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Abstract—Sequence alignment is a fundamental instrument in
Bioinformatics. In recent years, numerous proposals have been
addressing the problem of accelerating this class of applica-
tions. This, due to the rapid growth of sequence databases in
combination with the high computational demands imposed by
the algorithms. In this paper we focus on the analysis of the
progressive alignment in ClustalW, a widely used program for
performing multiple sequence alignment. We have parallelized
ClustalW for the Cell processor architecture and have carefully
analyzed the scalability of its different phases with both the
number of cores used and the input size. Experimental results
show that computing profile scores scales well up to 16 SPE cores.
With the increase of the input size, profiles initialization in the
PPE core becomes the predominant bottleneck.

I. INTRODUCTION

Bioinformatics is the discipline that applies computational
techniques to solve problems in biology [1]. Due to the huge
amount of data involved, computers are used to assist re-
searchers. Many algorithms and software tools have been then
proposed in the last years to assist scientists while performing
many different analysis on large amounts of biological data.
Multiple Sequence Alignment (MSA) is one of the essential
tasks in bioinformatics. When having a group of DNA se-
quences an MSA can reveal sections that are common to most
of the sequences in the group. This information has many uses,
for example, it can indicate evolutionary relationships between
species or, in the case of protein analysis, it may determine a
protein’s function based on other known functionalities in the
reference group.

ClustalW [2] is one of the most commonly used programs to
perform MSA. Unlike pairwise sequence alignment tools like
BLAST [3] and FASTA [4], ClustalW aligns a set of sequences
all together to produce an MSA. Given the intractability of
computing an optimal MSA, ClustalW uses heuristics. The
program is divided in three main phases, namely: Pairwise
Alignment (PW), Guide Tree (GT) and Progressive Alignment
(PA).

Improvements in sequencing technologies have led to a very
rapid growth of biological databases. As these databases grow,
analyses are more ambitious and the need for computational
power increases. On the other hand, the use of expensive
multiprocessor machines to meet the performance demands

has two main limitations: only few can afford it and the
energy needed is extremely high. In the search for efficient
solutions previous studies did propose accelerating ClustalW
using FPGAs, GPUs and multicore processors.

In this paper we use the Cell processor [5], [6] to perform
our study. Figure 1 shows the Cell architecture composed
by eight Synergistic Processing Elements (SPEs), a PowerPC
Processing Element (PPE) and the Element Interconnect Bus
(EIB). SPEs are dual-issue in-order SIMD cores with 256KB
Local Stores (LS) and 128 registers, 128-bit wide. The PPE is a
2-way Simultaneous Multithreading (SMT) dual-issue in-order
PowerPC processor. The EIB is a circular ring comprising four
16B-wide unidirectional channels that connects the SPEs, the
PPE, two memory controllers and two I/O controllers. The
operating system runs on the PPE and software can spawn
threads in the SPEs. Data has to be explicitly copied to the
SPEs LSs using Direct Memory Access (DMA) commands.
The Memory Flow Controller (MFC) in each SPE takes care
of these DMA transfers and it does it in parallel to the SPEs’
execution. This allows for hiding DMA transfers latency.
Although these features enable programmers to write highly
efficient code, it also significantly increases programming
difficulty.

In this paper we analyze the scalability of ClustalW running
on the Cell processor. Previous work has shown that the PW
phase is highly scalable so we focus on the PA part. We have
generated a scalable parallelization of the prfscore function
within PA and have merged it with the parallel forward (FWD)
and backward (BWD) loops, as explained later in Section III.
The contributions of this work are:

o measuring and analyzing how the different parts of PA
affect the performance when increasing number of cores
and input data size;

o producing a scalable parallelization of prfscore in PA.

This analysis provides crucial knowledge that is needed if
we are to build multicore architectures that can be efficiently
used for bioinformatics applications. The rest of the paper is
organized as follows. Section II describes other works with
similar aim and how ours is different. Section III describes
ClustalW phases and the way it is parallelized. In section IV
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Fig. 1. Cell processor block diagram.

we describe the experimental setup. In section V we analyze
the experimental results obtained. Section VI concludes the

paper.
II. RELATED WORK

There have been different approaches to accelerating
ClustalW, from using multiprocessor machines and Graphic
Processing Units (GPUs) to designing HW accelerators imple-
mented on FPGAs. In [7], [8], distributed memory paralleliza-
tions (using MPI) of ClustalW are presented. They parallelized
both PW and PA targetting computer clusters and report
speedups without any analysis. In [7], performance scalability
is fairly good up to 8 processors while in [8] it lasts up to 16
processors. The main reason for this difference is that the input
sequences used in [8] are about 4 times longer on average.
This results in the PW phase taking much longer time than
the other phases. As a consequence and since PW is the most
scalable phase, the overall performance scalability is better.
In these cases, the main performance bottleneck is the long
computation time needed for each PW alignment. On the other
hand, in [9] ClustalW is parallelized for Cell. PW scales close
to linearly as well but now the inside of PW is parallelized
with SIMD execution which greatly reduces its execution time.
As a consequence, PA becomes the predominant stage and
due to its more limited parallelism, the overall application’s
scalability saturates much more quickly.

