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Abstract  Particle Swarm Optimization (PSO) is especially
useful for rapid optimization of problems involving multiple
objectives and constraints in dynamic environments. It regularly
and substantially outperforms other algorithms in benchmark
tests. This paper describes research leading to the application of
PSO to the autonomous asset management problem in electronic
warfare. The PSO speed provides fast optimization of frequency
allocations for receivers and jammers in highly complex and
dynamic environments. The key contribution is the simultaneous
optimization of the frequency allocations, signal priority, signal
strength, and the spatial locations of the assets. The fitness
function takes into account the assets’ locations in 2 and 3
dimensions maximizing their spatial distribution while
maintaining allocations based on signal priority and power. The
fast speed of the optimization enables rapid responses to
changing conditions in these complex signal environments, which
can have real-time battlefield impact. Initial results optimizing
receiver frequencies and locations in 2 dimensions have been
successful. Current run-times are between 300 (3 receivers, 30
transmitters) and 1000 (7 receivers, 30 transmitters) milliseconds
on a single-threaded x86 based PC. Statistical and qualitative
tests indicate the swarm has viable solutions, and finds the global
optimum 99% of the time on a test case. The results of the
research on the PSO parameters and fitness function for this
problem is demonstrated.
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I.  INTRODUCTION

Particle Swarm Optimization (PSO) is an exciting
computational tool for optimization applications in scheduling
and logistics, hardware development, artificial neural
networks, and many other areas. Examples include:
optimization of mission planning, optimization of allocation of
electronic warfare resources, medical diagnosis, electric utility
system load stabilization, and product mix optimization. PSO
is exciting because of the ease and speed which applications
can be developed (often weeks or months instead of years) and
the performance of these solutions, which is often better and
orders of magnitude faster than traditional solutions for
complex or computationally-intensive problems.
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PSO is an evolutionary computation technique developed
in 1995 by James Kennedy and Russell Eberhart [1] [2]; with
a text on the subject by Eberhart, Simpson, and Dobbins in
1996 [3] and by Eberhart and Shi in 1998 [4]. PSO methods
were included in a formal textbook by Eberhart in 2007 [5]. At
the time of the writing of this paper, PSO has been around for
two decades; it is being researched and utilized in over 30
countries.

PSO has already been applied to some problems in real-
time allocation. For weapons allocation for defensive purposes
as seen in [6], PSO was shown successful for small-scale
problems. In this thesis, the application of PSO to real-time
asset allocation in the area of electronic warfare (EW) is
explored. This is follow-on work to a project done for the
Expeditionary Electronic Warfare Division, Spectrum Warfare
Systems Department, at the Naval Surface Warfare Center
(NSWC) Crane [7]. PSO was used in that project to allocate
electronic warfare resources in the frequency spectrum in a
rapidly changing environment on a near-real-time basis.

In an operational scenario involving the allocation of
multiple receiver resources against a suite of dozens of signals
with varying powers and priorities in the past required a state-
of-the-art system. This system took nearly two hours to
calculate the optimal receiver center frequencies. Of course,
this is clearly not useful in an operational environment. The
reported PSO solution optimally allocates resources in one
second or less.

The contribution of this research extends the previous
work in [7] optimizing the resources simultaneously in 2D
space and across the frequency spectrum. The previous work
assumed that all of the assets were co-located at a single point
in space. The changes made to the optimizer are described in
Section II. Section III shows the graphical user interface
(GUI) tools developed in our research. Analysis of the results
is found in Section IV. Finally, Section V concludes the
research and discusses the next research steps.
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II. PSO AND FITNESS FUNCTION

A.  Application Discussion

The application problem is to optimize a scarce asset, such
as radio frequency (RF) receivers, simultaneously in 3D space
and across the frequency spectrum. Each RF receiver has a
certain programmable bandwidth and maximum allowable
input power. The receivers must be allocated to a number of
transmitters, where each transmitter has a priority and power.
In addition, the transmitters are placed in a defined area,
simulating the electronic warfare (EW) battlefield. It is
desirable to receive signals with the highest priority and power
while not overloading the RF front end of any receiver.
Furthermore, it is advantageous for the receivers to be spread
out in 3D space. This spatial dispersion is useful for
optimization of problems like battlefield resource distribution
of mobile assets, cell phone tower locations, distribution hubs
for order fulfillment, etc. Therefore, an ideal solution will give
the best compromise between the spatial spread of the
receivers as well as the received power and priorities. The
fitness function is designed as the weighted sum of these four
components: priority, power, spread, and distance. The
following sections describe the fitness function in detail for
these four areas.

B.  Priority

Priorities can be an input by an operator. In our test cases,
priority is randomly assigned during initialization using a
uniform distribution. Each transmitter signal in the spectrum is
given a priority from the set {1, 3, 5}, where a higher number
represents a higher priority. The fitness function calculates the
priority fitness component as the sum of the all of the
priorities of the received signals.

As in the previous work [4], it is possible for two receivers
to overlap in frequency such that they are both receiving the
same signal. In this case, the fitness function only counts the
priority once.

