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Abstract—Spread of information in a crowd is analysed in
terms of directed percolation in two-dimensional spatial network.
We investigate the case when the information transmitted can be
incomplete or damaged. The results indicate that for small or
moderate probability of errors, it is only the critical connectivity
that varies with this probability, but the shape of the transmission
velocity curve remains unchanged in a wide range of the
probability. The shape of the boundary between those already
informed and those yet uninformed becomes complex when the
connectivity of agents is small.

Index Terms—spatial networks; percolation; agents; informa-
tion

I. I NTRODUCTION

We consider the process of information spreading in a
spatial network. Our motivation is twofold. First, on the
contrary to the scale-free networks [1]–[6], spatial networks
are less investigated in social systems; a recent exceptionis [7].
Still, in numerous applications the spatial distribution of agents
does matter. This is so in particular when the effectivenessof
communication depends on the geometrical distance between
agents, as it is with visual or voice communication. Second—
and this is the aim of this work—is to take into account
possible errors or inaccuracy of transmission. This is an
essential difference between standard modelling of this kind
[8], [9] and our model. We assume that at each time step a
message is sent by each agent already informed to his/her each
as-yet-uninformed neighbour, in each case with probability p.

The probability that a particular information bit is damaged
along the way can be considered as reflecting the complexity
of the information so that even when heard, it is completely
absorbed by an agent and not passed along to the neighbour.
It may also reflect the level of trust between an agent and
his neighbour so that information is deemed to be passed
along only when the source is trusted. It is quite likely that
in an emergency and life threatening situation, the value ofp

would be in the region of 0.5 and in such a case the group is
unlikely to arrive at a consensus on the course of action to be
taken and the spatial network of informed agents will remain
unconnected. It is important in such a case that an external

source that can be trusted whether it be an authority figure
such as the driver of the underground train or an AmI device
be used to give instructions about options available for rescue.
This would artificially increase the value ofp and consequently
increase the velocity of connections. The results indicatethat
this p does not have to be perfectly 1 and as long as the level
of trust does not go below a certain critical level—such as
the driver himself needing help but still in a frame of mind
to think rationally—the group should be able to consider a
variety of options relatively quickly. This is in fact reflected
in real events such as the July 7th, 2005 London Underground
bombings where passengers waited for instructions to come
through and followed the instructions of the driver even when
the driver was injured and not in a position to offer all the
necessary help [10].

II. CALCULATIONS

The algorithm is constructed as follows. First, the spatial
network is determined: positions of nodes are randomly se-
lected as points on a2 × 2 square. For a given tolerance
parameterµ, a circle of radiusµ is set around each nodei,
and the nodesj within the circle are linked to the nodei. The
matrix elementc(i, j) of the connectivity matrix is set to be
one, otherwise it is zero.

The simulation of the process starts from some number of
nodes at one side of the square, which are treated as informed.
The probability that a given message is passed along each link
is denotedp, and the probability that this message is damaged
or blocked isq = 1 − p. Then, at each simulation step, the
numberk(i) of informed neighbours is found for each node
i which represents an agent who is not informed yet. During
each time step, each as-yet-uninformed node is informed with
the probability

P (i; p) = 1− (1− p)k(i). (1)

In other words, to remain uninformed at given time step is
equivalent to not-to-be informed by each ofk neighbours.

We measure the velocity, i.e. the average number of nodes
being informed during one time step. The parameters of
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Fig. 1. The numbern of informed nodes against timet for different values
of the tolerance parameterµ. The velocityα in the next plot is the derivative
of the plot presented here, before the saturation appears.N = 10

4, p = 0.9

the simulation are: the number of nodesN , the tolerance
parameterµ and the probabilityp. However, it is clear that
for a given and fixed area an increase ofN four times and
a simultaneous decrease ofµ two times should remain the
system locally unchanged. We are interested not that much in
µ, but rather in the mean degree〈k〉. Below some critical value
〈k〉c, the system remains not connected and the information
does not spread at all. In the Erdös-Rényi networks, this
critical value〈k〉c = 1; however, the spatial network is much
more correlated, with the clustering coefficientC close to 0.46.
It is straightforward to expect thatk varies with the tolerance
parameter asµ2. The degree distributionP (k) of the spatial
network is Poissonian, i.e.

