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Abstract—In this paper, haptic-based handwritten signature
verification using Genetic Programming (GP) classification is
presented. The relevance of different haptic data types (e.g., force,
position, torque, and orientation) in user identity verification is
investigated. In particular, several fitness function are used and
their comparative performance is investigated. They take into
account the unbalance dataset problem (large disparities within
the class distribution), which is present in identity verification
scenarios. GP classifiers using such fitness functions compare
favorably with classical methods. In addition, they lead to simple
equations using a much smaller number of attributes. It was
found that collectively, haptic features were approximately as
equally important as visual features from the point of view of
their contribution to the identity verification process.

I. INTRODUCTION

Haptics, derived from the Greek word “haptesthai” which

means the sense of touch, is an emerging area of research that

enables the sensing and manipulation of virtual environments

through touch. Its applications [1], [2], [3], [4] are wide, and

range from surgical simulation to gaming and entertainment.

Many of haptics’ current applications involve the analysis

and interpretation of acquired haptic information in order to

possibly reveal certain patterns in the data. Haptic-based bio-

metrics is one example of such applications. Biometric systems

provide a solution to ensure that protected services are solely

accessible by a legitimate user. This is achieved while relying

on users’ behavioral and/or physiological characteristics. The

two primary uses of biometrics are in user verification and

identification. User verification is a one-to-one comparison

of a person’s biometric template with his or her original

sample previously stored in the system. The verification result

is a “match” or “no-match”. Conversely, user identification

is a one-to-many comparison problem where a biometric

template is compared against a biometric database with the

attempt to identify an unknown individual. The possible use

of haptic devices in biometric systems has been suggested

in recent years to enhance user identification and verification

performance over more traditional techniques, such as those

based on handwritten signatures [2], [4].

Haptic data, which depict trajectory, cutaneous as well as

kinesthetic information, essentially consist of position, veloc-

ity, orientation, torque and force information that are directly

acquired from a haptic interface upon a user’s interaction with

a predefined virtual environment. However, regardless of the

intended haptic application, the number of resulting features

are usually significantly large (in the thousands range) as the

recorded information typically consists of multidimensional

time-varying data.

User identity verification and identification using high-

dimensional haptic information has been little explored in the

literature. Initial work [5] in this area examined users’ haptic-

based biometric characteristics using a maze application, in

particular an environment which enables participants to solve

a haptic-enabled virtual maze. The authors applied different

techniques, including Hidden Markov Models, spectral data

analysis and time warping to explore the possibility of real-

time (and continuous) haptic user verification. Their prelim-

inary results demonstrated that a verification rate of up to

78.8% with a 25% False Acceptance Rate (FAR) can poten-

tially be achieved. In [2] haptic datasets are acquired using

two different applications in order to explore the feasibility of

a haptic-based user authentication system. The haptic-enabled

applications corresponded to the aforementioned virtual maze

application, and a haptic-based virtual check (virtual equiva-

lent of a real bank check). In subsequent work [4] a verification

rate of up to 92% with a 25% FAR was reported.

In [6] the focus was on haptic signature analysis using a

visual data mining approach using the previously mentioned

virtual maze and virtual check applications, as well as a

virtual phone on which users can haptically dial a num-

ber (virtual equivalent of a cellular phone). User-behavior-

similarity across the three applications (for a single user and

using all the acquired features) using 3D visual representations

of the recorded data was investigated and 3D virtual spaces

were constructed using deterministic optimization technique.



A similar approach was used in [7], [8] in order to explore the

within-user variations and between-user variations of haptic-

based handwritten signatures. The potential benefits of haptics

in graphical password authentication systems; specifically in

preventing shoulder surfing attacks was approached in [9],

[10]. Their results suggested that on average successful verifi-

cation probabilities of 90.1% and 92.0% were achieved using

Artificial Neural Network and Nearest-Neighbor’s classifiers

respectively.

In [11] haptic feature vectors were redefined using all haptic

data attributes associated with a single signature. The approach

was based on rough set theory for feature selection in high-

dimensional haptic-based signature datasets. In [1] haptic-

based handwritten signatures are analyzed within a visual data

mining paradigm while relying on unsupervised construction

of virtual reality spaces using classical optimization and ge-

netic programming (GP). GP was used in [12] for feature

selection and classification with unbalanced datasets (raw data

and random under-sampling). The results demonstrated that,

on average, for all datasets, whether imbalanced or under-

sampled, a certain numberof perfect classification models were

found. In addition, great feature reduction was achieved via

genetic programming.

