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Abstract—Mesh router nodes placement is a central problem
to Wireless Mesh Networks (WMNs). An efficient placement
of mesh router nodes is indispensable for achieving network
performance in terms of both network connectivity and user
coverage. Unfortunately the problem is computationally hard
to solve to optimality even for small deployment areas and
a small number of mesh router nodes. As WMNs are be-
coming an important networking infrastructure for providing
cost-efficient broadband wireless connectivity, researchers are
paying attention to the resolution of the mesh router placement
problem through heuristic approaches in order to achieve near
optimal, yet high quality solutions in reasonable time. In this
work we propose and evaluate a Simulated Annealing (SA)
approach to placement of mesh router nodes in WMNs. The
optimization model uses two maximization objectives, namely,
the size of the giant component in the network and user
coverage. Both objectives are important to deployment of
WMNs; the former is crucial to achieve network connectivity
while the later is an indicator of the QoS in WMNs. The
SA approach distinguishes for its simplicity yet its policy of
neighborhood exploration allows to reach promising areas of
the solution space where quality solutions could be found. We
have experimentally evaluated the SA algorithm through a
benchmark of generated instances, varying from small to large
size, and capturing different characteristics of WMNs such
as topological placements of mesh clients. The experimental
results showed the efficiency of the annealing approach for the
placement of mesh router nodes in WMNs.

Keywords-Wireless Mesh Networks, Simulated Annealing,
Size of Giant Component, User coverage.

I. INTRODUCTION

Node placement problems are known for their capability
in modelling many combinatorial optimization problems
related to facility and location. They are showing their
usefulness also in modelling optimization problems from

Wireless Mesh Networks (WMNs). In their general setting,
node placement problems aim at optimal placement of fa-
cilities (“facilities provides some kind of service to clients”)
such that the system services, e.g. cost reduction, demand
capture, equitable service supply, fast response time etc.
are optimized. In the case of mesh router nodes placement,
facilities are mesh routers that provide connectivity to mesh
client nodes. In fact, the node placement problem considered
in this paper is even more challenging due to two additional
characteristics: (a) locations of mesh router nodes are not
pre-determined (any available position in the considered
area can be used for deploying the mesh routers), and (b)
routers are assumed to have their own radio coverage area
and thus some routers are more powerful than others. This
characteristic is important to explore in view of client density
in the grid area.

Unfortunately, node placement problems are shown to
be computationally hard to solve to optimality [2], [5],
[7], [14], and therefore heuristic and meta-heuristic ap-
proaches are used to cope with them in practice. Heuristic
methods distinguish for achieving near-optimal solutions
in reasonable time. It should be noted that even though
such solutions could be local optima, they suffice for most
practical situations when facility locations must be computed
before deployment of the system in a real setting.

Wireless Mesh Networks (WMNs) [1], [9] are becoming
an important networking infrastructure due to their low cost
and increased high speed wireless Internet connectivity. In
WMNs there are have two types of nodes: mesh routers and
mesh clients. Mesh routers are similar to normal routers
but incorporate also additional functions to support mesh
networking, and are usually equipped with multiple inter-
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faces to work with different wireless technologies. Another
feature of this type of routers with respect to usual routers
is their ability to provide the same coverage with much less
transmitter power through multi-hop communications. Also,
mesh routers can be installed on a dedicated machine or on a
general purpose machine. With regard to mesh clients, they
have the necessary functions for mesh networking and could
also be able to act as routers but do not have the functionality
of a gateway or bridge and their single wireless interface
with the hardware and software platform is much simpler
than in the case of mesh routers.

The placement of mesh nodes plays an important role in
achieving important properties of WMNs such as reliability,
robustness, and self-configuration. Indeed, the performance
of WMNs is primarily affected by the location of mesh
nodes, specifically, that of mesh router nodes of the WMN.
However, in a real deployment of WMN the automatic or
purely random node placements produce poor performance
WMNs since the resulting placement could be far from
optimal. Moreover, an efficient deployment of mesh router
nodes in WMNs may require to take into account specific
restrictions and characteristics of real geographic area and
therefore one needs to explore different topologies for plac-
ing mesh routers.

