
An Architecture for Decentralized Service Deployment

Daniel Lázaro, Joan Manuel Marquès and Josep Jorba
Universitat Oberta de Catalunya

{dlazaroi,jmarquesp,jjorbae}@uoc.edu

Abstract

In this paper we present a proposal of the architecture
for a system which allows the deployment of services in a
group of computers, connected in a peer-to-peer fashion.
This architecture is divided in layers, and each of them con-
tains some components which offer specific functions. By
putting them together, we obtain a system with desirable
characteristics such as scalability, decentralization, ability
to deal with heterogeneity, fault tolerance, load-balancing,
and self-* properties.

1 Introduction

Nowadays it is usual for groups of people who work on
a common task (whether it’s business-related or of another
kind, like social or political activism, or tasks done as a
hobby) to coordinate their efforts using the Internet. This
proliferation or virtual collaboration fosters the creation of
spontaneous groups who want to collaborate, but may lack
the necessary resources to adopt usual solutions (dedicated
servers, grid infrastructure, clusters of machines, etc.), or
need more flexible approaches. We try to provide a solu-
tion for this kind of situations, centering our efforts in the
following scenario.

The kind of users we want to address is that of commu-
nities formed by individuals who share a common interest
and want to offer services to the members of the commu-
nity and to the world. These communities can be formed by
a large quantity of people throughout the world. As stated,
they will share a common interest, whether it is a hobby, a
business objective, or anything else. For example, they can
form a community dedicated to free software, or to promote
ecologist activities, etc. Some of these communities don’t
have a financial source that provides them with resources,
or at least not a sufficient amount of them for the purpose of
the community. Hence, these will need to be contributed by
the own members of the community. Even if they do have

0Work supported by MCYT-TSI2005-08225-C07-05 and TIN2007-
68050-C03-01.

external contributors, their resource needs may not be satis-
fied by a single contributor, and the community would need
a flexible, spontaneous way to aggregate this resources, so
that they can use them to accomplish their objectives with-
out needing great management efforts.

The members can contribute to the activities of the com-
munity in two ways: by offering their time and their work,
or by providing resources. Obviously, a member can con-
tribute to her community in both ways. The first one would
consist on generating contents for the community. The lat-
ter one would imply handing over a part of her computa-
tional and network resources to allocate the services the
group wants to offer. A fundamental requirement for the
correct behavior of the community is that there must always
be enough available resources to allocate the services that
are to be offered. In the case that this requirement is not
met, the services can not be offered. While counting on
having enough total resources, however, no assumption can
be made about the availability of a specific resource, as, be-
ing provided by the members of the community, resources
can be withdrawn or fail at any moment. Moreover, not be-
ing provided by a common source but by individual users,
a potentially high level of heterogeneity must also be ex-
pected.

As stated earlier, the purpose of these communities is
to offer services. These can be whether exclusive for the
members of the community (e.g. management information
about the communities activities) or open for all internet
users (e.g. publishing information about the community
and its activities). These services can be, for example, web
publishing, content management systems (CMS), wikis, fo-
rums, blogs, video and audio streaming, a shared agenda...
For these services to be accessible, the system uses the re-
sources of the community to keep them activated. These
ability to keep services available inside the community can
not only be used to offer these user-oriented services, but
also to manage some aspects which are transparent to the
users, but which can also leverage the possibility of deploy-
ing services to facilitate its implementation.

Although this scenario can seem quite specific at first
sight, the system presented could, at least partially, be appli-

1



cable to other, more general, situations. Deploying services
can be used as a means to share computational resources
between members of a group, as well as being a good and
simple way to introduce centralized or semi-centralized ap-
plications in a decentralized environment. Also, a system
that offers this functionalities in a completely decentral-
ized, peer-to-peer environment will also use mechanisms
that could be used in other distributed architectures, such
as grid systems.

2 Requirements

As stated earlier, we want to build a system which al-
lows the deployment of services in a large group of dis-
tributed computers. Users must be able to deploy services
in the community and manage them, monitoring their per-
formance and starting or stopping them. All users must also
be able to discover services, according to a description or
to certain characteristics, and access them, whether it is di-
rectly or through the system. This functionality, however,
must be delivered achieving certain conditions. The main
requirements of our system are the following:

• Community self-sufficiency: a community should not
depend on external resources. All the functionalities
should be performed using only the resources con-
tributed to the community by its members. This places
some restrictions in the availability of services, as they
can only be deployed when the members of the com-
munity provide enough resources for it.

