the agents in As.s; and we need a machine learner that can learn
behaviors for agents using this agent architecture. If we look at the tasks the
attack agents in A;.s have to perform to test harbour security as described in
the last subsection, then an Ag.s ; essentially moves around in the harbour.
When an Ag.st,; reaches the target spot, it obviously will do something that
our tested policy is supposed to prevent, but just reaching the spot reveals
that there is a weakness in the policy, so that we do not really have to care
what happens after that. If an Agyes ; is intercepted and neutralized, there
might also be some things this Ages; can do (like explode in order to take
the Agpol,; that does the intercept out, or resist arrest), but for testing the
policy guiding the agents in A,, what really is of interest is if the Agyo ;
can continue doing tasks and if yes, how long it takes for it to continue after
an intercept. So, also for intercepted Agiest,; we do not need any additional
actions than moving around in the harbour.

So, the agent architecture of an Ages; needs to produce a series of

movements and, since timing is clearly something that is needed to avoid
detection, the speed with which these movements are performed. As stated
in [7], initial experiments using movement actions (as in [5]) showed that
having the learner figure out how to avoid obstacles is not very successful,
since the learn focus is not on finding weaknesses of the security policy any-
more. Therefore we moved to an agent architecture that has the agent move
between waypoints (with a certain speed; this means that Actyes:; is the set
of all waypoint-speed pairs). Since avoiding obstacles is still something that
should not be figured out by the learner, we have as part of the agent archi-
tecture that an agent uses a path planner to determine how to get from one
given waypoint to the next one. This path planner (we used a standard one,
as described in [9]) creates additional, low-level waypoints that minimize the
path between two high-level waypoints and an agent, when given a sequence
of high-level waypoints, first creates the additional low-level waypoints and
then moves from waypoint to waypoint (following the sequence of combined
high- and low-level waypoints).

Given the agent architecture from above, the behavior of an agent in
Agest, from the point of view of the learner, can then be described as a
sequence of high-level waypoints (x,y) together with the speed speed of the
agent between each pair of following waypoints. In our simulation, speed
is a number between 0.1 and 1 indicating the throttle position of the vessel
while z and y are real numbers. In our current version of our test system, we
are not creating any events in the environment, so that we do not need an
architecture for an agent Ageyents. S0, a behavior is a sequence of numbers,
which now allows us to look at particle swarm systems to learn such a
sequence.

In order to use PSS for our problem, a particle position (or attack strat-
egy) in our system has the general form

(((z1,1,y1,1,5p€€d11) (21,0, Y11, -speedy g,),
(n,15Yn,1,50€€dn 1) s (T by sUn dnsSPEEAR 1))
which is, as mentioned above, a sequence of high-level waypoints with speeds
for each of the agents in Aseq.

As stated before, the learner evaluates a particle by having each agent in
Ayt take its sequence of waypoints (i.e. ((z41,9i,1,5peed; 1),...,(Ti 1, ,Yi 1, ,5peed; 1,))
for Agyest,i) and apply this sequence in a simulation run of the harbour sim-
ulation with the agents from A, implementing the patrol and interception
policy that is tested and the agents from A,pe,. (in our current version,
Aoiher is the empty set; this makes it on the one hand side more difficult for
the agents in A;.q, because they can not use any agents from A,ipe,- to hide

10

behind, but it is also easier on us, since we did not have to come up with
behaviors for the agents in Ayper) as described above. There are several
measures that the learner takes from each particle position’s simulation run
in order to compare particle positions. Since this is at the center of our goal
ordering structures that this article is about, we will look more closely at
this part of our PSS in the next subsection.

Our particles are updated as described in Section 2.2. Naturally, it can
happen that the position update results in a waypoint that puts an agent
on land or in an invalid speed. If a waypoint is not over water, in the
simulation run we substitute this waypoint by the nearest point to it that is
over water. If we have a speed value that is not between 0.1 and 1, we round
to the nearest point in the interval which favors high-speed manouvers. The
initial positions for our particles are created using random values between
0.1 and 1 for all speeds needed and while each waypoint is also randomly
chosen, we limited the randomness by requiring that each waypoint is at
most 600 meters away from its predecessor in the waypoint sequence for
an attack agent. The agents in A start outside the harbour at given
coordinates that are the same in each simulation run. The simulation run
for a particle position ends if either the attack objective is fulfilled (i.e. an
attacker Agiest; reached the target spot in the harbour), or all attackers
have been intercepted (i.e. the policy was successful), or all attackers are at
the end of their sequence of waypoints.

In [7] we also proposed an additional possibility to create a new position
for a particle that is based on the idea of targeted operators in genetic
algorithms from [5]. If the attack strategy represented by a particle position
leads to a point in the simulation where all but one attack agent have been
taken out of the simulation (i.e. they have been intercepted by the agents
in A,q), then we can update the particle so that the next waypoint for the
agent after the waypoint when all other agents are intercepted is changed
to the target spot that the policy we test wants to protect. This reflects the
hope that now the way is clear and that this hope should be tried out.