C. Power

Likewise, the power component is found by summing the
powers of the received signals. When summing the signal
powers, the fitness function must account for the distance
between the receiver and signal source so that the free space
path loss of the signal is calculated according to:

Loss indB = 20 = logl0(d) + 20 = logl0(f} + 32.45
where d is in kilometers and f is in MHz.

Thus, the power of each signal is calculated from the
perspective of each asset. The power of each received signal is
then summed in magnitude form. As with the priority
component, the fitness function does not count twice any
signal that is received by two or more receivers. The total sum
of the received power is converted to dB scale and used in the
fitness component. A problem arises when negative dB values
are encountered. If the conversion to dB scale results in a

negative value, the returned fitness component would subtract
from the overall fitness even though it may be beneficial to
receive the signals. To overcome this, we add an appropriate
offset to the final dB value such that the returned value is
guaranteed to be a positive value.

D. Spread

One of the main requirements of this research is to ensure
that the optimizer produces a solution where the assets are
spatially dispersed (spread) as much as possible. The spread
component of the fitness function can be calculated in several
ways. The simplest method takes the sum of the Euclidean
distances between all of the receivers. Calculating the spread
fitness this way produced some undesirable side-effects in
initial testing. By design, the spread component and power
component of the fitness will fight each other. It is not
possible to maximize both at the same time, since a high-
spread fitness solution will place the receivers far away from
the signals and thus cause the power fitness component to
have a lower score.

Initial tests with three receivers showed that one or two of
the receivers ended up very near the signals, giving a very
high power score. At the same time, the remaining receivers
were pushed out far from the signals, giving a very high
spread score. Thus the PSO solution found the best was to
"sacrifice" the power score for one of the receivers in hopes of
gaining a higher spread score. Through testing, we found that
it was possible to counter this behavior by calculating the
spread component as the distance between the two closest
assets. Calculating the spread component in this manner
forced the optimizer to spread the assets more evenly around
the solution space.

A challenge arises from the fact that RF loss is input to the
system in dB, and follows a log function as distance increases.
On the other hand, the spread component is linearly
proportional to distance. Two fitness functions need to balance
each other for proper operation, so a log of the distance
between receivers is the better choice both theoretically and
experimentally. The calculation of the fitness spread
component is according to the following equation, in which

Distancej, represents the Euclidean distance between
receiver; and receiverg).
Fitness Spread Component = log,, [miin { Dristimoe;, = |}

E. Distance Component

While the fitness spread component successfully disperses
the receivers in space, it does not provide any means to
distribute the assets near the receivers. It is true that the power
fitness component tends to place the assets near the receivers
in order to achieve a higher overall power. However, in our
testing this sometimes produced unsatisfactory results due to
the way in which the spread component and power component
tend to fight each other. Prior to adding this fitness



component, we observed cases where one asset that had
relatively few signals assigned to it would be placed an
infinite distance (if the boundaries were removed) from the
signals. In these cases, the optimizer sacrificed one of the
assets by causing its power contribution to become almost
non-existent in order to gain an increase in the fitness spread
component. Attempts to counter this behavior by adjusting
weights on the finess components were not very successful.
Increasing the weight on the power component or decreasing
the weight on the spread component had the effect of causing
the assets to congregate too close to the receivers. Thus it was
difficult to achieve a good middle ground. The addition of the
fitness distance component gave more stability to the solutions
obtained. This component is calculated by taking the mean of
the distances between each asset and the center of mass of the
transmitters that it is receiving as shown in the equation
below. In this equation, Dy represents the distance between
receiverg and the center of mass of the transmitters that
receiver is receiving. This distance, Dy; is subtracted from a
constant Max Distance to so that a higher score is given to
smaller distances and so that a positive value is always
returned.
N
Fitness Distanee Companent = l Z Muar Distance — Dy,
N =

F. Weights and rotal fitness

The overall fitness is calculated by taking the weighted
sum of the three fimess components. Weights for the three
fitness components were determined experimentally and
chosen so that the dynamic range of each component would be
similar.

G. Receiver keep away

Finally, a keep-away penalty has been added to keep all
the assets outside of a spatial boundary, geographically
separated from the transmitters. A sharp penalty is added to
the overall fitness when any asset enters a pre-defined
boundary around the signal sources. The overall fitness is
multiplied by 0.5 for each asset inside the boundary. Prior to
adding this boundary, at least one of the receivers ended up on
top of the transmitter signals in order to achieve a high power
score. In addition, the solution space has been limited to keep
the receivers in a square of +- 100 Km in the X and Y
dimensions. The keep-away boundary is user-selectable
between a circular boundary and a straight, linear boundary.
Future research will explore the use of a flexible boundary,
with the eventual goal of matching it to the battlefield terrain.

H. PSO settings

The Particle Swarm Optimization algorithm in [4] was
used to converge to the solution. The PSO in this problem was
set to 200 particles (population size), uses a neighborhood
optimization strategy with a noisy inertia weight. The fitness
components were weighted to balance the contribution of the
three areas, with a special emphasis placed on the priority
assignments. The swarm was run to 1000 generations,
although typical convergence was less than 500 generations.

