
Supervising Agent Team in an Agent-based Grid Resource Brokering
System—Initial Solution

Wojciech Kuranowski
Software Development Department, Wirtualna Polska

Gdansk, Poland

Maria Ganzha, Marcin Paprzycki
Systems Research Institute Polish Academy of Science

Warsaw, Poland
{maria.ganzha, marcin.paprzycki}@ibspan.waw.pl

Ivan Lirkov
Institute for Parallel Processing, Bulgarian Academy of Science

Sofia, Bulgaria

Abstract

Currently, we are developing an agent-team based
infrastructure for resource brokering and management
in Grids. In this note we consider how team is su-
pervised and how mirroring can be applied to improve
chances of its long-term persistence.

1. Introduction

In our work we follow results presented in [4, 11]
and develop a system in which software agents play role
of resource brokers and managers in the Grid. To this
effect, in [1] we have presented an overview of the pro-
posed approach. In [2] we studied the most effective
way of implementing yellow-page based matchmaking
services. While in [6] we considered processes involved
in agents seeking teams to execute their jobs, and in
[9] we described processes taking place when agents
seek teams to join. Finally, in [7] we have discussed
trust-management-related issues. Since the proposed
approach is based on agent teams, here, we discuss how
to keep them together and prevent from being dissolved
due to “technical difficulties” faced by team leader(s).
We start from a brief overview of the proposed ap-
proach. Next, we discuss how a team leader controls
status of its workers (their availability/ existence). In
the follow-up section we propose how mirroring can be
applied to increase chance of team’s survival.

2. Proposed approach

Rationale for the system is based on literature anal-
ysis and considering the Grid as an “open environment,”
(consisting of computers connected to the Internet [4]).
A complete set of assumptions and earlier results can be
found in [1, 2, 6, 9, 7, 5]. Here, we start by presenting
the Use Case diagram of the system (in Figure 1) and
discussing most important (for this note) properties of
the system.

The Client Information Center (CIC) agent plays
the role of a central repository where information
about all other agents is stored. It contains detailed
information about teams that look for workers and
teams offering to execute a job.Utilization of the
CIC represents a “yellow page” based approach to
matchmaking (see, [12] for critical analysis of possible
approaches to matchmaking).

Let us now assume that the system is already
running for some time, so that there exist at least some
agent teams and their “advertisements” are posted
within the CIC. The User can either try to contribute
resources to the Grid or would like to utilize services
available there.User who wants to contribute resources
to the Grid communicates with its agent (the local agent
LAgent that becomes a worker) and formulates condi-
tions for joining a team. TheLAgent requests from the
CIC list of agent teams that satisfy its joining criteria.
Upon receiving such a list, due to trust considerations,



Mirror 
LMaster 
Recreation

LMaster 
Recreation

DB Agent

Negotiation

Collaboration

Request 
information/ 
propositions

Proposition 
creation/ update

CIC

Gathering 
knowledge

Job Joining <<extend>>

<<extend>>

Mirror LMaster

<<extend>><<extend>>

LMasterUser

LMaster MCDM

Definition 
conditions

Communication

LAgent

Gathering 
Knowledge

LDB Agent

LAgent 
MCDM

Figure 1. Use Case diagram of the proposed system

it may remove certain teams from the list. For all the
remaining teams, theLAgent communicates with their
LMasters utilizing FIPA Contract Net Protocol based
negotiations [3] and multicriterial analysis [10] to
evaluate obtained proposals. The result of interactions
between theLAgent and LMasters may be twofold:
(1) it finds a team to join, (2) no such team is found
(either there were no offers, or they were unacceptable).
In this situation theLAgent abandons the task and
informs its User. In the case when theUser requests
that itsLAgent arranges execution of a task, it specifies
conditions of task execution. TheLAgent queries the
CIC to find out which teams can do the job. Upon
receiving a list of such teams, theLAgent removes from
it teams that cannot be trusted. Next, it communicates
with LMasters of the remaining teams and uses FIPA
Contract Net Protocol and multicriterial analysis to find
the best team to execute its job. If no team will satisfy
conditions imposed by theUser theLAgent reports this
situation and awaits further instructions.

Let us now consider interactions between the
LMaster and theLMirror. Both agents “mirror” each-
other’s existence and store information necessary to
keep the team running, and if theLMaster fails, the
LMirror can take its place. Recall that we assume that
the proposed system works in an “open Grid,” char-
acterized by potential high volatility of its nodes. In
such environment relatively frequent failures ofLMas-
ters have to be assumed. However, it has to be stressed
that our goal isnot creation of a “bullet-proof” envi-
ronment. Rather, we are interested in providing an in-
frastructure with a reasonable level of resilience against
common node failures.

