
Selecting grid-agent-team to execute user-job — initial solution

Mateusz Dominiak
Technical University of Warsaw, Department of Mathematicsand Information Sciences

Warsaw, Poland
mateusz.dominiak@gmail.com

Maria Ganzha, Marcin Paprzycki
Systems Research Institute Polish Academy of Science

ul. Newelska 6, Warsaw, Poland
{maria.ganzha, marcin.paprzycki}@ibspan.waw.pl

Abstract

Recently we have proposed a novel approach to uti-
lizing agent teams as resource brokers and managers in
the Grid. Thus far we have presented an overview of the
proposed approach discussed how to efficiently imple-
ment the information center, where agent teams adver-
tise their needs and resources. In this paper we focus
our attention on the way that user selects agent team
that will execute its job. Details of initial implementa-
tion are presented and discussed.

1. Introduction

Grid computing is emerging as a promising ap-
proach to utilizing heterogeneous, geographically dis-
tributed computer resources. It is expected that vir-
tualization of computing resources by Grid computing
will facilitate creation of a new computing infrastruc-
ture consisting of readily available, adaptable resources.
As a result, a broad impact on science, businesses and
industries is expected [11]. Unfortunately, the uptake of
the Grid, while speeding-up recently, is still unsatisfac-
tory. One possible reason for this situation is an overly
complicated support for resource management provided
by current Grid software infrastructure.

In this context it has been suggested that software
agents combined with semantical demarcation of re-
sources may provide the necessary infrastructure, by
infusing the Grid with intelligence [10, 15]. While
this claim is not without critics (e.g. there are those
who claim that service oriented architecture is all that is
needed to solve exactly the same set of problems as soft-
ware agents are supposed to [5]) in our work we accept

arguments presented in [10, 15] as the starting point of
our work. Therefore, we have searched for the existing
solutions that would put software agents into the Grid.

The initial work on agents in grids can be traced
at least to [6], where J. Cao and colleagues combined
PACE methodology with a hierarchical agent-based
structure used for resource discovery. While interesting,
this work seems to be a road to nowhere as the PACE
infrastructure, seems to be extinct. More recently B. Di
Martino and O. Rana have proposed MAGDA (Mobile
AGent Distributed Application), a mobile agent toolkit
designed to support (1) resource discovery, (2) perfor-
mance monitoring and load balancing, and (3) task ex-
ecution within the grid [14]. While based on collab-
orating agents, the proposed system does not have an
economic model associated with it. From our perspec-
tive, this is a substantial drawback, as the model of the
Grid that we are interested in is such in which resource
providers put their resources (e.g. computers) on the
Grid, to be remunerated for their usage [4].

Starting form the economic model, S.S. Manvi
and colleagues suggested utilization of (single) mobile
agents which traverse the network to complete a user
defined task [12]. While visiting nodes they establish
local conditions for job execution. If these conditions
(involving economic considerations) are acceptable,
agents execute their job there (otherwise, they move
on). Unfortunately, usage of a single agent makes the
proposed approach highly vulnerable to adverse events,
such as a node “disappearing without a trace” while the
agent is executing its job there.

Also last year, D. Ouelhadj and colleagues consid-
ered negotiation (and re-negotiation) of a Service Level
Agreement between agents representing resources and

resource users [13]. Negotiations were to be based on
Contract Net Protocol and were focused on higher level
functionalities of the system. As it will be seen, we fol-
low the idea of utilizing Contract Net Protocol in our
proposed approach.

Summarizing, the proposed approaches:

1. were somewhat limited in scope and functionality,

2. did not involve economical foundations/models,

3. relied on agent mobility, while not considering its
cost—since agents carry tasks, their size depends
on the size of transported code and data and thus
agent mobility should be used very judiciously,

4. did not take into account full effect of grids
highly dynamic nature and used single service
providers—leaving users vulnerable to potential
rapid fluctuations of workload of individual nodes,
as well as nodes disappearing and reappearing
practically without warning,

5. did not provide methods for trust management,
which seems necessary when one takes into ac-
count expected reliance on “barely known” service
providers.