From a combinatorial optimization perspective, mesh
node placement in WMNs is a family of problems, actually,
different versions of the problem can be obtained depending
on the types of mesh nodes to deploy as well as the
objectives to optimize. For instance, in [8], [10], [13] there
is considered the gateway placement aiming to optimize
the throughput. In [4], the authors consider a bi-objective
version of the problem for two-tier WMNs. Vanhatupa
et al. [11] considered Genetic Algorithm approaches for
optimizing node placement and configuration for WLAN
planning. Chen et al. [3] considered the case of urban
wireless mesh network planning for the case of the case
of directional antennas.

In this work we consider the version of the problem
that given an area where to distribute a number of mesh
router nodes and a number of mesh client nodes of fixed
positions (of an arbitrary distribution), the objective is to find
a location assignment for the mesh routers that maximizes
both the network connectivity (size of the giant component)
and client coverage. These two objectives are among most
important objectives in WMNs. Both of them are related to
the performance of the network; the later can be also seen
as a QoS in WMNs. We propose and evaluate a Simulated
Annealing (SA) approach for solving mesh router node
placement aiming to maximize both the network connec-
tivity and user coverage. The optimization approach follows
a hierarchical setting in which the primary objective is that
of maximizing the size of the giant component while user
coverage is considered secondary one. In such setting, the
SA algorithm tries to first maximize the size of the giant

component and then tries to maximize the user coverage
without worsening the size of the giant component.

SA is a local search based method that distinguishes
for its efficiently in reaching faster near-optimal solutions.
Differently from simple local search methods such as Hill
climbing, SA accepts neighboring solutions which could be
worse than current solution, in an attempt to escape from
local optima. Research in heuristic methods has shown that
SA is more effective than simple local search and can find
high quality solutions if an effective cooling strategy is
employed. We have experimentally evaluated the proposed
SA algorithm through a benchmark of generated instances,
consisting of 48 instances, ranging from small to large size
in terms of mesh router nodes and the grid area. Moreover,
instances are generating using different distributions of mesh
clients (Uniform, Normal, Exponential and Weibull). In
the experimental study we evaluated the effectiveness of
different local movements, namely, Random, Radius, Swap
and Combination, in terms of the maximization of the size
of the giant component and user coverage, used in SA
algorithm.

The rest of the paper is organized as follows. In Section II
we present the definition of the mesh router nodes placement
problem in WMNs. The Simulated Annealing approach and
its application to mesh router nodes placement problem
is presented in Section III. The experimental evaluation is
given in Section IV. We end the paper in Section V with
some conclusions.

II. PROBLEM STATEMENT

In a general setting, location models in the literature have
been defined as follows:

• a universe U , from which a set C of client input
positions is selected;

• an integer, N ≥ 1, denoting the number of facilities to
be deployed;

• one or more metrics of the type d : U × U → R+,
which measure the quality of the location, and

• an optimization model that takes in input the universe
where facilities are to be deployed, a set of client
positions and returns a set of positions for facilities
that optimize the considered metrics.

It should be noted that different models can be established
depending on whether the universe is considered:

(a) continuous (universe is a region, where clients and
facilities may be placed anywhere within the con-
tinuum leading to an uncountably infinite number
of possible locations);

(b) discrete (universe is a discrete set of predefined
positions); and,

(c) network (universe is given by an undirected
weighted graph; in the graph, client positions are
given by the vertices and facilities may be located
anywhere on the graph).
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We consider the version of the mesh node placement
problem corresponding to the network space model above.
Thus, in this version, we are given a 2D area where to
distribute a number of mesh router nodes and a number
of mesh client nodes of fixed positions (of an arbitrary
distribution) and finds a location assignment for the mesh
routers that maximizes the network connectivity (size of the
giant component) and client coverage. An instance of the
problem consists of:

• N mesh router nodes, each having its own radio cov-
erage, defining thus a vector of routers.

• An area W × H where to distribute N mesh routers.
Positions of mesh routers are not pre-determined. The
area is divided in square cells of an a priori fixed length
and mesh router nodes are to be deployed in the cells
of the grid area.

• M client mesh nodes located in arbitrary cells of the
considered grid area, defining a matrix of clients.

An instance of the problem can be formalized by an
adjacency matrix of the WMN graph, whose nodes are of
two types: router nodes and client nodes and whose edges
are links in the mesh network (there is a link between a
mesh router and mesh client if the client is within radio
coverage of the router). It should be noticed that here the
deployment area is arranged in grid cells, representing graph
nodes, where we can locate mesh nodes. In fact, in a cell,
both a mesh and a client node can be placed.