3.3 Goal ordering structures for breaking harbour security
policies

As stated in the last subsection, the one component of a PSS that we have
not instantiated, yet, is the goal function for the optimization that a PSS
performs. And, as stated in the introduction, for our application there is no
obvious candidate, in fact there are many possible things to measure in a
simulation run that might be useful in stearing the learning process towards

11

finding a weakness in the policy implemented by the agents in A,,. Nat-
urally, a particle position representing a behavior strategy of the attackers
in Agest that results in having one Agyest,; reaching the target spot (with-
out being intercepted) reveals a weakness in the policy and therefore fulfills
the goal of or learning process, but we cannot expect the learner to have a
particle with such a position among the initial positions for the particles.

So, in order to compare particle positions, we need measures out of the
environmental states of a simulation run that tell us how near the behaviors
of the Agiest,;s come to achieving the ultimate goal of finding a weakness, or,
in the case of PSS, we need to be able to compare two positions with regard to
which one is more on the way to achieving the ultimate goal. Initial ideas for
measures are the number of agents in A;.s; not being intercepted, nearness
of Agiest,is to the target, or the distance of the Agestss to the defenders
in A,y (with the later being the better the larger the distance). But all of
these measures capture only aspects of the ultimate goal and there are also
additional problems due to the fact that we have several agents in A,
namely how to combine the measures from the different agents (averaging
them, using the best/worst value among them, summing them up, or some
other combination idea). And, if the policy has the agents in A,y (or at
least some of them) near the target spot, then trying to get near this spot
and trying to stay away from defenders are rather contradictory measures.

To deal with these problems in the context of PSS, in [7] we created
the concept of so-called goal ordering structures that create a hierarchy
of goal measures, where each hierarchy level represents a set of measures
that are treated like the objectives of a multi-objective optimization and
the different levels then essentially represent a lexicographic combination of
orderings. This is a generalization of an idea from [15]. While [7] introduced
goal ordering structures, it only presented one such structure and did not
explore the possibilities around them at all. This exploration is what we
will be doing in this article.

The general idea of a goal ordering structure > can be formally described
as follows. For two particle position vectors pos; and poss, that need to be
compared, a goal ordering structure has the form

({flla"’afllh }7‘”7{fu17"'7fu(Zu})7
(or (fl,..., f_;) for short), where f;; is a quality function assigning an integer
to a trace eg,eq,...,e, of environmental states produced by the strategy for
the attack agents represented by a position when applied in Env interacting
with the other agents. If > denotes the ordering that is created by this
ordering structure, then we have

12

pos1 > posa,
if

posy > posy, or

posy =g, posy and posy >~ f, POsz or

.. OT

pos1 :ﬁ7---7fu11 pPOSo and posy > vecfy POS2-
posy =f posa in this context means that pos; and poss have an identical
quality value in each of the measures f;; in fz (and = FolF is short for = 7
and =7 and ... and =7). As already stated, this essentially represents a
lexicographical combination of multi-objective domination orderings, which
-due to the partiality of the domination orderings- is itself a partial ordering,
so that two positions might not be comparable. Due to this incomparability,
we have to use a multi-objective version of PSS although we have a single
ultimate goal for the PSS to search for.

In Section 4, we instantiate the goal ordering structure concept for our
application of testing harbour security policies using 5 measures, resp. mea-
sure groups: If eg,...,e; is the trace produced by the simulator run for a
particle position pos, then

0, if there is an j, such
that all Agattack,i
are intercepted in e;

1, else

fintercept((607) ex)a pOS) =

with pos; >intercept POS2, if
fintercept((607 ey ex)aposl) > fintercept((607 cey 6;,;),]?082).

1, if there are 7,4, such
that Agattack,; reached
the target spot in e;

0, else

fsuccess((607 ey ex),pos) =

with POS1 » success POS2, if
fsuccess((607 (RS ex),posl) > fsuccess((607 CEE) ex)ap032)-
|z/100]

faisti((€o, .rea),pos) = > dist(e1005; AJattack,i)
=1

—|—d’i8t(€m s Agattack,i)

where dist(e, Agattack,i) is the length of the shortest path created from the
position of Agastack,; in e to the target spot (again computed using path

13

finding). We define pos| > gist; posa, if
fdist,i((e(]7 ceey em)7p081) < fdist,i((607 ceey em)7p082)-

|x/100]
fhide,i((em cey 61‘)7])08) = Z ndiSt(elooj7 Agattack,i)
=1
+ndi3t(ex7 Agatmck,i)

where ndist(e, Agattack,i) is the shortest distance between Aggzack,i) and any
of the vessels in Ayeseq in €. We define posy =pige ; posa, if

Jhide,i((€0, -, €2),P051) > fhidei((€0; .-, €x), POS2).
Finally, in our experiments we will also use a variant of the last measure
to compare using one measure for each agent in a level with a combined
measure for all agents, namely

n
fhidesum((607 ceey ex)apos) = Z fhide,i((607 ceey ex),pos)
i=1

where posi = hidesum P0S2, if
fhidesum((607 E3) ex),p(?sl) > fhidesum((607 xS ex)ap032)-