As a way to address these issues we have pre-
sented a conceptual framework for anagent team-based
approach to resource brokering in the Grid [9]. In a
follow-up work, [8] we have discussed the way in which
the central, yellow-page information carrying service
can be efficiently implemented to prevent it from be-
coming a bottleneck of the system. The aim of this pa-
per is to discuss how the agent representing its user can
autonomously pick the team that will execute its task.

We proceed as follows, in the next section we sum-
marize the design of our system. We follow with the
description of the basic ontology that underlies the task
execution negotiations. A detailed description of the
way we have implemented it completes our work.

2. System description

In our work we view the Grid as an environment
in which workers (in our caseagent workers) that want
to contribute their resources (and be paid for their us-
age), meet and interact with users (in our caseagent
users) that want to utilize offered services to complete
their tasks. Obviously,agent workerscan becomeagent
usersand vice-versa. In [9] we have proposed a system
based on the following assumptions:

• agents work in teams (groups of agents)

• each teams has a single leader—LMaster agent

• eachLMasterhas a mirrorLMirror agent that can
take over its job in case when it “goes down”

• incoming workers (worker agents) join teams
based on individual set of criteria

• teams (represented by theirLMasters) accept
workers based on individual set of criteria

• decisions about joining and accepting involves
multicriterial analysis (performed by so-called
MCDM modules)

• eachworker agentcan (if needed) play role of an
LMaster

• matchmaking is provided through yellow pages
[16] and facilitated by theCIC agent[2]

Combining these assumptions resulted in the sys-
tem represented in Figure 1 as a Use Case diagram.

Let us now focus our attention on interactions be-
tween theUserand its representative:LAgentand agent
teams residing in the system (information about the re-
maining parts of the system can be found in [9]). To
do this let us assume that the system is already “run-
ning for some time,” so that at least some agent teams
have been already formed. As a result, team “adver-
tisements” describing: (1) what resources they offer
and/or what jobs they would like to execute, and (2)
what “types” of agents they would like to join their team
are posted with the Client Information CenterCIC. As it
was discussed in [8], currently we use a singleCIC and
since it is implemented on a single computer, we use a
threaded-solution to maximize obtained throughput. At
the same time we do recognize that this solution may
become a bottleneck in the system and in the future we
may utilize an approach similar to that reported in [6].

Let us note that theUser, represented in Figure 1,
can be either someone who tries to contribute resources
to the grid, or someone who would like to utilize re-
sources available there. Interestingly, the Use Case dia-
gram shows that both situations are “symmetric” and in-
volve the same pattern of interactions between theUser
and agents representing her and the system (moreover
processes that take place here are very similar to these
described in [2] and interested user may consult it for
further details). Let us start our description from the
case of“User-contributor” who wants to contribute re-
sources to the grid. She communicates with her agent
(the local agentLAgentwhich becomes a worker agent)
and formulates conditions for joining an agent team (or
requests that a new team be created). TheLAgentcom-
municates with the Client Information CenterCIC to

Mirror
LMaster
Recreation

LMaster
Recreation

DB Agent

Negotiation

Collaboration

Request
information/
propositions

Proposition
creation/ update

CIC

Gathering
knowledge

Job Joining <<extend>>

<<extend>>

Mirror LMaster

<<extend>><<extend>>

LMasterUser

LMaster MCDM

Definition
conditions

Communication

LAgent

Gathering
Knowledge

LDB Agent

LAgent
MCDM

Figure 1. Use Case diagram of the proposed system

obtain a list of agent teams that satisfy its predefined
criteria (currently, an exact match is required). Upon
receiving such a list, due to trust considerations (see [3]
for description of a trust management scenario that is di-
rectly applicable in the proposed system) it may remove
certain teams from the list. For instance, a team that did
not pay its workers will not be contacted again. The
LAgentwill then communicate withLMastersof the re-
maining teams. It will utilize the Contract Net Protocol
and Multi Criterial Analysis to evaluate obtained pro-
posals. If theLAgentfinds a team that it would like
to work with, it will join it. If no such team is found,
theLAgentmay decide to abandon the task and inform
about it itsUser. It is also possible that theLAgentmay
decide to become theLMasterof a new team and follow
steps involved in such process.

Let us now devote our attention to answering the
question what happens when the“User” requests that
its LAgentarranges execution of a task.