The objective is to place mesh router nodes in cells
of considered area to maximize network connectivity and
user coverage. In this work, the network connectivity is
measured through the size of the giant component in the
WMN. Network connectivity and user coverage are among
most important metrics in WMNs. The former measures the
degree of connectivity of the mesh nodes while the later
refers to the number of mesh client nodes connected to the
WMN. Both objectives are important and directly affect the
network performance; nonetheless, network connectivity is
considered as more important than user coverage. It should
also be noted that in general optimizing one objective could
effect the other objective although there is no direct relation
among these objectives nor are they contradicting.

A. Optimization setting

For optimization problems having two or more objective
functions, two settings are usually considered: the hierar-
chical and simultaneous optimization. In the former, the
objectives are classified (sorted) according to their priority.
Thus, for the two objective case, one of the objectives, say
f1, is considered as primary objective and the other, say
f2, as secondary one. The meaning is that the optimization
is carried out in two steps: in the first we try to optimize
f1, and then, we try to optimize f2 without worsening the
best value of f1. In the later approach, both objectives are
optimized simultaneously.

In this work we have considered the hierarchical approach
in which the size of the giant component is a primary
objective and the user coverage is a secondary one. Thus,
the local search algorithm will first maximize the size
of the giant component through local perturbations; next,
when no further improvements are possible, the algorithm
will try to maximize the user coverage without worsening
the size of the giant component. In such approach, the
network connectivity (through the maximization of size of
giant component) is considered as most important since
connectivity of the network is crucial for WMNs.

B. Client mesh nodes distributions

It should be noticed from the above problem description
that mesh client nodes can be arbitrarily situated in the given
area. For evaluation purposes, it is interesting, however, to
consider concrete distributions of clients. For instance, it has
been shown from studies in real urban areas or university
campuses that users (client mesh nodes) tend to cluster to
hotspots. Therefore different client mesh nodes distributions
should be considered, for instance Weibull distribution, in
evaluating WMN metrics.

We have considered Uniform, Normal, Exponential and
Weibull distributions for client mesh nodes in the experi-
mental evaluation (see Section IV).

III. SIMULATED ANNEALING

Simulated Annealing (SA) algorithm is a meta-heuristic
designed to solve global optimization problems, i.e., finding
a good approximation to the global optimum of a function in
a large search space. SA is inspired by the cooling process
of metals by which a material is heated and then cooled in a
controlled way to increase the size of its crystals and reduce
their defects. The heat causes the atoms to leave their initial
positions (a local minimum of energy) and move randomly;
the slow cooling gives them more likelihood to find config-
urations with lower energy than the previous one. In each
iteration, it considers some neighbors of the current state s,
and probabilistically decides between changing the system
to the state s′ or staying in the state s. The probabilities are
chosen so that the system converges towards lower energy
states. Typically this step is repeated until the system reaches
a state good enough for the application or when a certain
number of iterations is performed. The probability of making
the transition to the new state s′ is a function P (δE, T ) of
the energy difference δE = E(s′) − E(s) between the two
states, and the variable T , called temperature.

An important characteristics of the SA algorithm is that
the transition probability P is always non-zero, even when
δE is positive, i.e., the system can move to a higher
energy state (worse solution) than the current state. This
fact allows the method to overcome local optima. So, when
the temperature tends to a minimum, the probability tends to
zero asymptotically. Thus, every time the algorithm accepts
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fewer moves to increase the system’s energy. If δE is
negative, i.e., the transition energy decreases, the movement
is accepted with probability P = 1. The idea is that
as the algorithm progresses through the search space, the
temperature decreases according to a particular function
(which is usually an exponential function).

SA is a high-level algorithm, proposed by S. Kirkpatrick
et al. [6], usually considered a meta-heuristic in the lit-
erature, as the algorithm states the search process leaving
open the possibilities to appropriately choose neighborhood
exploration, cooling schedule, etc. In the literature, SA is
classified under random guided techniques (see Fig. 1).

 

Figure 1. Classification of SA algorithm in the tree of optimization search
methods.