• Individual autonomy: the members of the community
should be free to decide which actions to carry out,
what resources and services to provide, and when to
connect or disconnect. Resources must be used at the
level their owners allow them to be used, without over-
loading them and always allowing user control.

• Decentralization: any responsibility might be assumed
by any node.

• Scalability: the system should be highly scalable,
achieving good efficiency for groups formed of a great
number of machines, while also leveraging the advan-
tages of small groups when so is the case. It should
also scale well geographically, allowing users to be
scattered around the world and connected through the
Internet.

• Heterogeneity: as resources can be provided by indi-
vidual users as volunteer contributions, it is impossible
to expect any level of homogeneity. Hence, the system
must be able to handle highly heterogeneous systems.

• Fault-tolerance: the system must tolerate the failure
of a high number of nodes, and keep all functionalities
available. Services must be kept available in presence
of failures, as long as there are enough resources in the
community.

• Location transparency: users must have access to the
deployed services independently of both user’s and
service’s current location.

• Self-management: our system needs to minimize the
necessity of external management to achieve better
ease of use for potential collaborative uses, usually car-
ried out by non-specialized users. While not requiring
human intervention, it must be able to use the available
resources in, if not the optimal, a suitable way. For ex-
ample, the system must return, without external inter-
vention, to legitimate configurations when nodes fail,
join or leave, as well as be aware of its performance
and execute actions to improve it.

3 Architecture

We want to design a system with the characteristics men-
tioned above. The functionalities and requirements of our
system overlap partially those of grid systems [2], as both
try to allow resource sharing, while allowing heterogeneity,
scalability and other characteristics. Because of this similar-
ities, we take their layered architecture [3] in consideration
and try to divide our intended functionalities into the exist-
ing layers. Although we don’t compromise with complying
the grid standards, we can adapt this architecture and use
it to build our system. Many of the functionalities covered
by our layers have been extensively studied and researched,
so when presenting them we will also mention some related
work, and discuss if it fulfills our requirements or not.

3.1 Fabric

In this layer we find the individual capacities of each
node. We need local storage and execution capacity for
those nodes that offer such resources to the group. These
functionalities, however, must be offered in the proportion
that the user decides to give to the group. Hence, a system
to control and limit the use of the local resources is needed.
Common interfaces will be needed to access this capacities
from the upper layers disregarding heterogeneity.

3.2 Connectivity

We will create an overlay network which will be used
to route messages inside the group through internal iden-
tifiers. This field has been extensively studied, and many

2



overlay networks have been proposed, mainly in the form
of distributed hash tables (DHT). We can find a very inter-
esting survey at [5]. More recent than this survey, there is
also another DHT called DKS [6] which introduces some
useful features, like consistent lookup results in presence
of joins and leaves, efficient broadcast, bulk operations and
symmetric replication, a way to place replicas which en-
ables parallel recursive lookups. Because of these features,
we will use DKS as our overlay network for the connectiv-
ity layer of our system, although the algorithms included in
it could be adapted to many other DHTs. Therefore, our
system could theoretically be ported to any other DHT with
equivalent properties.

As well as internal routing, this overlay network will
provide mechanisms for diverse types of multicast messag-
ing (e.g. reliable, best-effort, anycast, etc) inside the group.
How to implement an efficient multicast has been a subject
of study for a long time, from IP-multicast to most recent
application-level multicast algorithms [7]. A system that
does so in an overlay network is Scribe [14]. It assigns a
node to each group, that will act as rendez-vous point. Sub-
scription messages are routed to this node through the over-
lay. When these messages are forwarded, a path is created,
that will form part of the group’s multicast tree. Whenever
a publisher wants to send a multicast message, it sends it
to the root of the group’s tree, the rendez-vous node. As
can be easily seen, this approach can introduce bottlenecks
in the rendez-vous nodes, and also places forwarding and
state-keeping responsibilities in nodes outside the multicast
group. A different approach [15] is to create an overlay net-
work for each multicast group. Like in the first approach,
a node in the overlay network is held responsible for each
group, but in this case it merely stores information about
the group-specific overlay network. Hence, it is much less
likely that it will become a bottleneck, as nodes must only
access it to join the group or first sending a message to it.
Once the message reaches the group’s overlay network, it
must be broadcasted. This way, only the nodes that are part
of the multicast group must keep multicast-related state and
forward multicast messages. As mentioned above, efficient
broadcast messaging is also included in the DKS overlay
network, hence allowing it to implement this multicasting
method in an efficient way.