3. Selecting the team to execute the job

The first step to execute a job is for theUserto pro-
vide itsLAgentwith the necessary information such as
a job description, negotiation parameters and, possibly,
constraints. Based onUser-input, theLAgentacts au-

tonomously trying to execute the job utilizing resources
available within the Grid. As specified above, the over-
all schema of interactions is the same as in the case of
User requesting itsLAgentto join the team. First, the
LAgentqueries theCIC to obtain list ofagent teamsthat
have required resources for the job (again, only exact
matches are returned). Then it utilizes trust informa-
tion to filter-out untrustworthy teams (e.g. a team that
last time did not satisfy the service level agreement, and
did not deliver results on time, will, most likely, be re-
moved from the list). Based on the filtered list of agent
teams, theLAgentstarts negotiations with their leaders
(LMasters). During negotiations theLAgentutilizes the
negotiation parameters and constraints specified by the
User. The team that will execute the job is selected on
the basis of Multi Criterial Analysis (MCA) [7]. Let us
now look into details of the selection process.

3.1. User Input

User provides itsLAgentwith the job description,
negotiation parameters and, possibly, execution con-
straints. In our approach we assume that the system
will utilize ontologically demarcated data. Before we
proceed, let us make the following remark. An ideal
situation, for the development of our system, would be
if there existed an all-agreed “ontology of the grid” (that

would include both the resources and job execution pa-
rameters). Unfortunately, while there exists a number of
(separate and incompatible) attempts at designing such
an ontology, at this stage they can be treated only as a
“work in progress.” Therefore, instead of selecting one
of them and paying the price of dealing with a large and
not necessarily fitting our needs ontology (which would
then mean that we would have to make changes in an
ontology that we have not conceived and have no con-
trol over), we focus our work on the agent-related as-
pects of the system (designing and implementing agent
system skeleton) while utilizing simplistic ontologies.
Obviously, when the grid ontology will be agreed on,
our systemwill be ready for it. In [9] we have pre-
sented our ontological representation of computational
resources. Here, let us focus our attention on the ne-
gotiation parameters which are expressed using, what
we named,Grid Yellow Pages Ontology. Currently, in
our work we utilize three negotiation parameters: cost,
job start time and job end time. For each of theses pa-
rameters the user specifies its importance by assigning
weight that is later used in the MCA (section 3.3). In
addition to negotiation parameters we specify execution
constraints, e.g. the maximum price that can be charged
for the job. Furthermore, we assume that if any of job
execution parameters should not be taken into account,
then either 0 weight is given or that parameter is not in-
cluded in the negotiation parameter-set. Alternatively it
is also possible that a given parameter is constrained but
it is not given a weight. This also shows how ontology-
based approach gives us flexible possibilities of expres-
siveness. The following OWL Lite code snippet repre-
sents how these concepts are combined into the negoti-
ation parameter-set.

n e g o t i a t i o n p a r a m e t e r s

: N e g o t i a t i o n S e t a owl : C la s s .

: n e g o t i a t i o n P a r a m a owl : O b j e c t P r o p e r t y ;
r d f s : domain : N e g o t i a t i o n S e t ;
r d f s : ra nge Ne go t i a t i onPa ra m .

: Ne go t i a t i onPa ra m a owl : C la s s .

: paramWeight
a owl : Da ta t ype Prope r t y , owl : F u n c t i o n a l P r o p e r t y ;
r d f s : domain : Ne go t i a t i onPa ra m ;
r d f s : ra nge xsd : f l o a t .

: Cos t a owl : C la s s ;
r d f s : subClassOf : Ne go t i a t i onPa ra m .

: c o s t C o n s t r a i n t
a owl : Ob je c tP rope r t y , owl : F u n c t i o n a l P r o p e r t y ;
r d f s : domain : Cos t ;
r d f s : ra nge : F l o a t C o n s t r a i n t .

: c os tVa lue
a owl : Da ta t ype Prope r t y , owl : F u n c t i o n a l P r o p e r t y ;
r d f s : domain : Cos t ;
r d f s : ra nge xsd : f l o a t .

: J obS ta r tT ime a owl : C la s s ;
r d f s : subClassOf : Ne go t i a t i onPa ra m .