Currently, we assume that theLMaster is the

“founding father” of the team. Next, when the first
agent joins its team, it automatically becomes itsLMir-
ror. Subsequent agents that join the team are informed
by theLMaster which agent is theLMirror. In this way
the LMirror becomes a trusted source of information
(see below). Furthermore, theLMaster registers the
LMirror with the CIC. Here, in the case of a crash of
theLMaster theCIC has to know that a givenLMirror
has a “right” to represent its team and replace the failed
agent. TheLMaster and theLMirror share information
that is pertinent to the existence of the team; e.g. list of
workers and their characteristics, list of tasks that have
been contracted to be executed, knowledge base that
stores information about all past interactions with users
and workers, etc. Now, it should be obvious why stor-
ing such information solely by theLMaster would mean
that the team would vanish in the case its crash. In order
to sustain the team, theLMaster and theLMirror check
each-others existence regularly in short time intervals
(see below). In the case when theLMaster crashes the
LMirror takes over its role (becomes the newLMaster).
The first action of the newLMaster is to promote one
of worker agents to become itsLMirror and pass to it
all necessary information. Next, it informs all members
of the team about its becoming theLMaster. Finally, it
updates the team information with theCIC (informing
who is theLMaster and theLMirror).

Similarly, upon finding that theLMirror agent
is “gone,” theLMaster immediately promotes one of
workers to become the newLMirror and passes to it
all necessary information. Next it informs the team
as well as theCIC who is the newLMirror. Note that
both theLMaster and theLMirror may crash “almost
simultaneously” and thus the team will be “destroyed.”



However, at this stage of the development of the system
we consider this outside of scope of our interests.

3. Monitoring status of team workers

As specified above, we assume that nodes in the
Grid can disappear at any moment (e.g. a PC being
turned off by a playing dog). Therefore, one of key
functions of theLMaster is monitoring status of it team.
TheLMaster should also be able to evaluate the state of
the network between itself and each worker. This lat-
ter knowledge can be used, among others, to allocate
jobs and to adjust the monitoring procedure (see below).
Note that while node crashes should be discovered very
fast, the monitoring process should also avoid false pos-
itives (i.e. a short network outage should not be miscon-
strued as a node failure). Thus we have designed a mon-
itoring system based on theLMaster “pinging” workers
using minimalistic ACL messages. Specifically, each
message consists of a string “ping” as itscontent, a
reply-with field specifying the content of the response
(string “re-ping”), and thereply-by field specifying the
deadline for the response (if the message is obtained af-
ter the deadline passed, e.g. due to a network delay, the
receiver will ignore it). After receiving a “ping-ACL-
message” worker replies to it.Upon receiving a reply,
the LMaster knows that a given agent is alive. How-
ever, to be able to develop a robust, but flexible mon-
itoring subsystem we have designed a somewhat more
complicated approach than a simple ping-response. The
screen-shot of the GUI of anLMaster (in Figure 2) is the
basis of its description. We have to stress that this GUI
has been usedonly for testing purposes. In actual runs,
eachLMaster obtains (as a text file) a set of parameters
and acts autonomously without displaying results in a
GUI. The monitoring process consists of the following
steps (see Figure 2):

1. LMaster performsX tests consisting ofY pings
each (both valuesX and Y, as well as other pa-
rameters, are configurable and are “an input” to the
LMaster; we assume that in the future, they will be
autonomously adjusted depending on factors like:
network conditions, trust etc.).

2. Each ping is send at a certain interval (specified in
milliseconds). While we assume that pinging in-
tervals for each agent may differ, currently a ping
is send to all agents (message broadcast) and a re-
sponse is expected within a specified time. The
next ping is sent after a specified time has passed.

3. For each agent in the team, a response to a ping is
a “pass” if it returns within a required time.

4. For a set ofY pings a percent of failed attempts is
calculated.

5. AfterY pings, the “fail-percent” value is compared
with the allowed “fail-value” to establish if a given
agent has passed one ofX tests.

6. After X tests a total number of failed tests is found.

7. This value is compared with the number of tests
that given agent was allowed to fail. Failure of a
given number of test may (or may not) result in
agent’s removal from the team.

