

Using a Grid Platform for Enabling Real Time User Modeling
in On-line Campus

Santi Caballé1, Fatos Xhafa2, Thanasis Daradoumis1, Joan Esteve2, Leonard Barolli3, Arjan Durresi4

1Open University of Catalonia, Department of Computer Science, Multimedia, and Telecommunication
Rbla. Poblenou, 156, 08018 Barcelona, Spain
{scaballe,adaradoumis}@uoc.edu

2Dept. of Languages and Informatics Systems, Polytechnic University of Catalonia
 Jordi Girona 1-3, 08034 Barcelona, Spain
{fatos,jestever}@lsi.upc.edu

3Department of Information and Communication Engineering
Fukuoka Institute of Technology (FIT)

3-30-1 Wajiro-higashi, Higashi-ku, Fukuoka 811-0295, Japan
barolli@fit.ac.jp

4Department of Computer Science
Louisiana State University

298 Coates Hall, Baton Rouge, LA 70803, USA
durresi@csc.lsu.edu

Abstract

User modelling in on-line distance learning is an
important research field focusing on two important
aspects: describing and predicting students’ actions
and intentions as well as adapting the learning process
to students’ features, habits, preferences, and so on.
The aim is to greatly stimulate and improve the
learning experience. Indeed, on the one hand, students’
intentions may change during the realization of
learning activities and thus their actions evolve
accordingly as the learning process moves forward.
On the other hand, adaptive systems can effectively
plan and design appropriate learning tasks according
to students' features, habits and interests with the aim
of facilitating the achievement of the learning goal. In
this context, user modelling implies a continuous
processing and analysis of user interaction data during
long-term learning activities, which produces large
and considerably complex information. As a
consequence, processing this information is costly and
could require computational capacity beyond that of a
single computer. In this paper, we show how a Grid
approach can considerably decrease the processing
time of log data of on-line distance educational web-
based systems. Our prototype is based on the master-
worker paradigm and is implemented using a peer-to-
peer platform running on the Planetlab nodes. The
results of our study show the feasibility of using Grid
middleware to speed and scale up the processing of log
data and thus achieve an efficient and dynamic user
modeling in on-line distance learning.

1. Introduction

 User modeling [1, 2] is a mature research field
mostly involved in the information technology context.
It is mainly utilized in software systems for inferring
the users’ goals, skills, knowledge, needs and
preferences and thus achieving more adequate
adaptation and personalization on the basis of the user
activity pattern built. This inference process relies in
turn on being able to track the users’ actions when
interacting with the application such as the users’
choice of buttons and menu items [3].
 Therefore, on the one hand, the information captured
from tracking is used by a user modeling algorithm in
order to predict future users’ actions, intentions and so
on. On the other hand, based on the knowledge
acquired from the user model, an adaptive system can
adjust and personalize the system to individual user
characteristics, preferences and needs. Indeed, adaptive
systems [2, 3] monitor the user model and
automatically adjust the interface or content provided
by the system to accommodate such user differences as
well as changes in user skills, knowledge and
preferences. Thus, for instance, constantly maintaining
the user model allows developers to receive continuous
and useful feedback about the system’s usability and
adapt the user interface design to the actual users’
needs whilst they evolve as time goes by.
 The ultimate aim of using user modeling and
adaptive methods and techniques is to stimulate and
improve the users' experience when interacting with
the system [1].

Proceedings of the First International Conference
on Complex, Intelligent and Software Intensive Systems (CISIS'07)
0-7695-2823-6/07 $20.00 © 2007