A. Pseudo-code of basic SA algorithm

SA algorithm is a generalization of the Metropolis heuris-
tic. Indeed, SA consists of a sequence of executions of
Metropolis with a progressive decrement of the temperature
starting from a high temperature, where almost any move is
accepted, to a low temperature, where the search resembles
Hill Climbing. In fact, it can be seen as a hill-climber with
an internal mechanism to escape local optima (see pseudo-
code in Alg. 1). In SA, the solution s′ is accepted as the new
current solution if δ ≤ 0 holds, where δ = f(s′)−f(s) . To
allow escaping from a local optimum, moves that increase
the energy function are accepted with a decreasing probabil-
ity exp (−δ/T ) if δ > 0, where T is a parameter called the
“temperature”. The decreasing values of T are controlled by
a cooling schedule, which specifies the temperature values
at each stage of the algorithm, what represents an important
decision for its application (a typical option is to use a
proportional method, like Tk = α · Tk−1). SA usually gives
better results in practice, but uses to be very slow. The most
striking difficulty in applying SA is to choose and tune its
parameters such as initial and final temperature, decrement
of the temperature (cooling schedule), equilibrium detection,
etc.

Algorithm 1 : Pseudo-code of simulated annealing (SA).
t := 0
Initialize T
s0 := Initial Solution()
v0 := Evaluate(s0)
while (stopping condition not met) do

while t mod MarkovChainLen = 0 do
t := t+1
s1 := Generate(s0,T ) //Move
v1 := Evaluate(s1)
if Accept(v0,v1,T ) then

s0 := s1
v0 := v1

end if
end while
T := Update(T )

end while
return s0

B. Particularization of SA for mesh router node placement

We present here the particularization of the SA algorithm
for the case of mesh router node placement problem in
WMNs.

Initial solution.: The algorithms starts by generating
an initial solution. Either random or ad hoc methods can be
used for this purpose (see [12] for implementation of ad hoc
methods for the problem).

Evaluation of fitness function: An important aspect
is the determination of an appropriate adaptive function
or objective function and its encoding. Ideally, we would
construct objective functions with certain regularities, i.e.
objective functions for which it holds that for any two
solutions that are close in the search space, their respective
fitness values in the objective functions are similar. One
issue to consider here is that if the fitness function has not
been correctly coded, there can appear many local optima
in search space, which could prevent the algorithm from
progressing towards desired solutions.

In our case, we tackle an optimization problem with
multiple criteria (including size of giant component and the
number of covered users). In the study of SA, the fitness
function follows a hierarchical approach in which the main
objective is to maximize the size of giant component in
WMN while the number of covered users is considered a
secondary objective. In this way, we prioritize the connection
between the routers in order to ensure network connectivity
and at the same time achieving the largest number of users
covered.

Neighbor selection and movement types: Given a so-
lution s, its neighborhood N(s) consists of all solutions in
the search space that are accessible by a local move from
the current solution s. In the implementation of SA, we
have considered three different types of movements. The
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first, called Random, consists in choosing a router at random
in the grid area and place it in a new position at random.
The second move, called Radius, chooses the router of the
largest radio and placing it at the center of the most densely
populated part of client mesh nodes. This time we are
considering a much more effective move. Finally, the third
move, called Swap, consists in swapping two routers: the
one of the lowest radio router in the most densely populated
region of client mesh nodes with that of largest radio in the
least densely populated region of client mesh nodes. The
idea is that largest radio routers should serve to more clients
and thus should be placed in more dense areas.

We also considered the possibility to combine the above
movements in sequences of movements. The idea is to
see if the combination of these movements offers some
improvement over the best of them alone. We called this
type of movement Combination.

Acceptability criteria: The acceptability criteria for
newly generated solution is based on the definition of a
threshold value (accepting threshold) as follows. We con-
sider a succession tk such that tk > tk+1, tk > 0 and tk
tends to 0 as k tends to infinity. Then, for any two solutions
si and sj , if fitness(sj) − fitness(si) < tk, then accept
solution sj .

In other terms, all solutions that reduce the cost of the
current solution are accepted; those that would increase the
cost are accepted on a limited basis. With increasing values
of k (as the algorithm progresses) only small increments
are accepted, until eventually only accepted improvements
occur.