These were used as our fest parameters. Experimentation was
done with another set of swarm parameters using a population
size of 50, a neighborhood size of 1, and a method of
terminating the swarm early when convergence is detected.
These are our performance parameters. Repeatability and
runtimes of the optimizer using the fesf parameters and
performance parameters are examined in the results section.

III. GRAPHICAL USER INTERFACE

The Qt software framework was used to develop an
interactive GUI for this research. Qt is an open-source and
cross-platform framework for Ul development in C++. A
current version of the GUI is shown in Figure 1. The
Allocation Plot on the top left shows the spatial location of the
receivers and transmitters. The receivers are randomly
distributed in the center. Color-coding is used to differentiate
between the priorities of each transmitter. The keep-away
boundary is depicted by a black circle around the transmitters.
The PSO will attempt to optimize with highest priority signals
(vellow in the spectrum plot) first, and mid priority second
(green) and finally low priority (blue). In this test case, the
transmitter location, priority and power was set randomly.
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Figure 1. PSO with 3 Receivers and 30 Transmitters,

In Figure 2, by hovering over one of the receivers, the
corresponding transmitters are highlighted, and the frequency
allocation is highlighted in red. The subplot on the top right
shows the fimess value versus the swarm generation. This is
helpful to determine how the swarm evolved over generations.
Ideally, the swarm should quickly converge to a maximum
fitness and then the fitness should remain nearly constant for
successive generations. Future work will be done to detect the
point at which the swarm reaches a sufficient solution so that
the swarm can be terminated.
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Figure 2. PSO Result Highlighted.

Other settings that can be changed in the GUI are: the
number of transmitters and receivers, the radius of the
transmitter distribution, the radius of the keep-away boundary,
and the fitness function component weights. Options exist to
run the swarm at full speed, or to run the swarm slow enough
that a human can observe it converge. After each run,
additional textual information at the bottom of the GUI is
given showing exact locations and frequencies of the
receivers.

IV. RESULTS

A. Analyzing Results

To understand the distribution of final fitness values, we
ran optimizations on a number of different configurations. We
calculated the means and variances of the final fitness values
for these configurations, which are summarized in Table 1 and
Table 2. It is important to note that the fitness values have no
physical meaning by themselves. The values listed here are
merely useful for comparison between the different tests.

TABLE 1
Fitness Means and Variances Using Test PSO Parameters
Receivers / Mean Std. Dev.
Transmitters
3,30 804 1.18
4,30 891 5.57
4, 50 1234 11.6

TABLE 2
Fitness Means and Variances Using Performance PSO Parameters

Receivers / Mean Std. Dev.
Transmitters
3,30 794 10.7
4,30 868 14.4
4,50 1197 258

B.  Run time Analysis

Several run-time analyses were performed on the
optimizer. Run-times were found for varying problem sizes
and varying swarm parameters. For each run-time analysis, the
PSO was run 50 times and the resulting run-times were
averaged. Tests were run with both sets of PSO parameters as
described in Tables 2.1 and 22. All run-time tests were
performed on an Intel Core 17-4710HQ processor. All tests
were run using a single thread of execution. Table 3 and Table
4 summarize these run-time tests.

TABLE 3
Run times Using test PSO Parameters
Receivers / Average Run-
Transmitters time (ms)
3,30 452
4,30 667
7,50 1098
TABLE 4
Run times Using Performance PSO Parameters
Receivers/ Average Run-
Transmitters time (ms)
3,30 24
4,30 45
4, 50 85

C. Repeatability Analysis

A special test problem was designed with a known global
maximum solution. The test problem was designed to contain
local maxima in which the PSO might become stuck. A
statistical analysis was run using this test setup to determine
how well the PSO finds the global best solution without
becoming stuck in local maxima. Figure 3 shows the test case
where 4 fransmitters of alternating priority and equal power
are uniformly spaced along the battlefield line and the global
best solution for two assets. Any other solution is a local
maximum solution. Using the test PSO parameters, it was
found that the optimizer found the global best solution with a
probability greater than 0.99. Rumning the swarm in this
configuration for 50 configurations gave a mean fitness value
of 645.8 and a standard deviation of 0.001. However, when
the performance PSO parameters were used, the probability of
finding the global best solution dropped to 0.77. The mean
fitness value in this case was 628.9 and the standard deviation
of fitness was 37.8.
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Figure 3. PSO Result Highlighted.

V. CONCLUSIONS

The Particle Swarm Optimization has been shown to be
useful for the allocation of scarce resources of receivers in
Electronic Warfare. This new research has shown that
optimization over both frequency and 2D space is feasible
with a very rapid run time of one second or less. A trade-off
exists between obtaining repeatable solutions and obtaining
solutions quickly. Next, continued research on the
optimization in all 3 spatial dimensions will be performed.

Future research is planned in the following five areas:
expand receivers to multiple layers of assets, include more
complex battlefield 3D terrain, restrict the movement of
receivers, optimize while the transmitters are in motion, and
finally, include humans in the swarm process with respect to
the configuration of the exclusion zones.
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