 User modeling provides a set of well-established
techniques. Some of these techniques are fairly
intrusive, such as requiring users to explicitly provide
information through questionnaires. Seamless
alternatives include the tracking of user's actions by
analyzing the interactions occurring in these
applications. In this paper, we focus on Web-based
applications that support on-line distance learning.
These applications, due to the high degree of user
interaction, take great advantage of the tracking-based
techniques of user modeling such as providing broader
and better support for the users of Web-based
educational systems [2]. Indeed, the data analysis of
the information captured from the actions performed
by learners is a core function for the modeling of the
learner’s behavior during the learning process and of
the learning process itself as well. In addition, the
building of learner models may help identify
navigation patterns and adapt the system’s usability to
the actual learners’ needs and thus stimulating the
learning experience [3].
 As a consequence of the complex processes involved
in learning, we need to capture all and each type of
possible data gathered in log files. However, the
information generated in Web-based learning
applications can be of a great variety of type and
formats [5]. Moreover, these applications are
characterized by a high degree of user-user and user-
system interaction which stresses the amount of
interaction data generated. Therefore, there is a strong
need for powerful solutions that record the large
volume of interaction data and can be used to perform
an efficient interaction analysis and knowledge
extraction.
 In the literature, questions related to efficiently
process the information obtained from learning activity
have been, to the best of our knowledge, hardly
investigated. Most of the existing approaches in the
literature consider a sequential approach for the
processing of log data and try to overcome the
performance problem by: (i) processing for specific
purpose (i.e. limiting the quantity of information
needed for that purpose); (ii) processing of small data
samples, usually for research and testing purposes. In
addition, they do not address the issue of processing
time requirements that might result from the huge
amount of data that are to be processed, which is a
common issue in web-based learning environments.
Moreover, the need to make the analyzed information
available in real time entails that we may come across
with processing requirements beyond those of a single
computer.
 Grid [4] technology is increasingly being used to
reduce the overall, censored time in processing data by
offloading these computationally costly tasks from the

computing elements running them onto the Grid. The
concept of a computational Grid has emerged as a way
of capturing the vision of a network computing system
that provides broad access to massive computational
resources.
 Based on this vision, a preliminary study was
conducted [5] to show that a Grid approach based on
the Master-Worker (MW) paradigm [6] might increase
the efficiency of processing a large amount of
information from user activity log files. This allowed
us to develop a real Grid-aware prototype that shows
(i) how easily we are able to offload onto the grid the
online processing of log data from the application, (ii)
how a simple MW scheme suffices to achieve
considerable speed-up, (iii) the gain provided by the
Grid approach in terms of relative processing time and,
(iv) the benefits of using the inherent parallel and
scalable nature of Grid while the input log files are
growing up in both number and large size. In order to
show the feasibility of our approach, we use the log
data from the internal campus of the Open University
of Catalonia though our approach is generic and can be
applied for reducing the processing time of log data
from any web-based application in general.
 The rest of the paper is organized as follows. In
Section 2, the importance and problems of modeling
the students’ behavior in Web-based environments is
shown through the case of the Open University of
Catalonia. Section 3 presents a sequential application
for processing offline the campus log data generated by
real online learning activity. Section 4 introduces how
the problem of processing this log data can be
parallelized using the MW paradigm on a peer-to-peer
platform called Juxta-CAT. Section 5 explains in detail
our approach to parallelize and offload onto the Grid
the sequential application. Finally, in Section 6, we
present some computational results achieved and we
end in Section 7 with some conclusions and outline
ongoing and future work.

2. Modeling students’ behavior in Web-
based distance learning settings: the case of
the Open University of Catalonia

 Our real web-based learning context is the Open
University of Catalonia (UOC) [7] which offers
distance education through the Internet in different
languages. As of this writing, about 40,000 students,
lectures and tutors from everywhere participate in
some of the 23 official degrees and other PhD and
post-graduate programs resulting in more than 600
official courses. The campus is completely virtualized.
It is made up of individual and community areas (e.g.
personal electronic mailbox, virtual classrooms, digital

Proceedings of the First International Conference
on Complex, Intelligent and Software Intensive Systems (CISIS'07)
0-7695-2823-6/07 $20.00 © 2007

library, on-line bars, virtual administration offices,
etc.) through which users are continuously browsing in
order to fully satisfy their learning, teaching,
administrative and social needs.
 From our experience at the UOC, the description and
prediction of our students’ behavior and navigation
patterns when interacting with the campus is a first
issue. Indeed, a well-designed system’s usability is a
key point to stimulate and satisfy the students’ learning
experience. In addition, the monitoring and evaluation
of real, long-term, complex, problem-solving situations
is a must in our context. Our goal is to understand and
adapt the learning process and objects to the actual
students’ learning needs as well as to validate the
campus’ usability by the actual usage of the campus.
 In order to achieve these goals, the analysis of the
campus activity and specifically the users' traces
captured while browsing the campus is essential in this
context. The collection of this information in log files
and the later analysis and interpretations of this
information provide the means to model the user's
behavior and activity patterns. For instance, from the
log data it is possible to capture the different areas
browsed by a student during his/her user session along
with the timestamp when accessing to these areas. This
allows us to know what the most popular areas are,
how long in average students remain in each area, user
session time in average and in different daily periods,
navigation patterns combining both the most and the
least visited areas, and so on.
 However, in Web-based learning applications in
general, extracting navigation and behavior patterns
from the analysis of user interactions is a difficult task
due to both the amount and the complexity of
information generated. This makes its later treatment
very tedious and time-consuming. Therefore, in order
to construct a reliable, effective, useful learner models,
this information has to enter a process to be effectively
collected, processed and analyzed. During the first
stage of this process, the most important issue while
monitoring learning activity is the efficient collection
and storage of the large amount of information
generated. Given that such informational data may
need a long time to be processed, Web-based learning
systems have to be designed in a way that filter and
pre-process the resulting information effectively. The
aim is, on the one hand, to correctly collect and store
the learning activity and, on the other hand, to increase
the efficiency during the later data processing and
analysis stages.
 In the context of our university, the whole user
interaction generates a huge amount of information in a
day which is filtered and collected in large daily log
files. Furthermore, this large information is found in an
ill-structured highly redundant form needing a great