3.3 Resource

In this layer we find access to individual resources, defin-
ing the protocols, messages, etc, required to, for example,
start a process in a remote computer. Whether routing these
messages over IP or through our overlay network, we will
access to resources individually. Hence, we find the need
to describe both services (or jobs) requirements and node
characteristics, as well as a protocol to start remote job ex-

ecution. There has been an extensive work also in this area.
Along with classic distributed computing systems, with

their own formats to define the characteristics of comput-
ing nodes and the requirements of jobs, and mechanisms
to assign the execution of a job to a node, we must also
consider standardization efforts like GRAM (Grid Resource
Allocation and Management) [13]. GRAM is a Globus ser-
vice which defines mechanisms for users to locate, submit,
monitor and cancel remote jobs on Grid-based compute re-
sources. Specifically, it uses a language called RSL (Re-
source Specification Language) or its XML-based version
JDD (Job Description Document) to specify the resources
of the grid. Being a widely used and accepted standard,
it is a good option for using in the implementation of our
system. Another option, that is also based on standards, is
OGSA’s (Open Grid Services Architecture) [29] execution
management, which uses the Job Submission Description
Language (JSDL) [28]. Anyway, it is not our purpose to
define these protocols, and the selection of one or another
existing method shouldn’t affect the design of the rest of the
system.

3.4 Collective

This layer encapsulates all the services which will use
resources collectively. Hence, we will find here the compo-
nents which allow, among other functionalities, the deploy-
ment of a service in a group, or the storage of an object.
As we have shown, all the functionalities required for our
system in the fabric, connectivity and resource layers can
be implemented using existing mechanisms. The core of
our system is, thus, in this collective layer, where we must
find a way to use the resources of the group to achieve the
specified objectives.

We divide the collective layer of our system in many
components, that will be now discussed, along with related
work in the area which each of them covers.

3.4.1 Publish/subscribe

We need a mechanism to subscribe to events occurred in
the group and receive notifications. These events can range
from the connection of a node with certain characteristics,
to the creation of a service. This service can be used by
other components as well as by users. For example, a user
can subscribe to be notified whenever a certain service is
modified, or when a certain type of service is created within
the group. This area has been extensively researched, and
there are many distributed publish/subscribe systems [11],
but we will focus on the ones based on DHTs.

A system that tries to leverage the capacities of DHTs to
implement publish/subscribe in a more efficient way is Her-
mes [12], which divides the possible notifications in types,

3



and assigns each of them to a node in the overlay network.
This node, called the rendez-vous node, will receive all the
subscriptions of the assigned type, as well as the notifi-
cations, that will be forwarded to the corresponding sub-
scribers. This is just a plain adaptation of the multicast
messaging in Scribe, with few additions. They introduce
the possibility of assigning attributes to each type of event,
and users being able to specify values for these attributes to
subscribe. In our system, this could be used, for example,
to create a type of event related to resources, with attributes
that define such resources, allowing service providers to
subscribe to notifications related to the resources needed to
offer their service.

A different approach is taken in [17], where subscrip-
tions are content-based. Events are defined by attributes,
and clients subscribe to events with a specific value for a
specific attribute. This attribute-value pair is hashed, and
the subscription stored in the corresponding node. When a
node wants to disseminate an event, it checks the nodes cor-
responding to the attribute-value pairs of the event. If sub-
scriptions are found, their conditions are checked and the
message is sent to the interested clients. Another system for
content-based subscriptions is presented in [18], where tem-
plates are defined to express the content of events. Clients
can subscribe to certain values of the attributes in the tem-
plate, which constitute a topic, and disseminated events will
be checked for conformance to the existing topics. When
this conformance occurs, the message is multicasted to the
topic subscribers. Although these approaches have evident
shortcomings in terms of efficiency and flexibility, content-
based publish subscribe is an active field of research, as it
can be useful in many systems, as our own, where we could
use it to monitor the available resources in the group.