In this paper, GP is used in its dual classification and feature

selection capabilities to approach the unbalanced dataset prob-

lem. In the present case, a collection of fitness functions are

used which specifically consider the information provided by

the class distribution to cope with the lack of balance between

the classes. Elements considered here are: i) finding analytic

functions as classifiers in high-dimensional haptic feature

spaces and ii) a comparative study of the behavior of four

fitness functions oriented to unbalanced class distributions.

The rest of the paper is organized as follows. In Section III

an introduction to the basic concepts and methods exploited

in this work is provided. In Section III-A gene expression

programming based classification and feature selection are de-

scribed. In Section IV the experimental settings are described.

In Section V the results are illustrated. Finally, conclusive

remarks are outlined in Section VI.

II. HAPTIC-SIGNATURE DATA AND THE VIRTUAL CHECK

APPLICATION

The experiments were performed using the Reachin Display

[13], which integrates a haptic device with stereo graphics for

an immersive and high quality 3D experience. The Reachin

visuo-haptic interface enables users to see and touch virtual

objects at the same location in space. The haptic stimulus

is sensed using the SensAble PHANTOM Desktop force-

feedback device, which is equipped with an encoder stylus that

provides 6-degree-of-freedom single contact point interaction

and positional sensing. Furthermore, the visual stimuli as

depicted in Fig. 1, consist of a virtual pen and a virtual

check on which users can record their handwritten signature.

Conversely, the haptic stimuli are force and frictional feedback

that attempt to mimic the tactile sensations felt when signing

a traditional paper check. More specifically, the check is

Fig. 1. Haptic-enabled virtual check application.

built on an elastic membrane surface with particular texture

features, providing the users with a user-friendly and realistic

feel of the virtual object. Moreover, similar to conventional

dynamic signature verification technologies, the virtual check

application records a wide array of attributes that depict a

user’s physical and behavioral traits. A group of 13 participants

contributed with 10 instances of their signatures, handwritten

on the virtual check. Accordingly, there is a one-to-one corre-

spondence between each class a a participant, with a total of

130 haptic-based vectors. Details are given in Section IV-1.

III. COMPUTATIONAL INTELLIGENCE AND MACHINE

LEARNING TECHNIQUES

A. Evolutionary Computation

Evolutionary Computation [14], [15] is a general term for

several computational techniques which are inspired and/or

based to some extent on the evolution of biological life

in nature. An Evolutionary Algorithm (EA) is an iterative

and stochastic process that operates on a set of individuals

(population). Each individual represents a potential solution

to the problem being solved. This solution is represented by

means of an encoding/decoding mechanism. An EC-algorithm

consists of the following general steps:

1) Build the initial population.

2) Evaluate the objective function (fitness function).

3) While the termination criteria are not met:

• Apply evolutionary operators (selection, reproduc-

tion, crossover, mutation, etc.).

• Evaluate the objective function.

B. Genetic Programming: Gene Expression Programming

In particular, evolving functions and programs is the realm

of Genetic Programming (GP). Analytic functions, which has

a long history of usage in science, are among the most

important building blocks for modeling and are a classical

way of expressing knowledge. From a data mining perspective,

direct discovery of general analytic functions poses enormous

challenges because of the (in principle) infinite size of the

search spaces.



Within computational intelligence, GP techniques aim at

evolving computer programs, which ultimately are functions.

Genetic Programming (GP) introduced in [16] and further

elaborated in [17], [18] and [19], is an extension of the

Genetic Algorithm. GP starts with a set of randomly created

computer programs. This initial population goes through a

domain-independent breeding process over a series of gen-

erations. It employs the Darwinian principle of survival of

the fittest with operations similar to those occurring naturally,

like recombination of entities (crossover), occasional mutation,

duplication and gene deletion. The operations include arith-

metic computation (possibly involving many other functions),

conditionals, iterations, recursions, code reuse and other kinds

of information processing organized into a hierarchy. GP

combines the expressive high level symbolic representations

of computer programs with the search efficiency of the genetic

algorithm. For a given problem, this process often results in

a computer program which solves it exactly, or if not, at least

provides a fairly good approximation.

There are several approaches to genetic programming. One

of them is the Gene Expression Programming (GEP) technique

[20], [21]. GEP individuals are nonlinear entities of different

sizes and shapes (expression trees) encoded as strings of

fixed length. For the interplay of the GEP chromosomes

and the expression trees (ET), GEP uses an unambiguous

translation system to transfer the language of chromosomes

into the language of expression trees and vise versa. The

structural organization of GEP chromosomes allows a func-

tional genotype/phenotype relationship, as any modification

made in the genome always results in a syntactically correct

ET or program. The set of genetic operators applied to GEP

chromosomes always produces valid ETs. The chromosomes

in GEP itself are composed of genes structurally organized

in a head and a tail [20]. The head contains symbols that

represent both functions (elements from a function set F ) and

terminals (elements from a terminal set T), whereas the tail

contains only terminals. The function set is an important com-

ponent because it contains the functional building blocks for

assembling analytical expressions. Its choice in cardinality and

composition allows the user to introduce external knowledge

in the evolutionary process, as the evolved expressions could

only contain functional terms comming from F .