For the SA, tk values are taken as accepting threshold but
the criterion for acceptance is probabilistic:

• If fitness(sj) − fitness(si) ≤ 0 then sj is accepted.
• If fitness(sj) − fitness(si) > 0 then sj is accepted

with probability exp[(fitness(sj) − fitness(si))/tk]
(at iteration k the algorithm generates a random
number R ∈ (0, 1) and sj is accepted if R <
exp[(fitness(sj) − fitness(si))/tk]).

In this case, each neighbor of a solution has a positive
probability of replacing the current solution. The tk values
are chosen in way that solutions with large increase in the
cost of the solutions are less likely to be accepted (but there
is still a positive probability of accepting them).

IV. EXPERIMENTAL STUDY

A. Parameter set up

One of the main issues in using heuristic approaches is
to adequately set up the parameter values, which have a
direct impact on the performance of the algorithm. There
are usually two groups of parameters to set up: those related
to SA algorithm itself, such as the temperature, and those
corresponding to the problem under study, such as number
of routers to deploy, number of costumers to cover, grid area
sizes, etc.

Further, the values of these parameters should be set up
in a way that no biased results will be obtained when empir-
ically evaluating the implementation. To this end, randomly
generated instances of three different grid area sizes (32x32,
64x64, 128x128, respectively) are used. Then, the resulting
setting of parameter is used for obtaining computational
results for a benchmark of instances.

Instances of 32x32 grid area size: In
this case the setting of parameters obtained is:
temperature = 3 nb independent runs = 15 and
nb iterations per phase = 60. In the instances, the
client positions were generated following a normal
distribution N(μ = 16, σ = 32/10), and 16 routers were
to be placed in the 32x32 grid area to cover 48 clients. It
should be noted that we conducted 15 independent runs in
order to avoid fortuitous results; averaged results are then
used.

The averaged results of 15 independent runs showed that
the movement Radius achieved the best improvements in
the size of giant component. We also observed that the
Combination of movements showed a good performance.
The Random move showed the worst performance, actually
it gets stagnated around 16th phase of the search process.
Regarding the Swap movement, it could be the case that
this movement is too computationally expensive for small
size instances and doesn’t outperform other movements.
It should be noted however that for small size instances,
all movements (except Random) performed well after a
considerable number of search phases (about 30 phases). We
show graphically the performance of the local movements
in Fig. 2.
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Figure 2. Performance of local movements in SA algorithm for 32x32 grid
area where 16 routers were to be placed and give coverage to 48 clients.

Instances of 64x64 grid area size: In
this case the setting of parameters obtained is:
temperature = 2 nb independent runs = 15 and
nb iterations per phase = 150. In the instances,
the client positions were generated following a normal
distribution N(μ = 32, σ = 64/10), and 32 routers were to
be placed in the 64x64 grid area to cover 96 clients.
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Movement type for 64x64 grid size
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Figure 3. Performance of local movements in SA algorithm for 64x64 grid
area where 32 routers were to be placed and give coverage to 96 clients.

As can be seen from Fig. 3, at the beginning, Radius
showed a very good performance (up to phase 20) but with
the increasing number of phases, Swap is able to achieve
better quality solutions (from phase 20 onwards).

Instances of 128x128 grid area size: In
this case the setting of parameters obtained is:
temperature = 2 nb independent runs = 15 and
nb iterations per phase = 300. In the instances,
the client positions were generated following a normal
distribution N(μ = 64, σ = 128/10), and 64 routers were
to be placed in the 128x128 grid area to cover 192 clients.

Movement type for 128x128 grid size

0

10

20

30

40

50

1 3 5 7 9 11 13 15 17 19 21 23 25 27

nb phases

si
ze

 o
f 

g
ia

n
t 

co
m

p
o

n
en

t

Combination

Radius

Random

Swap

 

Figure 4. Performance of local movements in SA algorithm for 128x128
grid area where 64 routers were to be placed and give coverage to 192
clients.

For this size, as can be seen from Fig. 4, the experimental
results confirm our expectations that Swap is more effective
than the rest of movements (roughly from phase 23 onward).
Surprisingly, Random movement also offers good results but
has a slower convergence. Note that for instances of this size
it doesn’t seem worth to use Radius due to the diversity of
regions and routers in grid are deployment where Swap can
perform better.

B. Benchmark of instances

We have generated a benchmark consisting of 48 in-
stances, having different sizes of grid area and using four
probability distributions for the positions of mesh client
nodes in the grid area. These instances aim to represent
realistic-size instances1.