8. Counters are zeroed and the procedure is repeated.

In Figure 2 we can see the following values of the
above defined parameters of the monitoring system:

• Ping interval: time between individual pings is set
to 200 ms (the same value used for all agents)

• Max ping reply: for a given ping to be scored as a
success, the response has to be received within 100
ms (part of the ACL-ping message; see above)

• Pings per test: each test consists of 20 pings

• Number of tests: each monitoring cycle consists of
15 tests

• Tests to pass: for the worker agent to be perceived
as alive, it has to pass at least 4 tests (out of 15)

• Max loss: a test is passed if the total number of
failed responses is smaller than 80% (for 20 pings
per test, at least 16 have to be passed)

In Figure 2 we can also see that theLMaster is
managing 5 agents (bottom left “sub-panel”), while data
concerning results of a current liveliness test for the
agentWorker2@home:1099/JADE is depicted in right
top “sub-panel.” Specifically, we can see that:

• Sent = 18 pings have been send

• Received = 18 responses have been received

• Loss = 0% losses were recorded (no losses)

• Min = 1ms was the fastest response to a ping

• Avg = 5ms was the average response time

• Max = 41ms was the longest response time

• Test no. = 12/15; test 12 (of 15) is in progress

• Passed = 11 tests have been passed thus far (all
tests, as test 12 is in progress)



Figure 2. GUI illustrating monitoring of a team member by an LMaster

The proposed monitoring procedure is quite flex-
ible. First, let us consider a “local Grid” (e.g. Grid
nodes are in the same laboratory). Here, pings can be
send often, expected response time can be short, while
non-responsive nodes can be immediately removed (see
theAutomatically remove poor workers checkbox). The
situation changes on the Internet. First, network out-
ages may (should?) not result in immediate removal of
a team member. It is even possible to not to remove
any team member, but try to reach it/them, until con-
nection is reestablished (note that this approach can be
related directly to trust management, where some nodes
are worthy our trust and we try to reach them, while
some are not [7]). Furthermore, it is possible to relax
selected parameters to avoid unnecessary team mem-
ber removal. For instance, a number of passed pings
within a round of testing can be reduced down to a sin-
gle passed test (indicating that a node is actually alive).

Note also that testing parameters should be ad-
justed to the network conditions. For instance, if a
packet loss rate is about 70%, then monitoring cannot
assume better sucess rate of pinging. Similarly, if the
response time is about 100ms, the monitoring proce-
dure has to take this into account. While adaptability
of monitoring is not yet implemented, it is easy to see
why network conditions may result in testing individu-
alized for each team member. For instance, after each
failed test-round probing tests are performed to match
the changing network conditions (similarly to the Re-
alPlayer adjusting settings to improve quality of sound).

4. LMaster–LMirror interactions

4.1. Re-creating crashedLMirror or LMaster

Monitoring is used also to find out when either
the LMaster or the LMirror crash and have to be
replaced/recreated. Replacing theLMirror is relatively
simple. TheLMaster uses monitoring to check live-
liness of all team members, including theLMirror.
If the LMirror fails the test it has to be recreated.
When a team that is working already for some time,
the LMaster has data about performance (as well as
resources) of all workers and can use it to select the
best agent to become the nextLMirror. Obviously,
the new LMirror should have a “non-stop contract”
with the team (see [9]), a very fast network connection
and appropriate resources. Promotion of a node to an
LMirror proceeds in the same way as creation of the
first LMirror; appropriate modules are send to it to
be loaded, followed by all “mirror-data.” Finally, the
LMaster informs the team and theCIC, which agent
became the newLMirror. During this process the
LMaster stops responding to queries and performing
any other tasks, as creation of anLMirror has the
highest urgency (without its successful completion
the team may disappear). Here, we omit the question:
what happens if a high-quality node does not exist in
the team, as actually not much can be done and such
situation is very likely going to, sooner or later, result
in team destruction. Furthermore, for the time being we



omit considerations involved in the economical model
of being anLMaster (i.e. not doing any actual work)
and anLMirror (which can do some work, but also has
to perform “duties” of the mirror, which are of higher
priority than completing other tasks). These ques-
tions, while very interesting, require a comprehensive
solution and are outside of the scope of this note.