amount of computational power to constantly process
log data. As a matter of fact, the computational cost is
the main obstacle to process this data in real time [5, 8,
9] and hence in real situations this processing tends to
be done offline in order to avoid harming the
performance of the logging application, but as it takes
place after the completion of the learning activity has
less impact on it.
 Next section presents a sequential approach of
processing log data information from Web-based
distance learning applications. Main problems and
inconveniences will be arisen and discussed through a
detailed analysis of the processing of log data coming
from the campus activity of our university.

3. Processing log files from an on-line
distance learning campus

 The on-line Web-based campus of the UOC is made
up of individual and community virtual areas such as
mailbox, agenda, classrooms, library, secretary's office,
and so on. Students and other users (lecturers, tutors,
administrative staff, etc.) continuously browse these
areas where they request for services to satisfy their
particular needs and interests. For instance, students
make strong use of email service so as to communicate
with other students and lecturers as part of their
learning process.
 All users' requests are chiefly processed by a
collection of Apache [10] web servers as well as
database servers and other secondary applications, all
of which are providing service to the whole community
and thus satisfying a large number of users. For load
balance purposes, all HTTP traffic is smartly
distributed among the different Apache web servers
available and each web server stores in a log file each
user request received and the information generated
from processing it. Once a day (namely, at 01:00 a.m.),
all web servers in a daily rotation merge their logs
producing a single very large log file containing the
whole user interaction with the campus performed in
the last 24 hours.
 A typical daily log file size may be up to 10 GB.
This great amount of information is first pre-processed
using filtering techniques in order to remove a lot of
futile, non relevant information (e.g. information
coming from automatic control processes, the
uploading of graphical and format elements, etc.).
However, after this pre-processing, about 1.8 GB of
potentially useful information corresponding to
3,500,000 of log entries in average still remains [11].
 Log file entries are structured following a type of
format known as Common Log Format (CLF) [12]
which is produced by most of web servers including

Proceedings of the First International Conference
on Complex, Intelligent and Software Intensive Systems (CISIS'07)
0-7695-2823-6/07 $20.00 © 2007

Apache and is fairly configurable. For the purpose of
registering the campus activity, log files entries were
set up with the purpose of capturing the following
information: who performed a request (i.e. user’s IP
address along with a session key that uniquely
identifies a user session); when the request was
processed (i.e. timestamp); what type of service was
requested (a URL string format description of the
server application providing the service requested
along with the input values) and where (i.e. an absolute
URL containing the full path to the server application
providing the service requested).
 At this point, we point out some problems arisen by
dealing with these log files. Each explicit user request
generates at least an entry in the log file and after being
processed by a web server, other log entries are
generated from the response of this user request;
certain non-trivial requests (e.g. user login) involve in
turn requesting others and hence they may implicitly
trigger new log entries; the what and where fields
contain very similar information regarding the URL
strings that describe the service requested and the
parameters with the input values; certain information is
found in a very primitive form and is represented as
long text strings (e.g. user session key is 128-character
string long). Therefore, there is a high degree of
redundancy, tedious and ill-formatted information as
well as incomplete as at some cases certain user actions
do not generate any log entry (e.g. user may leave the
campus by either closing or readdressing the browser)
and thus these actions have to be inferred. As a
consequence, treating this information is very costly in
time and space needing a great processing effort.
 In order to deal with these inconvenients, we have
developed a simple application in Java, called
UOCLogsProcessing that processes log files of the
UOC. In particular, this application runs offline on the
same machine as the logging application server. As an
input, it uses the daily log files as a result of merging
obtained after merging those log files generated by the
web servers so as to: (i) identify the log entries
boundaries and extract the fields that make up each
entry, (ii) capture the specific information contained in
the fields about users, time, sessions, areas, etc., (iii)
infer the missing information, (iv) map the information
obtained to typed data structures, and (v) store these
data structures in a persistent support.