In the case of the terminal set, two different alphabets occur

at different regions within a gene. For each problem, the length

of the head h is chosen, whereas the length of the tail t is a

function of h, and the number of arguments of the function

with the largest arity. The length of the tail is evaluated given

by t = h(n−1)+1. As an evolutionary algorithm GEP defines

its own set of crossover, mutation and other operators [21].

C. The Unbalanced Dataset Problem

An important issue that must be considered in this work

is the unbalanced nature of the exploited haptic datasets.

The unbalanced dataset problem generally occurs in two-class

domains when the number of instances belonging to one class

(the majority class) is significantly larger than the number of

instances belonging to the other class (the minority class). This

situation is frequently found in many real world applications

(e.g. medical diagnostics) and it affects the performance of

many classifiers, which tend to predict the majority class with

high accuracy, while missing much if not all of the minority

class [12].

There are three main approaches to the unbalanced dataset

problem:

• re-sampling: In this case a new dataset is generated by

resampling the original one, either undersampling the

majority class or oversampling the minority one [22],

[23], [24].

• cost assignments: Data instances are assigned differential

cost values in order to compensate the class imbalance

[25], [26], [27].

• use of specific fitness functions: In the context of genetic

programming, dynamic class thresholds instead of fixed

ones are used to counterbalance the classes. Also, fitness

functions including terms depending on the relative class

distributions stir the evolutionary process in ways that

considers the lack of class balance [28], [29], [30], [31].

This is the approach used in this paper, while resampling

was used elsewhere [12]

D. Genetic Programming’s Fitness Functions for Unbalanced

Datasets

A Genetic programming perspective to the imbalanced

dataset problem was introduced in [32], [28] utilizing an

overall accuracy as a fitness function that evolves classifiers

with a discrimination bias towards the majority class. Four GP

fitness functions that consider the performance of the majority

class and the minority class separately are

BH1 =

√

hitsmin

Nmin

×
hitsmaj

Nmaj

(1)

where hitsmin are the number of correct classification of

minority class, hitsmaj represent the number of correct classi-

ficatoin of majority class, Nmin is the total number of minority

class instances and Nmaj is the total number of majority class.

Equation 1 utilize the geometric means of the two objectives,

maintaining the classifier performance for both the majority

class and the minority class.

The second fitness introduced by [28] is conceptually based

on a similar bases as Equation 1 with the addition of a third

objective which is maintaining an overall classification accu-

racy rather than just focusing on the classification accuracy of

majority and minority class. Thus, [28]

BH2 =
hitsmin

Nmin

+
hitsmaj

Nmaj

+
hits

N
(2)

where hits represents the overall number of correct classifi-

cation and N represents the total number of instances.

The next two fitness functions were introduced in [32]

PA1 =

hitsmaj

Nmaj
+ hitsmin

Nmin

2
× 100% (3)



PA2 =

(

hitsmaj

Nmaj

)2

+
(

hitsmin

Nmin

)2

2
× 100% (4)

These two fitness functions are reported to have better

minority class performance on several real and synthetic data.

IV. EXPERIMENTAL SETTINGS

1) Haptic Dataset: The haptic-based handwritten signa-

tures are obtained from 13 different participants, where 10

signatures are collected per individual. The data acquired

depict various distinct haptic features as a function of time. A

number of haptic data types are considered that characterize

the instantaneous state of the haptic system, including, three-

dimensional position, force (pressure exerted on the virtual

check), torque, and angular orientation. Also, haptic data are

recorded at 100 Hz. As the data is time-varying, the resulting

number of attributes per signature is in fact the number of

haptic data types considered (position, force, torque, etc.)

times the number of samples recorded per data type during

each signature acquisition. This evidently leads to significantly

large feature vectors that encompass thousands of haptic-based

attributes. In order to ensure accurate discrimination between

the signatures, the obtained feature vectors were normalized

to a common length of 10000. Essentially, the acquired haptic

data types are re-sampled (upsampled/downsampled) when

necessary to ensure a common feature vector length across

all instances. The latter feature vector length was selected in

such a manner to minimize the information loss that is most

apparent when downsampling is performed. Consequently, the

computed preprocessed dataset contains 130 instances, where

each consists of 10000 features.