We used the first three measures in [7] to define the ordering structure

>base as

({fintercept}7 {fdist,la ey fdist,n}y {fsuccess})-

This ordering structure has an attack strategy in which all attackers are in-
tercepted as always worse than a strategy with some of the attackers “alive”
at the end of the simulation run, due to using fintercept @s the sole component
of the first level of the sequence (essentially as a first subgoal for the learner
to achieve). Since, as mentioned above, it is easily possible to achieve the
survival of attackers by simply staying away from the harbour (or at least
the patrol and interception vessels), the second element of the sequence uses
the fgistss to drive the search process towards attack strategies that get
near to the target spot, allowing for individual attackers making progress
individually (with respect to the global search of the learner) because of
treating this component as a multi-objective component using the results
of each attacker as a single objective. The third element in the sequence of
D>pase favours successful attacks over unsuccessful ones.

With the introduction of new measures, more precisely the fp;q4e s and
fhidesum, the question now becomes where to put them into an extension of
the ordering structure >4 to help with the search. Here, helping can have
two meanings, namely on the one hand side to speed up learning successful
attacks (or, given that we will have to use resource limits, having a higher

14

percentage of learning runs that are successful with regard to the ultimate
goal), but, given that >pige; and >pidesum aim at keeping attackers away
from the tested agents, it can also mean directing the search towards new
kinds of attacks!. An additional question is to see which of the two rather
similar measures is better suited, individual measures for agents or a com-
bination (here an accumulation) of these individual measures. If we look
at D>pese, then placing the new measure(s) before or with the first compo-
nent or after or with the last component does not make a lot of sense, so
that we essentially are left with before the second component, in the second
component or after the second component. Putting them into the second
component produces the problem mentioned before, namely having mea-
sures that essentially contradict each other. Therefore we will be looking
in the next section at the following four new goal ordering structures: The
definition of I>pigepe fore 1S

({fintercept}y {fhide,ly cey fhide,n}y {fdist,la ey fdist,n}y {fsuccess})a

D> hideafter cOnsequently is defined as

({fintercept}7 {fdist,la veey fdist,n}y {fhide,la veey fhide,n}y {fsuccess})a

and similarly we have >psumpefore defined as

({fintercept}7 {fhidesum}7 {fdist,ly ooy fdist,n}a {fsuccess})a
and) ﬁnaHY7 D> hsumafter S

({fintercept}7 {fdist,la ey fdist,n}y {fhidesum}7 {fsuccess})'
Given the particular aspects of a simulation run that the different measures
look into, it is our expectation that the ordering structures where we put
the new measures before the distance to the target measures will not be
very successful, since they will allow the learner to keep generating attack
strategies where the agents in A;.s¢ stay away from the harbour. On the
other side, we hope that the ordering structures where we put the new mea-
sures behing the distance component will show an improvement compared
t0 >pgse- And goal ordering structures allow to explicitly represent such
plans for guiding the PSS, which makes them very interesting for testing
policies in simulations.

4 Experimental evaluation

In order to present our experimental evaluation of the different goal odering
structures from the last section, we will first describe the different policies
(and harbours) that we used in our evaluation and the general set-up of the
simulation system and the testing system. Then we will first present and

!Like attacks that do not sacrifice attackers, see Section 4.

15

comment on the quantitative data from our experiments to see whether our
expectations for the different ordering structures are fulfilled. Finally, we
will take a closer look at some of the attack strategies our testing system
found with the different ordering structures.

4.1 Experimental set-up

In our experiments, we used two different harbour patrol and interception
policies. Since we were naturally not able to get any real policies used
for the two harbours we have in our simulations, due to understandable
security concerns?, we had to make up the two policies and we tried to make
them both reasonable and not perfect (with the not perfect part not exactly
being difficult). Both policies have to be considered hugh-level patrol and
interception policies suitable for any harbour and any target spot. Therefore
we have to provide also some information on how these general policies are
instantiated for the individual harbours.

The first patrol and interception policy divides the agents in A,y into
two subtypes, namely patrollers and interceptors, with using the patrollers
to notice potential attackers/intruders and alert the interceptors that then
approach a potential intruder, identify it and, if necessary, take it out. A
patroller updates an alarmed interceptor about the course of the potential
intruder as long as it is in its sensor range. If a potential intruder comes
close enough to a patroller to be identified, then the patroller will take it out.
With the exception of this case, patrollers stay to their predetermined route
through the harbour. The interceptors wait at predefined positions in the
harbour and only become active when alarmed by a patroller. When active,
an interceptor determines the best position to come near to a potential
intruder, based on the information from the patroller. If the intruder is
not detected at that position then the interceptor returns to its waiting
position. By splitting the agents in A,, into two types, resources can be
used in a more dedicated fashion, with the patrollers more sspecialized in
detection and the interceptors with man power and other resources to deal
with intruders. This is policy pat — int.