4. Juxta-CAT: a JXTA-based Grid

platform

In this section, we briefly introduce the main aspects of
the grid platform, called Juxta-CAT [13], [14], which
we have used for the processing of log files.

 The Juxta-CAT platform has been developed using
the JXTA [15] protocols and offers a shared Grid
where client peers can submit their tasks in the form of
java programs stored on signed jar files and are
remotely solved on the nodes of the platform. The
architecture of Juxta-CAT platform is made up of two
types of peers: common client peers and broker peers.
The former can create and submit their requests using a
GUI-based application while the later are the
administrators of the Grid, which are in charge of
efficiently assigning client requests to the Grid nodes
and notify the results to the owner's requests. To assure
an efficient use of resources, brokers use an allocation
algorithm, which can be viewed as a price-based
economic model, to determine the best candidate node
to process each new received request. The
implementation and design of peers, groups, job and
presence discovery, pipe-based messaging, etc. are
developed using the latest updated JXTA libraries
(currently release 2.3.7) and JDK 1.5 version.
 The Juxta-CAT platform has been deployed in a
large-scale, distributed and heterogeneous P2P network
using nodes from PlanetLab 1 platform. Juxta-CAT
Project and its official web site have been hosted in
Java.NET community [14].

Juxta-Cat architecture. As mentioned above, Juxta-
Cat is made up of common client peers and broker
peers.
 Client peers are the end users of the Juxta-CAT and
are obtained by downloading and installing the
application from the official page of Juxta-CAT. Once
the machine is “converted” into a client peer, the user
will connect to the peer-to-peer network and can
submit execution requests to their peer group nodes.
Also, client peers will be able to process received
requests sent to them by other nodes through the
brokering and notify them the result of the requests,
once they are completed.
 Broker peers are in charge of receiving and
allocating the requests sent by clients of the peer
group. Whenever a broker receives a request, it
explores the state of the rest of nodes currently
connected to the network, examining their working and
connection statistics. Then, it uses this
historical/statistical data to select, according to a price-
based economic model, the best candidate peer for
processing that request.

1 http://www.planet-lab.org/. Current distribution of 714

nodes over 337 sites, as of November 13th, 2006.
Polytechnic University of Catalonia has joined PlanetLab
with several proper nodes.

Proceedings of the First International Conference
on Complex, Intelligent and Software Intensive Systems (CISIS'07)
0-7695-2823-6/07 $20.00 © 2007

5. Processing of log files in the Juxta-CAT
platform

 We explain now how is done the processing of log
files in the Juxta-CAT platform. The implementation
follows the well-known MW paradigm. We note first
that the sequential java class UOCLogsProcessing
encapsulates also functionalities to provide the division
of the log file into as many equal parts as grid nodes
will be used for processing them; these parts will be
later on submitted for processing to the Juxta-CAT.
The main steps that would follow the user (the master
node) to process a log file in the Juxta-CAT are as
follows:

1. [Preparation phase]: Provide the necessary

information (to the Master) for the preparation of
the requests to submit to the Juxta-CAT:

a. Indicate the path to the log file and its name and
the number of nodes participating in the
processing. UOCLogsProcessing counts the
total number of lines of the log file,
totalNbLines, and knowing the number of grid
nodes to be used, nbNodes, each node will read
and process a totalNbLines/nbNodes of lines
from the file.

b. Indicate an FTP server, a user name and a
password as well as a public address where the
parts of the file will be uploaded. The
implementation of FTP for Java, known as
PureFTP, is included in the Jakarta Apache
commons-net-1.4.1.jar library [16].

2. [Master Loop]: Repeat
a. Read totalNbLines/nbNodes lines
b. Upload the file to the indicated public

address via FTP
c. Create a request and submit it to Juxta-

CAT
Until the original log file has been completely scanned.
3. [Juxta-cat processing]:

a. Each time a request is received by brokers of
Juxta-CAT, it is assigned to a peer node of the
platform.

b. The peer node, upon receiving the request, reads
according to the request’s description, the part
of the file it has to read via HTTP. The peer runs
UOCLogProcessing functionality for processing
the lines of the file, one at a time, and stores the
results of the processing in a buffer.

c. The peer node, once the processing of the request
is done, sends back to the master node the
content of the buffer.