As aforementioned, in this paper we are concerned with bio-

metric identity verification, which is a two-class classification

problem, where a dichotomizer assigns class labels A (accept)

or B (reject) to observed feature vectors x. The preprocessed

dataset is therefore rearranged into 13 distinct datasets (one for

each class), where in each only the instances of a single class

are labeled accept (A = 1), whereas the remaining instances

are labeled reject (B = 0). It is clear that the obtained datasets

are highly unbalanced as the number of instances belonging to

the accept class is much smaller than the number of instances

associated with the reject class. Nonetheless, the obtained

biometric identity verification datasets were then first divided

into 60% training and 40% test sets.

A. Gene Expression Programming Algorithm Settings

The GEP experiments were performed using the implemen-

tation from [33], which extends the ECJ environment [34].

The parameter values used in the experiments are shown in

Table I. It can be seen that the mathematical expressions

are composed of one chromosome per individual and each

chromosome is made from 3 gene expressions, all linked by

the addition operator. The gene expressions can be formed

using constants, the independent variables associated with each

problem, and any of the functions from the function set.

Weights can be associated to the functions in F in order to bias

TABLE I
EXPERIMENTAL SETTINGS OF THE GEP ALGORITHM.

GEP Parameter Experimental Values

No. generations 100000
Population size 1000
No. chromosomes / individual 1
No. genes / chromosome 3
Gene head size 8
Linking function addition
No. constants / gene 2
Bounded range of Constants [0,10]
Inversion rate 0.1
Mutation rate 0.044
is-transposition rate 0.1
ris-transposition rate 0.1
One-point recombination rate 0.3
Two-point recombination rate 0.3
Gene recombination rate 0.1
Gene transposition rate 0.1
rnc-mutation rate 0.01
dc-mutation rate 0.044
dc-inversion rate 0.1
Function set (e.g., {function1(weight) ) {add(1), sub(1),

function2(weight), . . .}) mult(1),div(1)}

the evolutionary process towards the use of certain functions

more than others. This is another mechanism that allows the

introduction of external knowledge. In the present case all

functions had the same weights.

For each experiment a set of 100 runs was performed with

random seeds. It is important to mention that during each run,

1000 different expressions are used for providing a rich genetic

diversity at the onset of the evolution.

V. RESULTS

For each of the 13 subsets, 100 independent GEP runs were

conducted (100 different analytical functions are generated for

each class). It is important to mention that only the GEP model

with the best discrimination performance is selected (based on

the training results).

A. Classification

Classification performance is analyzed in terms of the

verification success rate (VR), False Acceptance Rate (FAR),

and False Rejection Rate (FRR). The VR, FAR, and FRR re-

sults using genetic programming models evolved with various

fitness functions (NH, BH1,BH2, PA1, PA2) are presented in

Table II. NH is the Number of Hits which represents the

number of instances that are classified correctly and it is used

as the baseline fitness function.

The classification results are based on the average perfor-

mance of all generated analytical functions i.e., 100 analytical

functions per subset (class). The best GP individuals for each

subset are considered those whose classification error is within

the first quartile of the error distribution. Then, selection is

based on each model’s classification accuracy of test data. The

average classification performance of the first quartile of the

top GP models is illustrated in Table III. The GP results shows

an important decrease in the number of variables used and in

the number of operations (that is, smaller model complexity).



The number of variables refers to the actual number of

occurrences of a given attribute within an expression. The

number of operations includes all occurrences of functions

from F within an expression (duplication of identical operator

counts).

TABLE II
CLASSIFICATION RESULTS BASED ON THE AVERAGE PERFORMANCE OF

ALL GP-GENERATED ANALYTICAL FUNCTIONS (100 ANALYTICAL

FUNCTIONS PER CLASS) WITH VARIOUS FITNESS FUNCTIONS.

60%
Fit.Func VR FAR FRR No. of No. of

(%) (%) (%) Variables Operations

NH 91.49 5.65 42.85 7.67 22.63
BH1 89.27 8.44 38.15 6.22 8.46
BH2 89.77 7.92 37.98 6.18 8.26
PA1 89.67 8.00 38.29 6.30 8.57
PA2 89.83 7.94 36.87 6.04 8.23

TABLE III
CLASSIFICATION RESULTS BASED ON THE AVERAGE PERFORMANCE OF

THE FIRST QUARTILE OF THE BEST GP-GENERATED ANALYTICAL

FUNCTIONS (PER CLASS) WITH VARIOUS FITNESS FUNCTIONS FOR 13
USERS.