Instances are arranged in three groups, each having 16
instances and are labelled Ix×x D k, where:

• x stands for the height and width of the grid area, that
is, the number of cells of arbitrary edge length; it takes
values 32, 64 and 128.

• D stands for the distribution of the client mesh routers
in the grid area; four distributions are considered:
Uniform (U), Normal (N), Exponential (E) and Weibull
(W).

• k is the index of the instance.

Thus, we have 16 instances for each grid size (32, 64 and
128, respectively) and within each group we have 4 instances
for each distribution (Uniform, Normal, Exponential and
Weibull, resp). For instance, in this notation, I64×64 N 3

denotes the third instance of a 64× 64 grid area, with mesh
clients nodes positions generated using Normal distribution.

Finally, notice that instances of 32×32 grid area consist of
16 mesh routers nodes and 48 client mesh nodes; instances
of 64 × 64 grid area consist of 32 mesh routers nodes and
96 client mesh nodes; and, instances of 128× 128 grid area
consist of 64 mesh routers nodes and 192 client mesh nodes.

C. Simulated Annealing results for the benchmark

Once the fine tuning of parameters was done, we mea-
sured the performance of the SA algorithm for instances of
the benchmark. The test consisted thus in running SA for
16 different instances per size: 4 instances generated by a
uniform distribution, 4 instances by a normal distribution,
other 4 instances by an exponential distribution and finally
the last group of 4 instances generated by the Weibull
distribution.

Computational results for instances of size 32x32 grid
area: We give in Table I computational results for instances
of benchmark of 32x32 grid area and movement type Radius,
which showed to performed better for this size of instances
(other movements were studied as well but results are
omitted here).

As can be seen from Table I, the SA algorithm achieved
to establish a network of all routers connected and almost all
clients are covered for all but normal distribution. Moreover
the small deviation showed the robustness of the implemen-
tation, in that, the algorithm is always able to deliver good
solutions.

1In the literature, instances having up to 60 mesh devices are considered
realistic-size instances.
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Table I
SIZE OF GIANT COMPONENT AND USER COVERAGE FOR 32×32 GRID

SIZE INSTANCES, 16 ROUTERS NODES AND 48 CLIENTS.

Instance Size of giant component #Users covered
best avg dev best avg dev

I32x32 U 1 13 10 0.3 23 22 0.1
I32x32 U 2 13 8 0.5 24 23 0.1
I32x32 U 3 12 8 0.4 23 22 0.1
I32x32 U 4 11 8 0.3 26 24 0.2
I32x32 N 1 16 15 0.1 43 40 0.3
I32x32 N 2 16 15 0.1 42 39 0.3
I32x32 N 3 16 15 0.1 45 40 0.5
I32x32 N 4 16 15 0.1 43 40 0.3
I32x32 E 1 16 13 0.3 45 36 0.9
I32x32 E 2 16 14 0.2 46 39 0.7
I32x32 E 3 16 11 0.5 45 36 0.9
I32x32 E 4 16 13 0.3 45 41 0.4
I32x32 W 1 16 11 0.5 32 30 0.2
I32x32 W 2 16 14 0.2 43 36 0.7
I32x32 W 3 16 12 0.4 44 34 1
I32x32 W 4 16 13 0.3 43 35 0.8

Table II
SIZE OF GIANT COMPONENT AND USER COVERAGE FOR 64×64 GRID

SIZE INSTANCES, 32 ROUTERS NODES AND 96 CLIENTS.

Instance Size of giant component #Users covered
best avg dev best avg dev

I64x64 U 1 15 9 0.6 46 43 0.3
I64x64 U 2 12 8 0.4 41 41 0
I64x64 U 3 14 8 0.6 45 39 0.6
I64x64 U 4 13 9 0.4 44 40 0.4
I64x64 N 1 32 28 0.4 71 69 0.2
I64x64 N 2 32 26 0.6 70 65 0.5
I64x64 N 3 32 26 0.6 74 69 0.5
I64x64 N 4 31 28 0.3 74 73 0.1
I64x64 E 1 28 20 0.8 72 69 0.3
I64x64 E 2 26 19 0.7 88 74 1.4
I64x64 E 3 25 20 0.5 64 54 1
I64x64 E 4 24 19 0.5 69 67 0.2
I64x64 W 1 27 22 0.5 82 70 1.2
I64x64 W 2 30 22 0.8 65 64 0.1
I64x64 W 3 29 22 0.7 65 50 1.5
I64x64 W 4 26 21 0.5 89 67 2.2

Computational results for instances of size 64x64 grid
area: We give in Table II computational results for instances
of benchmark of 64x64 grid area and movement type Swap,
which showed to performed better for this size of instances
(again, other movements were studied as well but results are
omitted here).