: j obS ta r tT ime Va lue
a owl : Da ta t ype Prope r t y , owl : F u n c t i o n a l P r o p e r t y ;
r d f s : domain : J obS ta r tT ime ;
r d f s : ra nge xsd : da teT ime .

: j o b S t a r t T i m e C o n s t r a i n t
a owl : Ob je c tP rope r t y , owl : F u n c t i o n a l P r o p e r t y ;
r d f s : domain : J obS ta r tT ime ;
r d f s : ra nge : T ime C ons t ra i n t .

: JobEndTime a owl : C la s s ;
r d f s : subClassOf : Ne go t i a t i onPa ra m .

: jobEndTimeValue
a owl : Da ta t ype Prope r t y , owl : F u n c t i o n a l P r o p e r t y ;
r d f s : domain : JobEndTime ;
r d f s : ra nge xsd : da teT ime .

: j obE ndT ime C ons t ra i n t
a owl : Ob je c tP rope r t y , owl : F u n c t i o n a l P r o p e r t y ;
r d f s : domain : JobEndTime ;
r d f s : ra nge : T ime C ons t ra i n t .

g e n e r i c c o n s t r a i n t s

: N e g o t i a t i o n P a r a m C o n s t r a i n t a owl : C la s s .

: F l o a t C o n s t r a i n t a owl : C la s s ;
r d f s : subClassOf : N e g o t i a t i o n P a r a m C o n s t r a i n t .

: maxFloa tVa lue
a owl : F u n c t i o n a l P r o p e r t y , owl : D a t a t y p e P r o p e r t y ;
r d f s : domain : F l o a t C o n s t r a i n t ;
r d f s : ra nge xsd : f l o a t .

: minF loa tVa lue
a owl : Da ta t ype Prope r t y , owl : F u n c t i o n a l P r o p e r t y ;
r d f s : domain : F l o a t C o n s t r a i n t ;
r d f s : ra nge xsd : f l o a t .

: T ime C ons t ra i n t a owl : C la s s ;
r d f s : subClassOf : N e g o t i a t i o n P a r a m C o n s t r a i n t .

: minDateValue
a owl : Da ta t ype Prope r t y , owl : F u n c t i o n a l P r o p e r t y ;
r d f s : domain : T ime C ons t ra i n t ;
r d f s : ra nge xsd : da teT ime .

: maxDateValue
a owl : F u n c t i o n a l P r o p e r t y , owl : D a t a t y p e P r o p e r t y ;
r d f s : domain : T ime C ons t ra i n t ;
r d f s : ra nge xsd : da teT ime .

As shown in the ontology schema, we separated con-
cepts of constraints and parameters—they are defined
in separate classes. This allows us to reuse constraints
concepts definitions throughout different parameters
definitions. For example, DateConstraint is used by
JobStartTime and JobEndTime parameters. Currently,
via constraints, we can define maximum or minimum
value for our parameters; e.g. maximum cost or min-
imum jobStartTime. Note also that extending this
parameter-set by adding, for instance, penalty for not
completing job on time, requires only a relatively sim-
ple operation of extending our ontology and making
minimal changes in agent-codes. This being the case,
the focus of our work was on the agent interaction and
parameter/ constraint utilization, rather than develop-
ment of a truly realistic parameter-set. Let us now as-

sume that theUserstated that the cost of the execution
is twice as important than the job end time by giving
weight 2 to the cost and weight 1 to the job end time.
Then the instance of the proposed parameter-set would
have the form:
@pref ix nego :
<h t t p : / / g r i d a g e n t s . s o u r c e f o r g e . ne t/ N e g o t i a t i o n #> .

: N e g o t i a t i o n S e t I n s t a n c e a nego : N e g o t i a t i o n S e t ;
nego : n e g o t i a t i o n P a r a m [

a nego : JobEndTime ;
nego : paramWeight ” 1 . 0 ” ˆ ˆ xsd : f l o a t

] , [
a nego : Cos t ;
nego : paramWeight ” 2 . 0 ” ˆ ˆ xsd : f l o a t

] .

In addition to the job-execution related parameter-set,
the user specifies the resource describing parameters
that are used to query theCIC (for more details, see [9]).
As a way for theUserto communicate input parameters
to its LAgent, we have implemented a User Agent GUI
(see section 4).