We must study the possible range of events that we want
to cover in depth, in order to decide which system we adopt
in the implementation of our system, possibly with some
adaptations. For now, we want a system that offers a cer-
tain flexibility for content-based subscriptions, and that is
decentralized, scalable and efficient.

3.4.2 Resource prospector

In order to deploy services, each with its own requirements
of resources, in a group, we need to be able to find nodes
in the group with certain characteristics, or certain kinds of
resources. This has also been an important subject of re-
search, with many mechanisms being proposed for efficient
non-id-based searching in DHTs. One interesting way to do
this is through data aggregation. Usually, aggregation al-
lows to calculate simple functions for an attribute in a group
of nodes, like MIN, MAX, AVG and COUNT. This is use-
ful for resource searching, as e.g. with the MAX function
we can easily know if we can find a node with the required

Figure 1. Layers that compose the architec-
ture of the system. The functionalities car-
ried out by each layer are displayed.

memory to execute a service in a subgroup of nodes.
One example is Willow [19], a system that creates a tree

for both data aggregation and event notification. SDIMS
[20], instead, creates an aggregation tree for each attribute,
rooting it in the node responsible for the key of said at-
tribute in a DHT. Cone [21], also working on a DHT, builds
a trie for each attribute and aggregation operation. With the
correct aggregation functions computed over the right at-
tributes, these aggregation trees allow to efficiently search
for nodes with the desired characteristics.

3.4.3 Persistence module

This module must allow the distributed storage of objects
using the resources of the group. File storage is probably the
most popular and basic application for structured overlay
networks, so we could use any existing DHT to implement
this part of our system.

As storage has been the main functionality of DHTs
since their appearance, there have been many attempts to
optimize its use of resources for that purpose. For exam-
ple, many load-balancing mechanisms have been proposed.
A usual method is to assign a set of virtual servers [22] to

4



each node, having each of these virtual servers a different
identifier inside the overlay network. Hence, each node has
responsibilities on more than one set of identifiers, increas-
ing the probability of equality among nodes. If a node be-
comes overloaded nevertheless, it can migrate some of its
virtual servers to less loaded nodes. Another possibility for
load-balancing is to put aside the virtual servers and directly
move nodes [23] from a region of the space to another by
dynamically changing their identifier.

However, we have additional requirements that we want
to address (limited volunteer resources in nodes, high dy-
namism, heterogeneity) and that might justify the creation
of new mechanisms. Also, we would like to support the
storage of mutable data. This could be useful as a way for
stateful services to store their state persistently.

3.4.4 Service deployment

The main part of our system, which uses all the others. It
must allow the deployment of services, ensuring their avail-
ability. It uses publish/subscribe to detect events and per-
form self-* actions, the persistence module to store the ex-
ecutables and data files necessary for service execution, the
resource prospector to find suitable nodes to allocate the ser-
vices, as well as the lower layers. It must support stateless
services, as well as stateful services with some limitations.
These limitations will be linked with the resources provided
to the community and the availability and efficiency re-
quired for the services. There is an obvious trade-off be-
tween the consistency of replicated state and the availabil-
ity of data. For example, services can quite easily use the
persistence module to store their state, and internally man-
age any conflicts and consistency problems that arise. If
they want the system to provide strong consistency guar-
antees to this state, though, performance will suffer. The
best choice for this trade-off highly depends on the type of
service being deployed, and hence different options will be
made available for users.

• Service deployer: It must decide the correct way to ex-
ecute a service (mainly, number of replicas) in order
to ensure the desired level of availability for each ser-
vice, considering the resources currently available to
the group as well as the consistency requirements of
the service.

• Service allocator: It is in charge of choosing the nodes
where services will be executed. It will use the re-
source prospector to find nodes where the service can
be executed. After the nodes are chosen, the execu-
tion will be started using the protocols defined in the
resource layer.