As can be seen from Table II, the SA algorithm followed
the same trend of results; it was possible to establish a
network of almost all routers connected and almost all clients
covered for all but normal distribution.

Computational results for instances of size 128x128
grid area: We give in Table III computational results for
instances of benchmark of 128x128 grid area and movement
type Swap, which showed to performed better for this size
of instances (results about performance of other movements
are omitted).

As can be seen from Table III, the SA algorithm per-

Table III
SIZE OF GIANT COMPONENT AND USER COVERAGE FOR 128×128 GRID

SIZE INSTANCES, 64 ROUTERS NODES AND 192 CLIENTS.

Instance Size of giant component #Users covered
best avg dev best avg dev

I128x128 U 1 10 7 0.3 75 75 0
I128x128 U 2 13 7 0.6 77 71 0.6
I128x128 U 3 16 8 0.8 72 69 0.3
I128x128 U 4 11 7 0.4 73 73 0
I128x128 N 1 44 27 1.7 125 115 1
I128x128 N 2 41 25 1.6 121 115 0.6
I128x128 N 3 43 28 1.5 122 120 0.2
I128x128 N 4 46 26 2 119 116 0.3
I128x128 E 1 30 21 0.9 137 127 1
I128x128 E 2 32 20 1.2 144 133 1.1
I128x128 E 3 38 26 1.2 134 125 0.9
I128x128 E 4 32 25 0.7 162 144 1.8
I128x128 W 1 40 30 1 138 133 0.5
I128x128 W 2 41 26 1.5 138 137 0.1
I128x128 W 3 41 28 1.3 135 125 1
I128x128 W 4 41 32 0.9 131 118 1.3

formed very well for all but normal distribution of clients
in the grid area.

D. Analysis of the results

The SA algorithm showed a good performance for all
instances of the benchmark. In fact, the algorithm performed
better the Hill Climbing algorithm for the problem [12],
which is due to its mechanism of accepting with certain
probability also worse solutions than current solution in
an attempt to escape from prematurely falling into local
optima. The results are more striking in the case of large
size 128x128 grid area instances, for which SA clearly
outperformed the Hill Climbing algorithm.

From the results we could conclude that there were no
a single neighborhood structure that performed best in all
cases; rather, for small size instances Radius movement was
adequate for exploring the neighborhood while for medium
and large size it was the Swap movement. In addition, we
found a very good performance of Combination movement
(which is the sequential combination of the other three
movements) for instances of small size.

Finally, the experimental study revealed also that it is
necessary to evaluate the performance of the placement node
algorithms, such as SA algorithm considered in this work,
against different distributions of clients in the grid area. In
particular, the Weibull distribution which is based on the
idea of hot spots, seems interesting to further explore for
distributions of client nodes in the grid area.

V. CONCLUSIONS

In this work we have presented an implementation of Sim-
ulated Annealing (SA) algorithm for near-optimally solving
the problem of placement of mesh router nodes in Wireless
Mesh Networks (WMNs). In this version of the problem,
a number of client mesh nodes are a priori distributed
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in a grid area, arranged in small cells, and a number of
mesh router nodes are to be deployed in the area. We have
considered the optimization model in which the objective is
two-fold: to maximize the network connectivity (through the
maximization of the size of the giant component) and user
coverage. In this model, the former objective is considered as
primary while the later is considered secondary, that is, the
algorithm tries to optimize first the size of giant component
and then tries to maximize the number of clients covered
without worsening the size of the giant component.

The analysis of experimental study showed that an effi-
cient implementation of SA requires the definition of differ-
ent neighborhood structures in order to find the appropriate
structure according to different instance size as well as to
different distributions of clients in the grid area. The results
confirmed that SA is an effective resolution method for the
problem as it achieved to establish network connectivity of
almost all mesh router nodes and covered almost all client
mesh nodes for all considered benchmark instances.
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