Our second policy, all — pat, does not distinguish the agents in A4,,;. All
patrollers follow a circuit around the harbour (like a patroller in pat — int)
and the available vessels are evenly spaced on this circuit. If an agent detects
a potential intruder, the available agent closest to the intruder is sent to

2We also were not able to get any old, not used anymore, policies, due to security
concerns, again.

16

Figure 2: The patrol policy pat — int for Esquimalt harbor

identify the boat and if this identification has as result the need to intercept
then this agent will intercept the intruder.

In our simulation system, we have two possible environments, namely
Esquimalt harbour on Vancouver Island in Western Canada and Halifax
harbour in Eastern Canada. The instantiations of the general policies were
hand-coded by us and communication between the agents in A, was achieved
using the GIS. This means that there were no communication failures pos-
sible. For pat —int and Esquimalt this meant having two patrollers and two
interceptors. One patroller circles the mouth of the harbour, while the sec-
ond patroller, the “goaltender”, does a small circle very close to the target.
The two interceptors have their inactive positions near the dock adjacent to
the target spot. The target is placed deep inside the harbour behind a pier
(see Figure 2 for the position of the target, which is the same for all our
experiments with this harbour, and the patrol pattern). Policy pat — int for
Halifax also uses two patrollers and two interceptors, with the same idea for
the patrollers, i.e. one circling the mouth of the harbour and one (Patroller
2 in Figure 10) doing its patrol route relatively near to the target. Figure 10
shows also the positions for the two interceptors when not active, near the

17

Figure 3: The patrol policy all — pat for Halifax harbor

target, which is indicated on the right of the picture (again, this target spot
is the same for all our experiments for this harbour).

For policy all — pat and Esquimalt we used 4 patrollers circling around
inside the harbour. We also used 4 patrollers for the Halifax scenarios .
As can be seen in Figure 3, the patrollers have to do a rather large circuit
on their patrols making them vulnerable for good timed attacks. In all
scenarios, the sensor perception by an Ag,.; was implemented as a circle
around the agent with a radius of 300 meters. In order to identify whether
an agent is a threat or not, an Agy,. ; needs to get within 20 meters of this
agent.

As stated before, the two policies and their instantiations for the two
harbours have weaknesses, even if we limit the number of agents in Ageqt
(to avoid the easy attack of simply having too many attackers and therefore
easily overwhelm the defenders). The limited experiments in [7] showed
weaknesses with regard to being able to sneak by all agents in A, for both
policies and with regard to using some of the agents in As as decoys,
drawing the defenders out of position and then having an attacker cruising
by to the target. We consider the sneaking by without use of decoys as

18

the more dangerous weakness (since there are additional measures involving
other defense units than the agents in A,, that can be activated when the
presence of any intruder is detected) and therefore part of our goal in looking
at new ordering structures was to focus our testing system on finding more
attack strategies that accomplish an attack without being noticed before the
attack goal is reached.

In our experiments, we set the parameters of our testing system as fol-
lows: the PSS parameters were W = 0.8, C7 = 0.2, and Cy = 0.4 (this is
similar to [7]). The number of waypoints for an Ag.s ; in an attack strategy
was 10 and we used 20 particles. We had a maximum of 100 position up-
dates per particle and every entry in Tables 1 and 2 is based on performing
at least 100 runs of the testing system (due to the random factors involved
in the PSS, repeating testing runs, without special measures, results in dif-
ferent outcomes, naturally). While [7] showed that the approach has merrit,
having only 3 runs per scenario is obviously not a good foundation, which is
why we took the opportunity to do a much more careful experimental eval-
uation in this article. Initial experiments showed that the targeted particle
update favored the detection of weaknesses using decoys, so that we are not
using this feature in our experiements.

Given the number of testing runs necessary to populate the tables,
we needed to speed up the whole system and use a cluster of, unfortu-
nately, heterogeneous machines. We achieved a substantial speed-up by
re-implementing the whole system in C++ (instead of the original Python),
so that doing an update of the 100 particles, including the simulation runs
to evaluate them takes around one minute on an iMac with a 2.4 GHz In-
tel Core 2 Duo processor running MacOSX 10.5 (which is the configuration
most of the machines in our cluster have). Due to the heterogenety of the
cluster, we use the average number of particle updates (generation) as speed
measure.

4.2 Quantitative analysis

Table 1 reports the success rates of our testing system for the different test
scenarios and the different goal ordering structures (using either 2 or 3 agents
in Agest). If we look at >pgse, we see that the all — pat policy for Esquimalt
presented more of a challenge for our testing system than the other scenarios,
but still, nearly half of the testing runs were successful (despite not using the
targeted update), so that the basic goal ordering structure is already rather
powerful in helping to reveal weaknesses in the policies. But the ordering
structures that put the new measure in a level after the distance-to-target