4. [Master’s final phase]: Receive messages from
peers and append the new received resulting file to

the final file containing the information extracted
from the original log file.

 The program UOCLogsProcessing is compiled in a
unique java jar package, which includes the library
developed by Jakarta Apache needed for the FTP
transfer. The code has been optimized using Java
Proguard 3.5 so that the final jar file size is 28.7 KB.
We show in Figure 1 and 2 the submission of a request
to Juxta-CAT and the state information once it is
processed. Note that the user has to just provide the in
formation needed in Step 1 (see above); the rest is
automatically done by Juxta-CAT.

6. Experimental results

 In this section we present the experimental results
obtained for a test battery in order to measure the
efficiency obtained by the grid processing. This battery
test uses both large amounts of log information (i.e.
daily log files) and well-stratified short samples
consisting of representative daily periods with different
activity degrees (e.g. from 7 p.m. to 1 a.m. as the most
active lecturing period and from 1 a.m. to 7 a.m. as the
period with least activity in the campus). On the other
hand, other tests involved a few log files with selected
file size forming a sample of each representative
stratum. This allowed us to obtain reliable statistical
results using an input data size easy to use.

Table 1. PlanetLab nodes.

Host Description
planet1.manchester.ac.uk University of Manchester
lsirextpc01.epfl.ch École Fédérale de Lausanne
planetlab1.polito.it Politecnico di Torino
planetlab1.info.ucl.ac.be University of Louivain
planetlab2.upc.es Universitat Politècnica de

Catalunya
planetlab1.sics.se Swedish Institute of Computer

Sci.
planetlab1.ifi.uio.no University of Oslo
planetlab3.upc.es Universitat Politècnica de

Catalunya
planetlab1.ls.fi.upm.es Universidad Politécnica de

Madrid
planetlab1.hiit.fi Technology Institute of Helsinki
planetlab-1.cs.ucy.ac.cy University of Cyprus
planetlab1.ru.is University of Reykjavik
planetlab2.sics.se Swedish Institute of Computer

Sci.
planetlab1.mini.pw.edu.pl Telekomunikacja Polska

Warsaw
planetlab1.cs.uit.no University of Tromso
planetlab-02.ipv6.lip6.fr Laboratoire d'Informatique de

Paris

Proceedings of the First International Conference
on Complex, Intelligent and Software Intensive Systems (CISIS'07)
0-7695-2823-6/07 $20.00 © 2007

Proceedings of the First International Conference
on Complex, Intelligent and Software Intensive Systems (CISIS'07)
0-7695-2823-6/07 $20.00 © 2007

 The battery test was processed by the
UOCLogsProcessing application executed on single-
processor machines involving usual configurations.
The battery test was executed several times with
different workload in order to have more reliable
results in statistical terms involving file size, number
of log entries processed and execution time along with
other basic statistics. On the other hand, the same
battery test was processed by Juxta-CAT with different
number of nodes, specifically, 2, 4, 8, and 16 nodes,
using PlanetLab nodes (see Table 1).

Fig. 3. Three execution times results for log files with
sizes of 12MB, 24MB and 36MB, respectively; x-axis
indicates the number of processors and y-axis the
processing time (mm:ss).

Parallel speed-up is used to measure the performance
gain from a parallelized execution of the application
over its serial execution, defined as follows:

S(s,p) = TS(s) / TP(s,p),

where s is the size of the log file, TS(s) is the total
running time of the sequential execution for a log file
of size s and TP(s,p) is the total running time of the
parallel execution for a log file of size s, using p
processors.
 Parallel efficiency measures the degree of utilization
of the computing resources involved in the parallel
computation and is defined as the speed up divided by
the number of computing resources (i.e. processors):

E(s,p) = S(s) / p.

 From the execution times shown in Figure 3 and the
formulas previously introduced, we show in Table 2
the gain in terms of parallel speed-up and efficiency we
achieved.

Table 2. Parallel speed-up and efficiency.