In [10] pthreads have been used to parallelize ClustalW
using a shared memory model. Experiments reported focused
more on varying the number of input sequences and their
length. However, a machine supporting only 4 threads is used
and the analysis done is minimal. SGI has also announced an
OpenMP parallelization for shared memory machines but the
source code is not available.

A number of recent works have ported ClustalW to Cell.
In [11], [12], the PW phase is parallelized showing linear
scalability. This is due to its inherent parallelism that requires

minimal synchronization and has no data dependencies. On
the other hand, PA’s parallelism is more limited. Vandieren-
donck et al. [9] have produced a highly optimized version
of PA specifically tuned for using 6 SPEs. Two master SPEs
independently compute the forward (FWD) and backward
(BWD) loops while each of them get help from two other
SPEs (four SPE helpers in total) that take care of computing
the prfscore function, needed in the inner FWD/BWD loops.
Most of the code running on the SPEs is vectorized and
data communication is double-buffered. Although the speedup
achieved with respect to the sequential code running on the
PPE is significant (5.8X), the parallelization is fixed, that is,
the code is only able to run with 6 SPEs, not with more, not
with less. This does not allow to study scalability behavior
when the aim is to look forward into future architectures
where more cores will be available. Different to what has been
done in previous works, our aim in this paper is to measure
and analyze how the contribution to performance changes for
different PA parts when varying input size and number of
cores. For this purpose, we have parallelized PA in a flexible
way that can use an arbitrary number of SPEs. Although
the forward and backward loops remain 2-way parallel, the
prfscore is now n-way parallel. Details, benefits and drawbacks
of doing this are discussed in Section III.

Lastly, an analysis of Smith-Waterman [13] algorithm run-
ning on different multiprocessor machines was presented
in [14]. Our work goes in the same direction and complements
it by looking at MSA.

III. APPLICATION’S DESCRIPTION

ClustalW v.1.83 is a software tool to perform MSA. It was
developed by J.D. Thomson et al [2] and is available online
through the European Bioinformatics Institute website [15].
Although ClustalW2 is already available [16], [17], it is a
C++ re-write that incorporates the same algorithms, therefore
not affecting our analysis.

A. Program’s Structure

Recalling from section I, ClustalW is composed of three
phases: PW, GT and PA. PW computes a similarity matrix
by performing pairwise alignments of all possible pairs of
sequences. GT uses a neighbor-joining algorithm [18] to
build a tree that clusters together sequences that are more
similar while putting others in different branches. As shown in
previous articles [11], [9], [12], GT takes an almost negligible
time in most cases, certainly in the ones we are interested in
where sequences are in the order of thousand symbols. Lastly,
PA progressively aligns sequences following the tree structure.
It walks the tree by aligning the most related sequences first.
After traversing the full tree, the MSA is produced along with
a global score.

Figure 2a shows the basic PA operation. The main function
in PA is prfalign. It first computes the two 2D arrays that con-
tain the profiles and then call the pdiff function to align them.
pdiff computes the alignment with a dynamic programming
algorithm [19] that uses two independent loops: one that moves
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forward (FWD) and one that moves backwards (BWD). The
green arrow between the two corresponding boxes in figure 2a
emphasizes the fact that there are no data dependencies. A
third small loop (not shown for simplicity) collects results and
a recursive call to pdiff follows. Every recursive pdiff instance
incrementally reduces the loops’ scope until a final score is
computed. This condition is checked for at the beginning of
pdiff as shown in figure 2a. ptracepath takes care of updating
the alignment that will subsequently be aligned to a sequence
or to another alignment (by further calls to prfalign and pdiff),
by walking the tree nodes.

B. Porting to Cell

The PW phase is parallelized by letting the SPEs compute
individual pairwise alignments in parallel. Since PW is mostly
compute-bound, performance does not get affected by the job
distribution policy. More details can be found in [11], [9].

PA has a less straightforward parallelism, as shown in
Figure 2b. The FWD and BWD loops are independent (see
figure 2a) so we concurrently compute them using two SPEs,
as in [9]. Figure 2b shows the basic interaction between the
PPE and one SPE where only FWD is indicated. An equivalent
pair of threads (one in the PPE and one in the SPE) computes
BWD in the same way.