19

Harbour: Esquimalt Halifax

Policy: pat — int all — pat pat — int all — pat
Agent numbers: 2 ‘ 3 2 ‘ 3 2 ‘ 3 2 ‘ 3
D> base 67.3 | 74.5 | 46.6 | 57.1 || 77.2 | 84.2 | 68.1 | 92.1
> hideafter 64.0 | 75.5 | 45.7 | 57.7 || 75.5 | 89.6 | 79.5 | 85.4
> hsumafter 67.3 | 77.6 | 45.7 | 58.2 || 73.3 | 88.4 | 75.5 | 88.5
D> hidebe fore 23.6 | 38.6 | 13.6 | 28.6 || 44.9 | 68.3 | 66.7 | 82.6
D> hsumbe fore 9.6 | 34.2 | 15.2 | 19.7 || 53.4 | 68.4 | 68.8 | 89.2

Table 1: Comparisons between goal ordering structures: success rates in
percent

Harbour: Esquimalt Halifax

Policy: pat — int all — pat pat — int all — pat
Agent numbers: 2 ‘ 3 2 ‘ 3 2 ‘ 3 2 ‘ 3
D> base 172 1 16.2 | 16.6 | 15.6 || 23.2 | 21.0 | 18.4 | 16.5
> hidea fter 15.8 | 17.5 | 15.9 | 15.1 || 23.7 | 20.7 | 18.2 | 16.4
D> hsuma fter 16.9 | 16.4 | 14.9 | 14.2 || 22.8 | 19.6 | 18.2 | 16.8
D> hidebe fore 13.2 | 169 | 10.9 | 14.5 || 25.5 | 22.1 | 19.1 | 14.6
D> hsumbe fore 18.1 | 145 | 15.1 | 11.5 || 23.5 | 22.6 | 15.8 | 13.9

Table 2: Comparisons between goal ordering structures: average successful
generation

measures were able to improve the success rates in half of the scenarios, with
the highligt being an improvement of more than 10 percent for ™>p;deqfter
for the two agent attack of the all — pat policy for Halifax. For the scenarios
with no improvements, the success rates were only slightly worse, and the
average number of particle updates to find a weakness was usually less than
for >pgse, see Table 2. The worst difference in success rate was 3 percent. As
expected, having either of the new measures before the distance-to-target
measures was not very successful, although we were surprised that there
were so many successful runs and that those successful runs usually needed
clearly less particle updates than the other ordering structures (see Table 2).
We will look into this in more detail in the next subsection.

As Table 2 shows, the average number of particle updates until a success-
ful attack is found, averaging only over successful runs of the testing system,

20

in general favors D>pideafter a0 D>phsumafter OVEr D>pase. S0, with regard to
putting the new measure after the distance-to-target level, we conclude that
there are some improvements, although not really substantial ones.

With regard to combining the measures of the individual agents or having
them represented individually, our initial expectation was that the fr;gesum-
measure would perform clearly better than using the fp;q4e -measures in a
multi-objective fashion. Our rationale was that while fr;gesum allows for
tradeoffs, i.e. one agents gets nearer to an Agy, ; near the target, but an-
other agents gets farther away from all agents in Ay, the not-dominated
requirement for the fp;q4e -measures would not allow for tradeoffs, but in-
stead many particle positions where one attacker gets nearer to an Ag,o
near the target would be dominated by positions where this particular at-
tacker stays farther away. But, as Table 1 shows, with regard to success rate,
the fhidesum-variant is better than the associated fpiqe -variant 9 times ver-
sus 6 times the other way around (with 1 tie). If we look at Table 2, 10 times
fhidesum s faster than fpiqge ;, with 5 scenarios the other way around (again
with 1 ties). As we will demonstrate in the next subsection, the reason for
this is that we can also achieve some tradeoffs when using fhide; (although
it depends on what initial positions are created for the particles, to allow
for this), which explains the unexpected performance of the fp;ge s

4.3 Selected attack strategies

To look into the differences between the five goal ordering structures, Fig-
ures 4 to 8 present representations of successful attack strategies for pol-
icy pat — int for Esquimalt harbour using two attackers (movies showing
the whole behaviors for all the examples in this section can be found at
http://www.cpsc.ucalgary.ca/~denzinge/papers/Movies/harbour/overview.html).
While Figures 5 to 8 are typical results for the new ordering structures, Fig-
ure 4 represents a found attack strategy that highlights that D> p,s. still allows
for decoys. Looking at Figure 4, Attacker 1 (Atk 1) is initially identified by
Patroller 1 (Pat 1), and according to the policy, the closest interceptor will
come out and deal with the threat, as seen in the second frame. Interceptor
2 (Int 2) reaches Attacker 1, disables it, and returns to its home position.
In the fourth frame, Attacker 2 (Atk 2) begins to enter the harbour, and
heads toward the target zone. It slips by Patroller 2 (Pat 2) without being
detected, and since both interceptors are dormant, will not be spotted as
it makes its way to the target. However, the waypoints take it beyond the
target and into the small inlet before commencing its attack run, as seen in
the sixth frame. Continuing the learning might get rid of this “detour”, but,

21

Pat 2[—\

Atk 1 Int 2
-

~Int 1,

Figure 4: An attack scenario for pat — int in Esquimalt found using t>pgse

as stated before, our testing system stops when the ultimate goal is reached.