60%
Fit.Func VR FAR FRR No. of No. of

(%) (%) (%) Variables Operations

NH 95.90 1.93 30.13 7.39 22.88
BH1 92.89 6.34 16.31 5.97 7.74
BH2 91.84 6.56 27.31 5.84 7.32
PA1 91.34 7.19 26.31 6.10 8.14
PA2 93.25 5.90 16.92 5.73 7.87

The average performance over all generated GP models is

considered in Table II. It is observed an additional decrease in

the number of variables and in the number of operations with

the fitness functions that tackle the problem of unbalanced data

sets. GP-generated models using fitness functions (BH1,BH2,

PA1, PA2) exhibited a decrease in FRR and a slight increase

in FAR. However, as FRR of NH is high (42.85%) a decrease

would be more favorable. However, when the average of the

best first quartile models are considered III, an important

decrease of FRR can be observed. Moreover, (BH1,BH2,

PA1, PA2) require a much smaller number of operations

( 8) compared to those required when the default NH fitness

function is used (22.63). A slight decrease in the number

of variables is also observed. In addition, the use of fitness

functions (BH1, PA2) resulted in a substantial decrease of

FRR.

An example of a GP classifier obtained when using the BH1

fitness function (Eq. 1 for the first experimental subject (class

1) is

class1 =























1 if (Ty113 + Pz105 ∗ Px211 − Px618

+Tx737 + Px211 ∗ Pz883
) > 0.5

0 otherwise

(5)

where Tx and Ty are the torques along the x and y axis re-

spectively, Px and Py are the positions along the x and y axis.

The subindexes indicate relative time units for that particular

feature when producing the signature. As a white box model,

it clearly shows both the influence of the different attributes in

the final class decision and that of the individual functions in

the final result. Note that, for example, division is an element

of the function set, but it was not used in the classifier. Note

the simple functional structure of the expression, which on the

other hand, has an excellent performance: 100% accurate on

training and 96.15% with the testing set.

B. Relevance of Haptic Data Types in Identity Verification

The frequency distributions of different haptic

data types that appear in GP-generated models for

NH,BH1,BH2,PA1,PA2 fitness functions are shown as

Box plots in Figs. 2.
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Fig. 2. Box plots illustrating the frequency of haptic data types found in
GP-generated models when unbalanced dataset are considered with NH fitness
function.

Each box includes lines indicating the median and the mean,

in addition to the first and third quartiles. Lines extending

from each end of the box (whiskers) are provided to show the

extent of the frequency of different haptic data types found in

the generated GP-models. Outliers are represented using the

‘o’ symbol and consist of frequency values that go beyond the

ends of the whiskers.

From Figs. 2, 3, 4, 5, 6, it can be noticed that position

information (Px, Py , and Pz) appeared in GP models with

a probability of approximately equal to 0.5. Consequently,

the remaining haptic-specific data types combined, i.e., force,

torque and orientation (Fx, Fy , Fz , Tx, Ty, Tz, and O) ap-

peared in GP-models with a similar probability (approximately

equal to 0.5). Accordingly, the importance of haptic specific

features is seen as almost equal to that of visual attributes.

This result clearly shows that the inclusion of haptic infor-

mation enrich signatures with additional non-visible behavior

elements.

In general, among the visual features, Pz (Position of the

pen along the z-axis) is the one used most frequently within the
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Fig. 3. Box plots illustrating the frequency of haptic data types found in
GP-generated models when BH1 are considered as a fitness function
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Fig. 4. Box plots illustrating the frequency of haptic data types found in
GP-generated models when BH2 are considered as a fitness function

GP models. From the point of view of pure haptic variables,

Ty (torque long the y-axis) was the most frequently appearing

in the GP models, followed by O (angular rotation).

VI. CONCLUSION

The problem of Haptic-based handwritten signature veri-

fication is addressed via Genetic Programming (GP) in this

paper. As the problem of identity verification is a two-class

classification problem where a positive class represents a

single user while the negative class represents other users.

Thus, an unbalanced dataset problem emerges. In this paper,

the unbalanced dataset problem is addressed through the

utilization of fitness functions to drive the evolution process

towards analytical functions that consider both minority class

and minority class with similar importance. Future work will

include comparisons with other feature selection and classifi-
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Fig. 5. Box plots illustrating the frequency of haptic data types found in
GP-generated models when PA1 are considered as a fitness function
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Fig. 6. Box plots illustrating the frequency of haptic data types found in
GP-generated models when PA2 are considered as a fitness function

cation approaches, additional fitness functions and studies of

their performance on other datasets.
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