When theLMaster crashes and theLMirror has to
become a newLMaster we deal with a slightly more
complicated situation. First, we need to establish how
the LMirror finds out that there are problems with the
LMaster. Obviously, the simplest solution would be
if the LMirror would listen to ping-tests arriving from
the LMaster and their disappearance would mean that
the LMaster has crashed. In this case theLMirror
could contact theAMS agent (FIPA mandated agent
that, among others, manages white-page information
about agents in the system;AMS agent is provided by
the JADE agent environment used in our work [8]) to
check if theLMaster is still registered with the sys-
tem (theAMS agent automatically deregisters defunct
agents) and use this information to start theLMaster
recreation. However, this approach will not work as we
assume that theLMaster should be able to adaptively
adjust ping intervals, (e.g. based on the state of the
network). Therefore, the interval between pings may
change and theLMirror cannot use the “current ping
rate” to correctly assess the state of theLMaster. There-
fore, we have decided to utilize the same monitoring
function used by theLMaster to monitor team members,
for the LMirror to monitor state of theLMaster (how-
ever, theLMirror monitors only a single agent). After
theLMaster stopped responding to test-pings theLMir-
ror contacts theAMS agent and checks if theLMaster
is still alive. If it is, it tests its existence again to pre-
vent possible conflicts arising when two agents with the
role LMaster are created in a single team. If theAMS
agent confirms that theLMaster is gone, the following
replacement procedure is initiated:

1. TheLMirror creates a skeleton agent and loads it
with LMaster modules. Specifically, theLMirror
requests that theAMS creates an agent based on
a class that implements anLMaster agent. Here,
we assume that it is easier for theLMirror to cre-
ate a new agent, rather than modify itself. Note
that there is a large difference between functions
performed by theLMaster and theLMirror agents.
For instance, theLMirror has only to monitor exis-
tence of theLMaster and “step-in” when it crashes
(separately it executes user-jobs assigned to it by
the LMaster). At the same time theLMaster is
responsible for “keeping the team alive,” contacts
with clients and potential workers, etc.

2. TheLMirror passes to the newLMaster the last
version of the team-persisting data and awaits a
confirmation that the data has been successfully
replicated and assimilated (i.e. it awaits informa-
tion that the newLMaster is fully functional).

3. Upon reception of the required confirmation, the
LMirror informs all members of the team that a
new LMaster has been created and will take over
management of the team. Note that team members
have been informed that theLMirror has a “right”
to do so, as it can replace theLMaster if necessary.
Separately, theLMirror informs theCIC about the
change in team leadership (theCIC is also ready
for such a message to arrive, see above).

4. The currentLMirror self-destructs as it is no
longer needed, while the newLMaster takes over.
Its first function is re-creation of anLMirror
(utilizing possessed information about the existing
team members). This is the same procedure as
when theLMirror crashes. When theLMirror
is fully re-created and data replicated to it, the
newLMaster informs team members and theCIC
which agent is the newLMirror of the team. Next,
the newLMaster starts managing the team and
interact with incoming messages from both team
members and “outside agents.” Note that comple-
tion of restoration of theLMaster + LMirror pair
is the task that has the highest priority.

5. The newLMaster has to pass its current task (re-
call that theLMirror is executing clients’ tasks) to
a worker, as it will not be able to complete it (the
LMasters works only on team-management related
tasks). Furthermore, it may need to re-allocate the
task being executed by the newLMirror to another
agent (e.g. a high priority task that should not be
interrupted by mirroring related activities).

6. Upon reception of a message from theLMirror,
team members verify that the oldLMaster is
actually no longer available (by contacting it and
theAMS agent). In the case of the oldLMaster not
responding and theAMS confirming that the old
LMaster is gone, they accept the newLMaster. If
the old LMaster responds to their messages, the
message from theLMirror is ignored and team
members continue to consider the oldLMaster to
be the leader of the team.

4.2. Replication

Thus far we have stated that when theLMirror is
(re)created and when theLMaster is recreated, they



are provided with all data necessary for team manage-
ment. While this step is relatively obvious, the situation
becomes somewhat more complicated afterward. The
question is: how often data from theLMaster should be
passed to theLMirror to be replicated. Note that the
situation is different than in the case of a local replica-
tion (e.g. disk mirroring) as we have to assume that the
LMaster and theLMirror reside on separate machines
located in the Internet. One of possible approaches
would be to replicate data each time any change oc-
curs within theLMaster. This approach, however, is
not likely to work for any large and active team. In this
case number of information updates within theLMas-
ter is likely to be large enough to lock both it and the
LMirror. Note that each replication requires a confirma-
tion that it was successfully completed. Only after such
confirmation theLMaster would be able to continue its
work. This mechanism is similar to what happens in the
case of a standard database information replication pro-
cedure (with the difference that the database is usually
located within a single data center).