We have made the observation that the prfscore calls inside
FWD/BWD can be fully computed in advance as they only
depend on the input profiles that do not change inside pdiff.
This has two benefits. On one hand, it allows for a realtively
easy distribution of work among all available SPEs. On the
other one, prfscore results can be stored in a 2D array that is
to be used by all recursive instances of pdiff. This saves the
unnecessary repeated prfscore calls in the original algorithm
that was aimed at reducing the amount of memory needed. In
consequence, all prfscore calls are precomputed by an arbitrary
number of SPEs. A prfscore matrix is computed and then used
as input for FWD and BWD. That is, in the inner body, FWD
and BWD do not compute the scores anymore but rather get
them from main memory. These DMA transfers happen once
for every row and are double-buffered. Therefore, the prfscore
stage will use N SPEs while in the FWD/BWD stage only two
will be running.

Although not shown in the figure 2, a check is done on the
profiles’ sizes before running FWD/BWD. This is to avoid
sending too tiny pieces of FWD/BWD work when inside
recursive pdiff instances.

Figure 3 illustrates the computation of the prfscore matrix.
The inputs are two 2D arrays called profiles (A and B in
figure 3) where each one represent either a sequence or the
result of a previous alignment. The prfscore matrix will have
M rows and N columns where position “ij” is computed
as the dot-product between rows i and j of the two input
arrays respectively. This work is then performed by the SPEs
together. Profile A is split in sections that are assigned to the
SPEs in a round-robin fashion. Profile B has to be divided
in chunks due to the LS size limitation. While processing
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Fig. 3. Generation of the prfscore matrix by dot-products of all rows in the
two input profiles.

one chunk, the next one is being fetched to hide the transfer
latency.

Since the SPE FWD/BWD code is SIMD and because of
data dependencies (like in [11]), the prfscore matrix needs to
be reorganized in a way that elements of 4-wide antidiagonals
form vectors, as shown in the lower part of figure 3. For that
purpose, we split the matrix in two parts (one that concerns
FWD and one for BWD) that are concurrently reorganized
by two PPE threads. These also handle synchronization with
their corresponding consumer SPE threads. Furthermore, the
corner elements that do not belong to any 4-wide antidiagonal
are fetched one-by-one from the SPEs. The two PPE threads
benefit from the SMT capabilities.
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TABLE 1
PA PHASE NAMES USED.

l Name ‘ Meaning PPE/SPE
calc-inputs compute the two input profiles PPE
wait-prfs wait until the prfscore matrix is PPE

computed
comp-adiags | reorganize prfscore matrix in antidiagonals PPE
wait-synch synchronize reception of antidiagonals PPE
others ptracepath and other minor phases PPE
wait-adiag FWD/BWD waiting for an antidiagonal to SPE
be computed
total-dma DMA waiting time for corner elements and SPE
antidiagonals
compute compute the prfscore matrix and the SPE
FWD/BWD loops
get-profs DMA waiting time for input profiles SPE
wb-results DMA waiting time for matrix data SPE

IV. EXPERIMENTAL SETUP

We have ported ClustalW v.1.83 to Cell using libspe2 and
performed the experiments in an IBM QS21 Blade featuring
two Cell processors running at 3.2GHz and 4GB of RAM.
The code has been compiled with GCC4.1.1 and -O3 flag.
The source code has been manually instrumented to measure
the time that various processing or waiting phases consume.
Four different input sets have been used with 66, 100, 200 and
313 sequences of 1000 symbols average length.

V. RESULTS AND ANALYSIS

This section presents a detailed profiling analysis of the
different PA phases. PW analysis can be found in [11], [9]
and GT is not considered as it took less than 1% of the total
execution time in all cases analyzed.

Several optimizations like double-buffering, the use of SMT
threads and the precomputation of prfscore have been imple-
mented. However, since this paper’s focus is not on software
optimizations, the impact of those is not measured nor pre-
sented here. Results shown used all the above optimizations.

Table I indicates the meaning of the different phase names
used in the graphs and the text.

A. prfscore behavior - SPE side

The prfscore parallelization requires only minimal synchro-
nization and the PPE just waits until SPEs are done. Therefore,
here we analyze the behavior from the SPE perspective only.
Figure 4 shows the time share of the prfscore processing
in the SPEs. Looking at the DMA transfers, there are two
contrasting results. While fetching the input data (get-profs)
from main memory appears negligible, the time for writing
results back (wb-results) is considerable and gets worse with
more SPEs. Although both types of DMA transfers are double-
buffered, output data is much larger than input data (see
figure 3). Moreover, as more SPEs come into play, more data is
being transferred simultaneously, thus putting pressure in the
communication infrastructure. On the other hand, even when

M get-profs M compute O wb-results
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1 2 4 8 16

SPEs

Fig. 4. Execution time distribution for prfscore phases in the SPEs.
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Fig. 5. Scalability of prfscore processing on the SPEs.

using 16 SPEs, most of the time is spent in performing useful
computations (orange).