Let us now assume that, in response to the query,
theLAgentobtained from theCIC the list of agent teams
that have resources necessary to complete the job and
has filtered these that are not worthy of its trust, and
proceed to describe theLAgent-LMasternegotiations.

3.2. Negotiations

TheLAgentutilizes the FIPA Contract Net Protocol
to negotiate withLMasters (see [1] for details). In Fig-
ure 2 we depict the a slightly adjusted version of the
Contract Net Protocol, as it is pertinent to our situa-
tion. Note that theLAgentnegotiates with more then
oneLMasterand therefore the same set of interactions
takes place in all of these negotiations.

In the initial step, theLAgentsends out theCALL-
FOR-PROPOSAL(CFP) message to allLMasterson
the final list (after pruning). TheCFP contains the job
description and the execution constraining parameter-
set, according to whichLMasters are able to construct
their offers (obviously, weights assigned by theUser to
individual parameters are not communicated). In the
case of our simplistic parameter-set, theCFP message
could have the following form:
(CFP : s e nde r

(agent− i d e n t i f i e r
: name ua@kameleon : 1 0 9 9/JADE
: a d d r e s s e s (sequence h t t p :/ / kameleon : 7 7 7 8/ acc)
:X−JADE−agent−c lassname UserAgent)

: r e c e i v e r (s e t (agent− i d e n t i f i e r
: name lmaster@e−p l a n t : 1 0 9 9/JADE
: a d d r e s s e s (sequence h t t p :/ / e−p l a n t : 7 7 7 8/ acc)))

: c o n t e n t ” ((a c t i o n
(agent− i d e n t i f i e r : name lmaster@e−p l a n t : 1 0 9 9/JADE

: a d d r e s s e s (sequence h t t p :/ / e−p l a n t : 7 7 7 8/ acc))
(JobReques t : re s R e qu i re me n ts
(OntoData

: on toDataLang RDF/XML−ABBREV
: o n t o D a t a S t r

Figure 2. Interaction Diagram of FIPA Contract
Net Protocol.

\” < r d f :RDF xmlns : g r i d= ” . . . ” xmlns : r d f = ” . . . ” >
<g r i d : Un i ta ryComputer

r d f : a bou t=” j a d e : / / reques t@kameleon : 1 0 9 9/JADE”>
< r d f : t ype r d f : r e s o u r c e=
” h t t p : / / . . . / Grid # ComputerSystem”/ >
<g r i d : cpu>
<g r i d : cpuClockSpeedMhz

r d f : d a t a t y p e=” h t t p : / / . . . / XMLSchema# i n t ”>
1500

</ g r i d : cpuClockSpeedMhz>
</ g r i d : cpu>

</ g r i d : Un i ta ryComputer>
</ r d f :RDF>\”

)
)

: negoParamSet
(N e g o t i a t i o n S e t : n e g o t i a t i o n P a r a m

(sequence (JobEndTime
: j obE ndT ime C ons t ra i n t (T ime C ons t ra i n t
: maxDateValue \”2006−10−12T12 : 0 0 : 0 0\ ”)))
)))) ”

: r e p l y−wi th R11661315326300
: l a ngua ge f i pa−s l 0
: on to logy Messaging
: p r o t o c o l f i pa−c o n t r a c t−ne t
: c o n v e r s a t i o n− i d C4916061 1166131532629)

In this example theLAgent is looking for single ma-
chine with a 1.5MHz CPU and specifies the deadline
for the job execution by constraining the jobEndTime
negotiation parameter.

On the basis of the receivedCFP and their view of
the situation on their teams, eachLMasterprepares its
proposal and sends it back to theLAgent, using aPRO-
POSEmessage. Note that it is possible that some of
LMastersrefuse theCFP (using aREFUSEmessage).
For example, in the time between the last update of team
information in theCIC and theLAgent’s request, some
resources “disappeared” and the team cannot complete
the task. The positive response message, containing an

offer could have the following form:

(PROPOSE
: s e nde r (agent− i d e n t i f i e r

: name lmaster@e−p l a n t : 1 0 9 9/JADE
: a d d r e s s e s (sequence h t t p :/ / e−p l a n t : 7 7 7 8/ acc)
:X−JADE−agent−c lassname LMaster)