Figures 5 and 6 show typical attack strategies for the goal ordering struc-
tures that put the new measures after the distance-to-target measures. In
Figure 5, we see both attackers move closer to the harbour from their start-
ing points, but Attacker 1 does not enter it. Instead, it stays outside of
the sensor envelope of Patroller 1, while Attacker 2 makes another timing
based attack to pass Patroller 2 without being detected before arriving at

22

at 2 Int

Int 2]

/ B / ~HEl

Figure 5: An attack scenario for pat—int in Esquimalt found using > pidea fter

the target. Since this is a timing attack, it is only necessary that one at-
tacker performs the attack, and the goal ordering structures D> pigeqfrer and
D> hsumafter Prefer attack strategies that keep “unnecessary” attackers far
away. This can also be seen in Figure 6, where Attacker 1 makes a direct
attack on the target. It is important to note (see later) that the waypoints
for Attacker 1 are exactly those needed to reach the target, and they form
a nearly straight line between Attacker 1’s starting position and the target.
And, as already stated, Attacker 2 remains very close to its starting position
outside the harbour.

Figures 7 and 8 represent typical successful attack strategies found using
the goal ordering structures that put the new measures before the distance-
to-target measures. In Figure 7, Attacker 2 can be seen briefly in the first
frame, but afterwards it begins its run out to sea, and proceeds rapidly away
from the harbour. Attacker 1 makes a slow zig-zag type of approach to the
harbour, then increases the throttle (as can be seen by the stretching of the
trail in the third frame) to begin its timing attack on the target. In Figure 8,

23

e, P

Atk 1

Atk 2 Atk 2

Figure 6: An attack scenario for pat — int in Esquimalt found using
[>hsumafter

Attacker 2 again plays no significant role in the attack, but, since we are
using the frigesum-variant in the goal ordering structure, it serves as a way
to counterbalance the effects that Attacker 1 has on fr;gesum. After Attacker
1 followed the coastline and was detected by Patroller 1 in the second frame,
Interceptor 2 was dispatched to try and stop Attacker 1. However, Attacker
1 accelerates, and by the time Interceptor 2 arrives, Attacker 1 has moved
far beyond Interceptor 1’s sensor range as seen in the third frame. Attacker
1 then makes its way to the target avoiding being detected by Patroller 2,
and the dormant interceptors, according to policy, do not look out for it.
If we look at the differences between the attack strategies that the differ-
ent ordering structures produced in our testing system for the same problem
scenario, we see that the particular ordering structure clearly influences the
“ideas” behind the attacks. While the ordering structures that put the new
measures after the distance-to-target measures essentially use one attacker
in a timed attack, and have the other attacker stay outside of the harbour

24

(Pat 21nt
Int 2!

e, el

\ e

Atk 1

Figure 7: An attack scenario for pat — int in Esquimalt found using
D> hidebe fore

near its starting point, the ordering structures that give priority to staying
away from detection send one attacker far away from the harbour to coun-
terbalance the need for the other attacker to come near the defenders in
order to achieve the ultimate goal. In order for such a behavior to evolve,
it is important to have among the initial positions already a representant
of this general pattern (i.e. one attacker has entered the harbour and has

25

Figure 8: An attack scenario for pat — int in Esquimalt found using
D> hsumbe fore

come near to the defenders while the other attacker counters this) that is
not dominated by other positions, which explains the relatively low success
rates, but, since such a pattern is also not too uncommon, it also explains
why we have success from time to time.

Another surprising result from our result tables was that there was not so
much difference between the fpigesum- and friqge i-variants of our goal order-

26

ing structure. fridesum allows for counterbalancing between the attackers,
but we did not think that using the fj;4e,s would. But our testing system
found a way for this, namely having the attacker that will later be the suc-
cessful one doing what we call “accumulating hiding credit”. In Figure 5 we
see that Attacker 2 does a little bit of a loop in approaching the harbour
(Attacker 1 shows that there is a more direct way before turing away) creat-
ing more environment states where it stays far away from defenders before
getting near them (which is done rather directly and quickly). Figure 7
shows this accumulation of hiding credit even more clearly by the zig-zag
course of Attacker 1 essentially first going far left and then swing to the far
right before entering the harbour.

All the attack behaviors show clearly how much influence the goal or-
dering structure has on what attack strategies will be developed and that it
is not so easy to predict exactly what the outcome of the learning will be,
at least with regard to details. But they also show that the basic learning
method is rather robust, able to overcome “unuseful” advice by a goal or-
dering structure, which is very important for all kinds of testing. Also, the
found strategies are not exactly along the lines a human would setup tests,
which, again, is very important for testing.

Figures 9 and 10 show two more successful attacks that highlight a fea-
ture of our testing system and a little problem with our implementation of
the policies. In Figure 9, we have another of the successful runs of our system
using >pase- Attacker 1 has a waypoint that is just shy of the shoreline, and
since it was traveling at full throttle, it was not able to turn fast enough to
avoid collision with the land. Despite this, Attacker 2 is still able to find the
right timing to slip between Patrollers 1 and 2 to reach the target area. The
crash is the interesting part of this attack strategy, because it shows that
our learner naturally is not aware of the laws of physics and consequently
the simulator needs to uphold them. Usually, crashing attackers is not good,
so that just based on the feedback the learner will avoid such strategies, but
if there is still success possible, it does not exactly care much. While we do
not have other types of defenders (or emergency personnel and emergency
policies) in our simulation, creating an emergency would be a good way to
draw attention away from the real attack and our learner obviously can do
so (withour even knowing what emergencies are).