Figure 5 shows that up to 16 SPEs the overall scalability
is relatively good (light blue line). However, wb-results phase
will soon become the main bottleneck if adding more cores.

Results shown for the prfscore analysis are with 313 se-
quences as input. Very similar results were obtained with the
other input sets. That is, the three prfscore phases grow at the
same pace with respect to the number of sequences processed.
Since we are interested in analyzing scalability when using an
increasing number of cores, the baseline for the speedup is the
execution time using one SPE (not PPE).

B. FWD/BWD behavior - SPE side

Unlike for the prfscore analysis, for FWD/BWD we use
the number of sequences in the input set as the independent
variable (X axis in figures 7 and 6). The FWD/BWD code in
the SPEs is heavily affected by the comp-adiags phase in the
PPE. As a consequence, only 40%-50% of the time is spent on
computing. Around 50% of the time the SPEs are idle waiting
for the PPE to reorganize the current row.
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Fig. 7. Time growth of PA phases in the SPEs.

Eventhough the corner elements represent only 0.3% of
the prfscore matrix, its associated DMA latency is consuming
nearly 15% of the FWD/BWD SPE time. One way to improve
this is by flattening corners in vectors so that they can be
accessed faster from the SPEs.

Lastly, figure 7 shows that increasing the number of se-
quences does not significantly deviate the growth lines from
the linear behavior.

C. PA behavior - PPE side

Now we look at the PPE side behavior with respect to the
SPE phases already discussed. In figure 8 the time share re-
veals interesting results. After efficiently parallelizing prfscore,
the portion it takes now is very small (orange). While the
SPEs are busy with FWD/BWD, the PPE spends the time
reorganizing the prfscore matrix (blue and green). The most
important observation here is that when using the largest input
size, the preparation of inputs (yellow) becomes the most time
consuming part. Besides that, new phases become significant.

In figure 9 we show how fast is the growth of the execution
time for the PA phases when the input size increases. Two
phases (yellow and brown) do not follow a linear growth.
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Fig. 8. Execution time distribution of PA phases in the PPE.
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Fig. 9. Time growth of PA phases in the PPE.

Moreover, calc-inputs time grows faster than n? (see the
dashed lines representing the linear and squared functions).
Computing the input profiles becomes then the highly pre-
dominant applications bottleneck when increasing the number
sequences to be analyzed.

In figure 8, bars are grouped to show the behavior of the two
SMT threads running on the PPE. As expected (because they
reorganize half matrix each) the workload is well balanced
among the two.

Although not shown here, one of the procedures that be-
comes predominant in the others category is the ptracepath
function. ptracepath is called after pdiff finished aligning
two profiles and it is in charge of reconstructing the path
information so that the alignment can be stored.

D. Overall application’s behavior

As a complement to the PA analysis presented so far, here
we look at the overall ClustalW behavior (see figure 10).
Although PW dominates for the single core case, it quickly
decreases due to its linear scalability. PA runtime gets also
reduced but in a much more limited way and GT remains
negligible.
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With respect to increasing the input size, figure 11 shows
that both PW and PA grow at a similar rate, faster than linearly.

VI. CONCLUSIONS AND FUTURE WORK

We have carefully profiled and analyzed the behavior of
the PA phases in ClustalW. We have also parallelized the
prfscore computations so that an arbitrary number of SPEs
can be used. Results show that the parallel prfscore version
scales close to linearly with both the number of SPEs and the
number of input sequences. On the other hand, the FWD/BWD
part gets affected by the limited task-level parallelism and the
slow matrix reorganization process in the PPE. Cores with
stride memory access capabilities would be able to tackle this
bottleneck by reducing the number of load operations required.

Medium to fine grained parallelization for PA does not
greatly benefit from adding more cores as only prfscore allows
scaling. FWD/BWD remain fixed to use two cores and other
sequential parts in the PPE (like calc-inputs and ptracepath)
become the bottlenecks. These phases suffer from the poor
PPE ability to extract ILP.

Due the its computational complexity, calc-inputs dominates
the PA time share for input sets of 200 or more sequences.
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An interesting future work is to implement a coarser grain
parallelization of PA in Cell, that is, at the tree level. In that
case, available parallelism would largely depend on the tree
structure, that is, on the relatedness of the input sequences.
Furthermore, depending on the way the parallelization is
implemented, the LS size and/or the PPE speed to coordinate
the SPEs will be the likely bottlenecks.
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