• Service Self-healing: It reacts to failure of nodes and
reallocates services from failed nodes.

• Service Self-tuning: It must decide when to create or
destroy replicas of a service, to maintain its individual
availability as well as the performance of the cluster.

• Service Self-configuration: It must react to nodes join-
ing and leaving to reallocate services in the most con-
venient way.

• Service client: It must allow users to access deployed
services. The system must ensure that messages will
reach the desired service. As we want to provide sup-
port to multiple patterns of communication, we must
allow, as well as transparent access to the service as a
whole, access to a certain replica, or to replicas which
fulfill certain conditions. Moreover, users should be
able to choose between reliable or best-effort message
passing.

4 Related work

First of all, we must say that our general purpose of
sharing the computational resources of users is one of great
importance in the scientific community as well as in busi-
ness. Hence, many research and implementation efforts
have been done in this direction. Possibly the most im-
portant and relevant contribution in this area has been the
concept of the grid [1, 2]. It has brought an standardiza-
tion effort that has materialized in the Globus Toolkit [4]
as its main representation. Another paradigm that has pur-
sued sharing between users and has been taken as a model
for our system is peer-to-peer, which breaks with the clas-
sic client/server model. Many research has been done about
this paradigm, and, as we have discussed in the previous
sections, many of the results obtained directly affect our
work. As related work on specific functionalities has al-
ready been presented on the corresponding section, we will
not further discuss it here.

Finally, as we aim to create a system for service deploy-
ment, we must say that there are also a few systems which
do similar tasks. LaCOLLA [26] is a middleware for decen-
tralized collaboration with the capability of service deploy-
ment [27], which is very similar to the one presented here.
The main difference is the fact that LaCOLLA targets small
groups, and service deployment is only one of its function-
alities, not the main one. The system presented here, in-
stead, is designed for the main purpose of service deploy-
ment, but is also thought to scale to large groups. Snap [24]
deploys web services over a DHT, and creates replicas of a
service on demand, stopping these replicas when demand
decreases. However, it assumes all nodes are equal and
able to execute any service. We dont want to make this
assumption, allowing nodes to participate without offering
services, and services that can only be executed in very spe-
cific nodes. Another system called Chameleon [25] deploys

5



services in a cluster while trying to maximize its utility (cal-
culated from a value assigned to each service and its perfor-
mance). It also assumes that any nodes can execute any
service, and only one at a time, simplifying the estimation
of the utility function. Although this approach is interesting,
it seems fit for a cluster of computers with a single manager,
who can decide the utility of each service, in contrast to our
system, that aims to allow individual users to deploy their
own services.

5 Conclusions and future work

We have presented an architecture for a system which
allows the decentralized deployment of services in a group
of computers with a high degree of individual autonomy,
which results in unexpected connections and disconnec-
tions. We have modeled its architecture after the layered
architecture defined for grids, and shown that the lower lay-
ers can be easily implemented with existing technologies
and protocols. The upper layer, however, which comprises
the main functionalities required by our system, can give
place to the creation of novel mechanisms. We believe that
such mechanisms, as well as giving us the necessary tools
to fulfill the requirements of our scenario, could later be
reused in many systems, as their encapsulation in compo-
nents permits the definition of general mechanisms.

Our future work consists in better refining the require-
ments of our upper layer and creating suitable mechanisms
to implement the corresponding components, namely the re-
source prospector, the persistence module and the service
deployment module. After these are defined, implemented
and tested, we will create a complete system by combin-
ing our novel components with the ones in the lower layers,
implemented through existing protocols and technologies.

References

[1] Stockinger, H.. Defining the Grid: A Snapshot on the Cur-
rent View. To be published in the Journal of Supercomputing.
Springer, 2007.

[2] Foster, I., Kesselman, C. The Grid. Blueprint for a new com-
puting infrastructure. Morgan Kaufman, 1998.

[3] Foster, I., Kesselman, C., Tuecke, S. The anatomy of the Grid.
Enabling scalable virtual organizations. Intl J. Supercomputer
Applications, 2001.