In Figure 10, Attacker 2 is initially spotted by Patroller 1 in the second
frame, and as such Interceptor 1 is dispatched. However, Attacker 2 comes
close enough to Patroller 1 to cause the patroller to perform the interception;
as such Interceptor 1 is instructed to return to its initial position. Before
it can make it all the way back however, Patroller 1 spots Attacker 1, and

27

Figure 9: An attack scenario for pat — int in Esquimalt found using t>pgse

instructs Interceptor 2 to intercept. Due to a implementation error (no col-
lision avoidance between the defenders), the positions of the boats cause
Interceptor 1 to collide with Patroller 2 on its way out to make the inter-
ception. According to policy, now Interceptor 2 takes the role of Patroller
2, and begins to follow the patrol route. Attacker 1 can then make it to the
target without being intercepted, even though it is spotted by Interceptor 2
(which is now a patroller, so it will not move to intercept). Our goal ordering
structures clearly were not aiming at testing our policies for errors like this
one, but it was nevertheless detected (although not in many of our testing
runs, obviously). But we consider this as a good example of the abilities of
our approach and especially of the learner that was able to take advantage
of the implementation problem to fulfill its ultimate goal.

28

Figure 10: An attack scenario for pat —int in Halifax found using > p;depe fore

5 Related work

Using simulations for decision support, including testing all kinds of policies,
is the topic of many papers, too many to even provide an overview (which
would be its own paper). Even if we limit ourselves to multi-agent based
simulations, nearly every application is with regard to decision support,
like, for example, [10] in the area of financial market decision making, [1]

29

in the area of tax evasion, or [19] in the area of traffic. But, as stated in
the introduction, the testing of decision policies via simulations is done by
humans in all of these applications.

[13] presents an approach that tries to automate the testing by having
a human supply some typical behaviors and then mutate these behaviors
automatically to achieve some more testing coverage. Our method does not
need human guidance in form of typical behaviors (in fact, this obviously
introduces a clear bias which is not very good with regard to testing) and
it also uses a more sophisticated learning method than just mutations. But
[13] is an example for the works in the area of search-based software testing,
more specifically model-driven testing within this larger area, that has a
large overlap with multi-agent based simulations and testing policies in them
(see [8] for an overview of this area and [22] for a large, although incomplete,
collection of papers around search based Software Engineering, including a
lot of references on search based testing). If the models are executable, then
they can be seen as simulations. Another example from this area is [3], which
is not really a multi-agent based simulation, but finds task combinations that
overstress a (simulated) scheduler. None of these approaches use PSS and
none has something equivalent to our goal ordering structures.

If the goal is not to find weaknesses of a policy or concept, but ways
how the policy or concept can be made to work (which can be seen as the
opposite side of the coin to testing) then there are two approaches involving
path planning in the literature. In [14], evolutionary methods are used to
produce a configuration of an aircraft for a mission. The mission is then
simulated using mostly a conventional path planner, which is similar to how
we create the low-level waypoints. [21] presents an online learning system
based on ant systems that tries to learn how to pass by defenders to reach a
mission target. Naturally, online learning has the risk of bad early decisions
that can make it impossible for the system to solve the given problem despite
the fact that a solution exists. In both papers, the defenders are stationary,
which obviously makes the problems easier than what we deal with. [12]
presents the idea of using learning to, in our terminology, create a policy.
Compared to testing, this is, in our opinion, a much more complex tasks,
since instead of having to find one attack strategy, a policy should be able
to work against all attacks. As such, the reported brittleness, compared to
the robustness of our approach, by the authors of [12] is not surprising.

30

6 Conclusion and future work

We investigated different goal ordering structures for PSS-based learning
of cooperative behaviors for testing harbour security policies using multi-
agent simulations. By learning sequences of high-level waypoints in a spatial
simulation for a group of test agents and adding low-level waypoints using a
conventional path planner to create physically possible behaviors for these
test agents, our method tries to get policy agents that implement the tested
policies to show an unwanted behavior that reveals a weakness in the tested
policy. Goal ordering structures are used to guide the learning and allow for
a rather explicit representation for measurements of interesting aspects of
runs of the underlying simulation system. This provides a user of such an
automated policy testing system with a high-level way to guide the system.

Our experiments with testing harbour patrol and interception policies
showed that goal ordering structures indeed allow a good guidance of the
learning, mostly achieving the predicted effects, but also that there is still
potential for surprises (although most of them were positive). The experi-
ments also provided a few positive side effects, like revealing an error in our
implementation of the policies. Also, many of the learned behaviors that
revealed weaknesses are rather unusual compared to obvious test cases that
humans would create, so that the automated test system represents at least
a good additional testing tool.