Log file size Speed-up Efficiency
12 MB 6.1 38.2 %
24 MB 7.4 46,2 %
36 MB 9.1 56.8 %

7. Conclusions and further work

 Web-based applications that support on-line distance
education have been gaining a lot of attention due to
the capability of offering training, long-life learning
and education in general widely and easily available. In
this context, it is essential to capture and understand
the learner's behavior so as to predict future intentions,
provide appropriate support and adapt the learning
process and environment to learners' needs,
preferences, knowledge, skills, and so on. The aim is to
greatly stimulate the learning experience. To this end,
we have shown how to model the learner's behavior
and activity pattern by using user modeling tracking-
based techniques.
 However, the information generated from tracking
the learners when interacting with the virtual learning
environment is usually very large, tedious, redundant
and ill-formatted and as a result processing this
information is time-consuming. In order to overcome
this problem, in this paper we have proposed a Grid-
aware implementation that considerably reduces the
processing time of log data and allow to build and

Proceedings of the First International Conference
on Complex, Intelligent and Software Intensive Systems (CISIS'07)
0-7695-2823-6/07 $20.00 © 2007

constantly maintain user models. For the purposes of
both showing the problem of dealing with log data and
testing our grid prototype we have described and used
the log data coming from the virtual campus of the
Open University of Catalonia.
 The experimental results show a considerable gain in
speedup and efficiency while parallelizing the
processing of log files. This makes us confident of the
feasibility and usefulness of using our Grid approach.
 Further work will include the implementation of a
more thorough mining process of the log files, which
due to the nature of the log files of our virtual campus
will require more processing time as compared to the
UOCLogsProcessessing used in this work.

Acknowledgments
This work has been partially supported by the Spanish MCYT
project TSI2005-08225-C07-05.

8. REFERENCES

1. Bushey, R., Mauney, JM., and Deelman, T., The

Development of Behaviour-Based User Models for a
Computer System. In Judy Kay (ed.), User Modeling:
Proceedings of the Seventh International Conference,
UM99. Springer Wien New York, pp. 109-118, 1999.

2. Brusilovsky, P. and Peylo, C., Adaptive and intelligent
Web-based educational systems. In P. Brusilovsky and
C. Peylo (eds.), International Journal of Artificial
Intelligence in Education 13 (2-4), Special Issue on
Adaptive and Intelligent Web-based Educational
Systems, pp. 159-172, 2003.

3. Gaudioso, E., Boticario, J.G., Towards web-based
adaptive learning communities. Proceedings of Artificial
Intelligence in Education 2003, Sydney, Australia. IOS
Press, 2003.

4. Foster, I. and Kesselman, C., The Grid: Blueprint for a
Future Computing Infrastructure. Morgan Kaufmann,
San Francisco, CA, pp. 15-52, 1998.

5. Xhafa, F., Caballé, S., Daradoumis, Th. and Zhou, N., A
Grid-Based Approach for Processing Group Activity
Log Files. In: proc. of the GADA'04, Cyprus, 2004.

6. Master-Worker: http://www.cs.wisc.edu/condor/mw/,
Web page as of October 2006.

7. Open University of Catalonia: http://www.uoc.edu, Web
page as of October 2006.

8. Paniagua, C., Xhafa, F., Caballé, S. and Daradoumis, T.,
A Grid Prototype Implementation for Real Time
Processing of Group Activity Log Data in Collaborative
Applications. In: Proc. of the 2005 PDPTA’05. Las
Vegas. USA, 2005

9. Caballé, S., Paniagua, C., Xhafa, F., and Daradoumis,
Th., A Grid-aware Implementation for Providing
Effective Feedback to On-line Learning Groups. In:
proc. of the GADA'05, Cyprus, 2005.

10. Apache HTTP Server Project: http://httpd.apache.org/,
Web page as of June 2006.

11. Carbó, JM., Mor, E., Minguillón, J., User Navigational
Behavior in e-Learning Virtual Environments. The 2005

IEEE/WIC/ACM International Conference on Web
Intelligence (WI'05), pp. 243-249, 2005.

12. Common Log Format: http://httpd.apache.org/docs/1.3/
logs.html#common.

13. Esteve J., Xhafa F., Juxta-CAT: A JXTA-based
Platform for Distributed Computing. The ACM
International Conference on Principles and Practice of
Programming in Java (PPPJ 2006), 2006.

14. Juxta-Cat: https://juxtacat.dev.java.net/, Web page as of
October 2006.

15. JXTA: http://www.jxta.org/, Web page as of October
2006.

16. Jakarta Project: http://jakarta.apache.org/, Web page
as of October 2006.

Proceedings of the First International Conference
on Complex, Intelligent and Software Intensive Systems (CISIS'07)
0-7695-2823-6/07 $20.00 © 2007