The second possibility would be to send data to the
LMirror and not wait for a confirmation. The danger is
that some data will be lost (and we will have no control
over what is actually replicated). In this way, over time
the LMirror will contain only “random” data, which
will not lead to correct re-creation of theLMaster.

Finally, it is possible to send updates in packages
in specific time-intervals. When such a package is sent,
the LMaster awaits confirmation of successful repli-
cation. Obviously, as a result of such procedure, re-
creation of theLMaster may result in creation of its
somewhat outdated version (crash will happen some-
time between replications), but at least data will be con-
sistent up to the time of the last update. Therefore we
assume that this approach is the best possible.

5. Concluding remarks

In this note we have presented our work devoted to
development of an agent-based Grid resource-brokering
system. We have focused on issues involved in team
management. First, we have introduced the team-agent-
status monitoring tool, which we have implemented.
This tool, being highly parameterized can be used as
a centerpiece for adaptive team monitoring approach,
which we are currently developing. We have also
discussed processes involved in interactions between
LMaster andLMirror agents, which are crucial for the
team long-term survival. Across the note we have in-
dicated a number of research directions that we plan to
pursue. Another one of them, which was not mentioned
thus far, is the necessary experimental work needed to

establish the actual overhead of the proposed approach,
especially in the case of a large team (note that ACL
messaging introduces a number of overheads). We will
report on our progress in subsequent reports.

References

[1] M. Dominiak, W. Kuranowski, M. Gawinecki, M.
Ganzha, M. Paprzycki, Utilizing agent teams in Grid
resource management—preliminary considerations. In:
Proc. of the IEEE J. V. Atanasoff Conference, IEEE CS
Press, Los Alamitos, CA, 2006, 46–51

[2] M. Dominiak, W. Kuranowski, M. Gawinecki, M.
Ganzha, M. Paprzycki, Efficient Matchmaking in an
Agent-based Grid Resource Brokering System, Proc. of
the International Multiconference on Computer Science
and Information Technology, PTI Press, 2006, 327–335

[3] FIPA Contract Net Interaction Protocol Specifica-
tion, http://www.fipa.org/specs/fipa00029/

SC00029H.html

[4] I. Foster, N. R. Jennings, C. Kesselman, Brain
Meets Brawn: Why Grid and Agents Need Each
Other, AAMAS’04, July, 2004, ACM Press, 2004,
http://www.semanticGrid.org/documents/

003-foster_i_Grid.pdf

[5] M. Dominiak, M. Ganzha, M. Gawinecki, W. Kura-
nowski, M. Paprzycki, S. Margenov, I. Lirkov, Utiliz-
ing Agent Teams in Grid Resource Brokering, Interna-
tional Transactions on Systems Science and Applica-
tions,2007, in press

[6] M. Dominiak, M. Ganzha, M. Paprzycki, Selecting grid-
agent-team to execute user-job—initial solution, Pro-
ceedings of the Conference on Complex, Intelligent and
Software Intensive Systems, IEEE CS Press, Los Alami-
tos, CA, 2007, 249–256

[7] M. Ganzha, M. Paprzycki, I. Lirkov, Trust Management
in an Agent-based Grid Resource Brokering System—
Preliminary Considerations. In: M. Todorov (ed.), Ap-
plications of Mathematics in Engineering and Eco-
nomics’33, American Institute of Physics, College Park,
MD, 2007, 35–46

[8] JADE: Java Agent Development Framework. Seehttp:
//jade.cselt.it

[9] W. Kuranowski, M. Paprzycki, M. Ganzha, M. Gawi-
necki, I. Lirkov, S. Margenov (2007) Agents as resource
brokers in grids—forming agent teams. In: Proceedings
of the LSSC Meeting, Springer (to appear)

[10] J. Dodgson, M. Spackman, A. Pearman, L. Phillips,
DTLR multi-criteria analysis manual, UK: National
Economic Research Associates, 2001

[11] H. Tianfield, R. Unland, Towards self-organization in
multi-agent systems and Grid computing, Multiagent
and Grid Systems, 1(2), 2005, 89–95

[12] D. Trastour, C. Bartolini, C. Preist, Semantic Web Sup-
port for the Business-to-Business E-Commerce Lifecy-
cle, Proceedings of the International World Wide Web
Conference, ACM Press, New York, USA, 2002, 89–98