: r e c e i v e r (s e t (agent− i d e n t i f i e r
: name ua@kameleon : 1 0 9 9/JADE
: a d d r e s s e s (sequence h t t p :/ / kameleon : 7 7 7 8/ acc)
:X−JADE−agent−c lassname UserAgent))

: c o n t e n t ” (
(r e s u l t

(a c t i o n
(agent− i d e n t i f i e r

: name lmaster@e−p l a n t : 1 0 9 9/JADE
: a d d r e s s e s (sequence h t t p :/ / e−p l a n t : 7 7 7 8/ acc)
)

(JobReques t
. . .

)
)
(J obR e que s tO f fe r

: negoParamSet
(N e g o t i a t i o n S e t : n e g o t i a t i o n P a r a m
(sequence
(J obS ta r tT ime

: j obS ta r tT ime Va lue\”2006−10−12T11 : 3 0 : 0 0\ ”)
(JobEndTime

: jobEndTimeValue\”2006−10−12T12 : 3 0 : 0 0\ ”)
(Cos t

: c os tVa lue \ ” 120 ”)
)

)
)

)
) ”
: r e p l y−wi th ua@kameleon : 1 0 9 9/ JADE1166137976099
: in− re p l y− t o R11661379760930
: l a ngua ge f i pa−s l 0
: on to logy Messaging
: p r o t o c o l f i pa−c o n t r a c t−ne t
: c o n v e r s a t i o n− i d C4916061 1166137976092

)

The response message informs theLAgent that the
LMaster is willing to complete the job and devote re-
sources to it within the specified time-frame and that
the total cost will be 120 units. Note that in the Con-
tract Net Protocol, sending aPROPOSEmessage con-
stitutes acommitmentof theLMaster to the conditions
it specified.

In the current design of the system theLAgent
awaits for responses until all of them arrive or a specific
deadline occurs. Note that it is necessary to impose a
deadline to avoid a deadlock; e.g. it is possible that one
of LMasters looses connection to the Internet and can-
not communicate back its offer. If after the deadline
there is no proposal then theLAgentcannot execute the
task and reports this fact back to theUser. Otherwise,
if there is at least one offer, theLAgentstarts evaluating
offers. Proposal evaluation is a two-stage process:

• Offers which do not meet execution constraints
(e.g. cost, job start time, job end time) are filtered
out. If all offers are filtered out at this stage, due
to constraints, then theLAgentcannot execute the
task and reports back to theUser.

• The remaining offers are evaluated using Multi
Criterial Analysis (MCA)—see section 3.3.

The first stage of the process requires an explana-
tion. It is reasonable to ask: why would anLMaster
send an offer that violates constraints that were given to
it. This situation is, on the one hand, result of a simplifi-
cation in our current design of the system; while on the
other hand it is a preparation for future system exten-
sions. The simplification concerns theLAgent, which
filters out all offers that violate constraints. Observe that
this may result in very few, or no offers at all. This also
prevents theUser from specifyingsoft constraintsthat
represent a “strong preference” but violation of which
does not necessarily mean that the offer is unacceptable.
For instance, I may prefer to have this job done tonight,
but if I can have it done extremely cheap by tomorrow
evening, then I may be willing to accept this offer. On
the other hand, the preparation for the future system ex-
tension is on the side of theLMaster. Its behavior is be-
ing prepared for job constraints that may be “flexible”
(here, it is important to note, that some constraints may
actually be “sharp” and their violation may result in an
offer being filtered out; currently we have not decided
if the LMaster is going to be informed if a given con-
straint is flexible or not, but we are being swayed toward
the solution in which theLAgentkeeps this information
to itself). Now, recall that theLMasterhas knowledge
of the capability of its team and its “pricing policy” and
when it makes an offer, it is going to be one that can
be backed up by a service level agreement. Let us as-
sume that anLMastermay have a full load for the next
12 hours, but then has no jobs scheduled. In this case
it may make an offer which is going to violate the tim-
ing constraint—as the execution will start past the sug-
gested deadline—-but since it has no tasks scheduled, it
may make an extremely cheap offer. We plan to address
these types of reasoning and strategizing in the future.