P (k) = exp(−〈k〉) ·
〈k〉k

k!
. (2)

III. R ESULTS

In Fig. 1 we show the numbern of informed agents against
time t, measured in time steps defined above, for various
values of the distanceµ which allows for the communication.
The relevant part of the plot is the ascending one; once the
system boundaries are reached,n does not increase any more.
The inclination of the relevant part is the velocityα(µ). The
critical distanceµ can be converted to the connectivity〈k〉, i.e.
the mean degree of the spatial network. As a consequence of
the geometrical character of the 2-dimensional space, the mean
connectivity〈k〉 increases withµ asµ2, as it is demonstrated
numerically in Fig. 2.

The velocityα is shown in Fig. 3, as dependent on the
difference between the connectivity〈k〉 and the critical con-
nectivity kc. As we see, the plots forp = 0.9 and p = 0.5
coincide. We know from the data that also the plot forp = 1.0
coincide with those two, withkc=2 (the same as forp = 0.9).
However, the plot forp = 0.1 does not coincide with the other
ones. Still, the critical exponentβ, defined as

α ∝ (〈k〉 − kc)
β (3)
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Fig. 2. The numerical proof that the mean degree〈k〉 varies asµ2.
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Fig. 3. The plot velocityα against〈k〉 − kc for three values ofp.

is almost the same for all investigated plots, and it is close
to the value of two-dimensional directed percolation [9],
β = 0.584. We note that as in the vicinity ofkc > 0 the
connectivity〈k〉 can be approximated by a linear function of
µ, the exponentβ is the same for the plotsα(〈k〉) andα(µ).

In a series of subsequent plots 4 (a-e) we show the character
of time andp dependence of the boundary between the spatial
areas occupied by informed and uninformed agents. As we see,
the shape of the boundary is linear for largeµ, what means
that the connectivity is also large. However, for smallµ the
boundary becomes a complex line, which reminds a fractal.
We interpret this result as an interplay with the fluctuations of
the connectivityk. In other words, the motion boundary can
be stopped at some areas where agents are distributed with
small density; which means that their number of neighbours
is smaller, than the average value〈k〉.

IV. CONCLUSION

The aim of our calculations was to describe the possibility
of incomplete or damaged message. The main result is that
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Fig. 4. Visualisation of the front of being informed againsttime for variousµ.



in these conditions, the only modification of the results is the
shift of the plot towards higher value ofk. As we read from
the legend, the critical connectivity〈k〉 increases from 2 for
p = 1 and0.9 to about 6 forp = 0.1. As remarked above, the
plot for this value ofp deviates from the others. It seems to
us however, that what is surprising here is not the deviation,
but rather the coincidence of the plotsα(〈k〉−kc) for p = 0.5
and higher. This coincidence means that the low probability
of the message transmission can be exactly compensated by
the number of message senders. In terms of statistical physics,
the universality class of the transition seems to be the same
for the deterministic (p=1) and the probabilistic (p <1) variant
of the process; ‘seems to be’, because the numerical evidence
allows for only preliminary statements.

The results, found in a simple two-dimensional room,
should apply also to other geometries, if only the connectivity
distribution is not damaged by, for example, narrow corridors.
What is specific for the spatial network is the lack of the small-
world effect [1]. The spatial character of communication is
specific for the visual or voice messages in a crowd, where
both the spatial range and the probability of an efficient
message transfer remain limited. A specific example of this
problem is discussed elsewhere [11]. If the communication
with electronic means is taken into account, this could not
only accelerate the motion of the boundary shown in Fig. 4,
but also lead to an entire modification of the whole structureof
the communication network. This problem will be discussed
in a separate work.

A question appears, to what extent the results depend on our
assumption is the only absorbing state in our model scheme:
those uninformed can be informed and probably will be, while
those informed probably will not forget. We could extend this
irreversibility to both states, when we deal with spreading
rather a decision to pass the message or not than a message
itself. It is likely then, that an agent will find unfeasible to
change his/her decision. In a limit case neither decision ‘No’
nor ‘Yes’ cannot be modified. When the amount of decisions
‘No’ exceeds some critical value, the spreading is stopped.
This variant seems to be analogous rather to the conventional
percolation [12], than to the directed one.
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