[4] http://www.globus.org
[5] Eng Keong Lua et al. A survey and comparison of peer-to-

peer overlay network schemes, Communications Surveys &
Tutorials, IEEE, vol.7, no.2, pp. 72–93, Second Quarter 2005

[6] Ali Ghodsi. Distributed k-ary System: Algorithms for Dis-
tributed Hash Tables. PhD dissertation, KTH-Royal Institute
of Technology, October 2006.

[7] Yeo, C. K., Lee, B. S., and Er, M. H. A survey of applica-
tion level multicast techniques. Computer Communications,
27(15):1547–1568, 2004.

[8] Thain, D., Tannenbaum, T., Livny, M. Distributed Comput-
ing in Practice: The Condor Experience. Concurrency and
Computation: Practice & Experience. v. 17, Issue 2–4, pp.
323–356, February 2005.

[9] http://www.clusterresources.com/pages/products/torque-
resource-manager.php

[10] http://gridengine.sunsource.net
[11] Eugster, P. et al. The many faces of publish/subscribe. ACM

Computing Surveys (CSUR), Vol. 35, Issue 2, pp 114-131,
2003.

[12] Pietzuch, P.R. and Bacon, J.M. Hermes: A distributed event-
based middleware architecture. In Proc. DEBS02, July 2002.

[13] Feller, M., Foster, I., and Martin, S. GT4 GRAM: A Func-
tionality and Performance Study.

[14] Castro, M. et al. Scribe: A large-scale and decentral-
ized applicationlevel multicast infrastructure. IEEE JSAC,
20(8):1489–1499, October 2002.

[15] Ratnasamy, S., Handley, M., Karp, R., and Shenker, S.
Application-levelMulticast using Content-Addressable Net-
works. In Proc. NGC 2001.

[16] Dabek, F. et al. Towards a common API for structured peer-
to-peer overlays. In Proc. IPTPS 2003.

[17] Triantafillou, P., Aekaterinidis, I. Content-based Pub-
lish/Subscribe Systems over Structured P2P Networks. In
Proc. DEBS’04, May 2004.

[18] Tam, D., Azimi, R., and Jacobsen, H.A. Building Content-
Based Publish/Subscribe systems with distributed hash tables.
In DBISP2P, Sept. 2003.

[19] Van Renesse, R. and Bozdog A. Willow: DHT, Aggregation
and Publish/Subscribe in one protocol. In Proc. IPTPS 2004.

[20] Yalagandula, P., Dahlin, M. A scalable distributed infor-
mation management system. In SIGCOMM ’04, ACM Press
379–390, 2004.

[21] Bhagwan, R., Mahadevan, P., Varghese, G., Voelker, G.M.
Cone: A Distributed Heap Approach to Resource Selection.
UCSD Technical Report CS2004-0784.

[22] Rao, A. et al. Load balancing in structured P2P systems. In
Proc. of IPTPS 2003.

[23] Karger, D. R. and Ruhl, M. Simple efficient load balancing
algorithms for peer-to-peer systems. In Proc. of IPTPS’04, pp
131–140, February 2004.

[24] Pairot, C., Garcı́a, P., Mondjar, R. Deploying Wide-Area Ap-
plications Is a Snap. IEEE Internet Computing, 11 (2) 72-79,
2007.

[25] Adam, C. and Stadler, R. Implementation and Evaluation of a
Middleware for Self-Organizing Decentralized Web Services.
In Proc. IEEE SelfMan 2006, IEEE CS Press, 2006.

[26] Marquès, J.M., Vilajosana, X., Daradoumis, T., Navarro, L.
Lacolla: Middleware for self-sufficient online collaboration.
IEEE Internet Computing 11 (2) 56-64, 2007.

[27] Lázaro, D., Marquès, J.M., Jorba, J. Decentralized service
deployment for collaborative environments. In Proc. CISIS07,
pp. 229-234, 2007

[28] Anjomshoaa, A. et al. Job Submission Description Language
(JSDL) Specification, Version 1.0, Global Grid Forum, GFD-
R-P.056, November 2005.

[29] Foster, I. et al. The Open Grid Services Architecture, Version
1.5, Global Grid Forum, GWD-I.080, July 2006.

6