After the MCA is applied to the remaining offers,
the specific team is selected to execute the job. In this
case theACCEPT-PROPOSALmessage is sent to the
LMasterof that team. The remaining teams are rejected
by sending to them theREJECT-PROPOSALmessage.
The selected team confirms acceptance by sending back
an INFORM-DONEmessage. Obviously, the Contract
Net Protocol is also taking care of various “emergency
situations;” e.g. failure of the selected team to respond.

3.3. Multi Criteria Analysis

Let us now describe in more detail the Multi Cri-
terial Analysis-based selection process. In the current
implementation of the system we use thelinear addi-
tive model[7]. Note that this model was selected for its

simplicity. However, it has to be stressed that any other
MCAmethod can be applied to evaluate received offers.

In the case of the linear additive model, evaluation
is done by multiplying value scores on each criterion by
the weight of that criterion, and then adding all those
weighted scores together. Recall, that we have three
criteria that take part in the MCA process: cost, job
start time and job end time. If communication with
m teams resulted inn proposals (m− n teams refused,
send us proposals that were filtered out, or did not re-
spond within the deadline) then criterion scores of the
i-th team are calculated as follows:
Start Time Score:

S TSi =
(startTimei −currentTime)−1

∑n
j=1(startTimej −currentTime)−1

End Time Score:

ETSi =
(endTimei −currentTime)−1

∑n
j=1(endTimej −currentTime)−1

Cost Score:

CSi =
(

costi
n
∑

j=1

cos−1 t j

)−1

All scores are normalized and the i-th team final score
is calculated as:

Team ScoreTSi = S TSistartTimeWeight

+ETSiendTimeWeight+CSicostWeight

Team with the highest overall score, obtained as a
weighted sum of individual criterion scores, is selected
as the “winner.” For the example of the MCA in use,
please refer to the next section.

4. Example

Let us now present an example of how our system
works to support aUserwho would like to execute a job
utilizing the MPI programming library on 16 process-
ing nodes of a single computer. First, ourUser would
specify resource requirements using the GUI interface
shown in the Figure 3.

In the next step, theUser has to provide itsLA-
gentwith negotiation parameters expressing her execu-
tion preferences. For example, let us assume that she
would like to meet the deadline of 12:00 hours on 11th
of October, 2006. Furthermore the cost should be no
larger that 100 units. Note that the cost does not matter
as much as the time—the time weight is 3, while the
cost weight is 1; see Figure 4). Finally, in this example

Figure 3. User Agent GUI: Resource require-
ments.

Figure 4. User Agent GUI: Weights and con-
straints of criterions.

the User does not care when the job starts (weight 0),
she only wants to meet a specific execution deadline.

From the specified resource requirements theLA-
gent creates the ontological instance of resource re-
quirements and, based on that instance, constructs
a SPARQL query (utilizingResource Requirements
to SPARQLtranslator moduleResReqToSPARQL) and
sends it (as an ACL request message) to theCIC agent.
TheCIC executes the query and as a result delivers a list
of candidate teams meeting resource requirements. The
answer from theCIC contains a list of contacts toLMas-
tersrepresenting teams, encapsulated in aResultSet.

Since trust management is not yet implemented, the
LAgentstarts Contract Net Protocol-based negotiations
with all LMastersfound on the list. It receives their
offers, filters these that violate constraints and evalu-
ates the remaining ones using the MCA. Figure 5 shows
three teams and their scores evaluated by the MCA.

Figure 5. User Agent GUI: Matched teams and
their scores.

As we can see,teamAhas been rejected because
it does not meet the deadline constraint. The remain-
ing two teams have been evaluated. Despite of cost
proposed by theteamCbeing cheaper by 40%, it was
the teamB that was accepted to do a job because of
an earlier job completion time. Note that, unless in-
structed otherise, the decision is made by theLAgent
autonomously and the depiction in Figure 5 is presented
only to illustrate the process.