Our future work will look into applying our method to other application
areas that use spatial simulations. Also, extensions of our current system,
like adding other harbour users (we are currently collecting data from the
harbours to be able to model some of these users), weather events or more
sophisticated sensor models, and how these extensions have to be incorpo-
rated in the testing problem are part of our future plans. But we are also
interested to find ways to transfer the concept of goal ordering structures to
other evolutionary learning methods that at the moment only allow single
goal functions or at most a group of goal functions that are considered to
be multiple objectives for the search.

References

[1] L. Antunes, J. Balsa, and H. Coelho: Tax Compliance Through MABS:
The Case of Indirect Taxes, MASTA 2007, Guimaraees, 2007, pp. 605—
617.

31

[2]

A. Baldwin, M.C. Mont, and S. Shiu: Using Modelling and Simulation
for Policy Decision Support in Identity Management, Proc. IEEE Inter-
national Symposium on Policies for Distributed Systems and Networks,
London, 2009, pp. 17-24.

L. Briand, Y. Labiche and M. Shousha: Using Genetic Algorithms for
Early Schedulability Analysis and Stress Testing in Real-Time Systems,
Genetic Programming and Evolvable Machines 7(2), 2006, pp. 145-170.

E.D. de Jong, R.A. Watson, and J.B. Pollack: Reducing Bloat and
Promoting Diversity using Multi-Objective Methods, Proc. GECCO-
01, San Francisco, 2001, pp. 11-18.

B. Chan, J. Denzinger, D. Gates, K. Loose, and J. Buchanan: Evo-
lutionary behavior testing of commercial computer games, Proc. CEC
2004, Portland, 2004, pp. 125-132.

J. Denzinger and A. Schur: On Customizing Evolutionary Learning of
Agent Behavior, Proc. 17th Al, London, ON, 2004, pp. 146-160.

T. Flanagan, C. Thornton, and J. Denzinger: Testing harbour patrol
and interception policies using particle-swarm-based learning of behav-
ior, Proc. CISDA-09, Ottawa, 2009, on CD.

M. Harman: The Current State and Future of Search Based Software
Engineering, Proc. 29th ICSE: FoSE, Minneapolis, 2007, pp. 342-357.

P.E. Hart, N.J. Nilsson, and B. Raphael: A Formal Basis for the Heuris-
tic Determination of Minimum Cost Paths, IEEE Trans. Systems Sci-
ence and Cybernetics 4(2), 1968, pp. 100-107.

K. Izumi, H. Matsui, and Y. Matsuo: Socially embedded multi agent
based simulation of financial market, Proc. AAMAS-07, Honolulu, 2007,
p. 175.

J. Kennedy and R.C. Eberhart: Particle swarm optimization, Proc.
IEEE ICNN 1995, Piscataway, 1995, pp. 1942-1948.

F. Kliigl, R. Hatko, and M.V. Butz: Agent Learning Instead of Be-
havior Implementation for Simulations - A Case Study Using Classifier
Systems, Proc. MATES’08, Kaiserslautern, 2008, pp. 111-122.

E. Martin and T. Xie: A fault model and mutation testing of access
control policies, Proc. 16th WWW, Banff, 2007, pp. 667-676.

32

[14]

[15]

[16]

[17]

18]

[19]

[20]

[21]

22]

C. Miles and S.J. Louis: Case-Injection Improves Response Time for a
Real-Time Strategy Game, Proc CIG-05, Colchester, 2005, pp. 149-156.

T.E. Mora, A.B. Sesay, J. Denzinger, H. Golshan, G. Poissant, and
C. Konecnik: Fuel Optimization using biologically-inspired Computa-
tional Models, Proc. IPC 2008, Calgary, 2008 (on CD).

National Resources Canada: GeoGratis - Home,
http://geogratis.cgdi.gc.ca/geogratis/en/index.html, as seen on
Oct. 21, 2009.

P. Parent and R. Church: Evolution of Geographical Information Sys-
tems as Decision Making Tools, Proc. GIS ’87, Falls Church, 1987,
pp. 63-71.

D.J. Power and R. Sharda: Model-Driven DSS: Concepts and Research
Directions, Decision Support Systems 43(3), 2007, pp. 1044-1061.

M. Radecky and P. Gajdos: Intelligent agents for traffic simulation,
Proc. SpringSim’08, New York, 2008, pp. 109-115.

M. Reyes-Sierra and C.A. Coello Coello: Multi-Objective Particle
Swarm Optimizers: A Survey of the State-of-the-Art, Int. Jour. Comp.
Int. Res. 2(3), 2006, pp. 287-308.

J.A. Sauter, R. Matthews, H. Van Dyke Parunak, and S. Brueck-
ner: Evolving adaptive pheromone path planning mechanisms, Proc.
AAMAS-02, Bologna, 2002, pp. 434-440.

SEBASE: Software Engineering By Automated SEarch Repository,
http://www.sebase.org/sbse/publications/, as seen on Oct. 21, 2009.

33