5. Concluding remarks

In this paper we have continued describing our
work devoted to development of an agent-based grid
resource-brokering system. Here we have focused our
attention on the process involved in an agent represent-
ing aUser selecting a team that is going to execute its
job. We have presented how job-execution parameters
and constraints are represented and how they are uti-
lized in Contract Net Protocol based negotiations be-
tweenLAgents representing theUserandLMasters rep-
resenting agent teams. We have also indicated how a
much more involved forms of reasoning can be easily
introduced into our design. Currently we are using ex-
periences gathered from our initial implementation to
re-implement parts of the proposed system to improve
its efficiency and flexibility. We are also focusing our
attention on the process of team-formation. We will re-
port on our progress in the near future.

References

[1] Fipa contract net protocol specification.
[2] C. Bádicá, A. Báditá, M. Ganzha, and M. Paprzycki. De-

veloping a model agent-based e-commerce system. In
J. L. et. al., editor,E-Service Intelligence - Methodolo-
gies, Technologies and Applications. Springer. in press.

[3] C. Bádicá, M. Ganzha, M. Gawinecki, P. Kobzdej, and
M. Paprzycki. Towards trust management in an agent-
based e-commerce system - initial considerations. In
A. Zgrzywa, editor,Proceedings of the MISSI 2006 Con-
ference, pages 225–236. Wroclaw University of Technl-
ogy Press, Wroclaw, Poland.

[4] R. Buyya, D. Abramson, J. Giddy, and H. Stockinger.
Economic models for resource management and

scheduling in grid computing.Concurrency and Com-
putation: Practice and Experience, pages 1507–1542,
2002.

[5] G. Cabri, F. D. Mola, and R. Quitadamo. Supporting a
territorial emergency scenario with services and agents:
a case study comparison. InThe IEEE 15th WETICE,
Manchester, UK, 2006.

[6] J. Cao, D. J. Kerbyson, and G. R. Nudd. Use of agent-
based service discovery for resource management in
metacomputing environment. InEuro-Par ’01: Pro-
ceedings of the 7th International Euro-Par Conference
Manchester on Parallel Processing, pages 882–886,
London, UK, 2001. Springer-Verlag.

[7] J. Dodgson, M. Spackman, A. Pearman, and L. Phillips.
DTLR multi-criteria analysis manual. UK: National
Economic Research Associates, 2001.

[8] M. Dominiak, W. Kuranowski, M. Gawinecki,
M. Ganzha, and M. Paprzycki. Efficient matchmaking
in an agent-based grid resource brokering system. In
Proceedings of the International Multiconference on
Computer Science and Information Technology, pages
327–335. PTI Press, 2006.

[9] M. Dominiak, W. Kuranowski, M. Gawinecki,
M. Ganzha, and M. Paprzycki. Utilizing agent
teams in grid resource management - preliminary
considerations. InProceedings of the J. V. Atanasov
COnference, October 2006.

[10] I. Foster, N. R. Jennings, and C. Kesselman. Brain meets
brawn: Why grid and agents need each other. InAAMAS
’04: Proceedings of the Third International Joint Con-
ference on Autonomous Agents and Multiagent Systems,
pages 8–15, Washington, DC, USA, 2004. IEEE Com-
puter Society.

[11] I. Foster and C. Kesselman. The grid 2: Blueprint for a
new computing infrastructure. 2003.

[12] S. Manvi, Birje, and B. Prasad. An agent-based resource
allocation model for computational grids.Multiagent
and Grid Systems, 1(1):17–27, 2005.

[13] D. Ouelhadj, J. Garibaldi, J. MacLaren, R. Sakellariou,
K. Krishnakumar, and A. Meisels. A multi-agent infras-
tructure and a service level agreement negotiation proto-
col for robust scheduling in grid computing. InAdvances
in Grid Computing - EGC 2005, volume 3470/2005
of Lecture Notes in Computer Science, pages 651–660,
Germany, 2005. Springer Verlag.

[14] O. F. Rana and B. D. Martino. Grid performance and re-
source management using mobile agents.Performance
analysis and grid computing, pages 251–263, 2004.

[15] H. Tianfield and R. Unland. Towards self-organization
in multi-agent systems and grid computing.Multiagent
and Grid Systems, 1(2):89–95, 2005.

[16] D. Trastour, C. Bartolini, and C. Preist. Semantic web
support for the business-to-business e-commerce lifecy-
cle. InWWW ’02: Proceedings of the 11th international
conference on World Wide Web, pages 89–98, New York,
NY, USA, 2002. ACM Press.

