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Abstract—The increasing demand for computational resources 
has led to a significant growth of data center facilities. A 
major concern has appeared regarding energy efficiency and 
consumption in servers and data centers. The use of flexible 
and scalable server power models is a must in order to enable 
proactive energy optimization strategies. This paper proposes the 
use of Evolutionary Computation to obtain a model for server 
dynamic power consumption. To accomplish this, we collect a 
significant number of server performance counters for a wide 
range of sequential and parallel applications, and obtain a model 
via Genetic Programming techniques. Our methodology enables 
the unsupervised generation of models for arbitrary server 
architectures, in a way that is robust to the type of application 
being executed in the server. With our generated models, we 
are able to predict the overall server power consumption for 
arbitrary workloads, outperforming previous approaches in the 
state-of-the-art. 

I. INTRODUCTION 

Modern data centers are a huge source of power con­
sumption and, hence, generate a tremendous amount of heat. 
The popularization of Cloud Computing and next-generation 
applications such as Smart Cities or e-Health, has dramatically 
increased the computational needs of data center facilities, and 
suposes an important challenge from the energy perspective. 
In 2010, data center electricity represented 1.3% of all the 
electricity use in the world, and 2% of all electricity use in 
the US [1]. In year 2012 alone, global data center power 
consumption increased to 38GW, and further rise of 17% to 
43GW was estimated in 2013 [2]. 

Data center power budget is mainly devoted to the energy 
drawn by servers and the cooling needed to keep IT equip­
ment under safe environmental conditions, avoiding thermal 
redlining [3]. In the last years Power Usage Efectiveness 
(PUE), defined as the ratio between total facility power and IT 
power, has become an important metric to measure the energy 
efficiency of these facilities. In year 2013, world average 
PUE reached 1.65 [4], whereas some major players such as 
Google are already reporting PUE values of around 1.13 [5]. 
Even though cooling efficiency minimizes the electricity bill, 
reducing PUE alone is not enough, as the major contributor to 
data center power is IT equipment, mainly enterprise servers. 

Both industry and academy have focused their efforts on 
the development of data center optimization strategies to min­
imize energy from the computational and cooling perspective. 

In order to propose such policies we need to predict, with suffi­
cient accuracy, the power consumption of the enteprise servers 
and the temperature attained when running a certain workload. 
Prediction enables the deployment of proactive optimization 
policies. Moreover, prediction is considered a must when data 
centers participate in demand-response programs for Smart 
Grid integration, as the facilities need to constantly forecast, 
track and adjust their power consumption. These techniques 
have recently proved to yield substantial energy savings, but 
require overall data center power prediction [6]. 

Recent research has shown the importance of splitting 
the various contributors to power in enterprise servers to 
leverage energy minimization strategies [7]. However, even 
though these strategies propose several models that isolate 
and quantify the various contributors to power, they lack 
the prediction of dynamic server power consumption, i.e. 
they cannot estimate server dynamic power given workload 
characteristics. Other techniques in the state of the art that 
model dynamic power make use of classical approaches based 
on data regression, but require manual model tuning. Data 
Center facilities are heterogeneous by nature, and a large set 
of servers from different architectures and manufacturers are 
usually found in the same data room. Therefore, in order to 
predict overall data center power, a model for each server needs 
to be created. In this sense, the use of models that require 
human interaction to be generated is not feasible. 

Our work proposes the use of Genetic Programming 
techniques -and more specifically, Grammatical Evolution- to 
obtain a model for server dynamic power consumption in an 
unsupervised way, with minimal user interaction, as a first 
step towards data center wide power prediction. Our solu­
tion is robust to server architecture, workload allocation and 
applications. To develop our models we collect a significant 
amount of performance counters during runtime execution of 
the application, using them to predict server dynamic CPU 
power. By applying our dynamic power model with previous 
temperature, leakage and cooling models in the state of the 
art, we are able to estimate overall server power consumption 
with high accuracy. 

The main contributions of our work can be summarized as 
follows: 

• We propose an unsupervised modeling methodology 
based on Grammatical Evolution (GE) that uses Fea-



ture Engineering as a way to automatically extract 
relevant features, while obtaining a mathematical ex­
pression for dynamic power. 

• We show how our model is able to predict the dynamic 
power as a function of performance counters with high 
accuracy, improving the Root Mean Square Error of 
classical approaches by more than 7%. 

• We validate our approach on a presently-shipping 
enterprise server for a wide range of sequential and 
parallel applications, and show how our methodology 
can be extended to arbitrary scenarios. 

Our work contributes to the state of the art by proposing 
the use of Gramatical Evolution as a way to predict, in an 
unsupervised way, dynamic power consumption of enterprise 
servers in data centers. Our solution enables the generation 
of models in heterogeneous data center environments without 
human interaction, leveraging the use of proactive optimization 
policies. 

The remainder of the paper is organized as follows: Sec­
tion I I discusses the related work. Section I I I shows our 
experimental methodology. A classical modeling approach 
for dynamic power consumption is presented in Section I V , 
whereas Section V describes the Gramatical Evolution ap­
proach. Results are presented in Section V I and Section V I I 
concludes the paper. 

I I . RELATED WORK 

Previous work on server power modeling commonly fo­
cuses on estimating the dynamic power consumption of enter­
prise servers assuming that leakage has minimal impact. Lewis 
et al. [8] build a linear regression model based on performance 
events to determine run-time system-wide power prediction. 
Other models define overall server power as a quadratic func­
tion of C P U utilization [9]. The power modeling methodology 
vMeter [10], detect a correlation between the overall system 
power consumption and component utilization, and develops a 
linear total server power model. Cochran et al. [11] determine 
a set of relevant workload metrics for energy consumption 
minimization and handle tradeoffs between energy and delay. 
Our work, as opposed to others, takes in count the leakage 
power consumption in order to model the dynamic power 
consumption of an enterprise server. 

Several works present models that isolate contributors to 
the overall server power consumption. Economou et al. [12] 
measure the total and component-level power for a set or 
workloads. Overall power is calculated with a non-intrusive 
method called Mantis. This model relies on the component-
level power and a series of metrics such as utilization or 
hardware counters. Arjona et al. [13] isolate the power from 
CPU, disks and network, and propose a power and energy 
characterization of different type of servers. Isci et al. [14] 
proposed a methodology for runtime power monitoring with 
intrusive techniques. They isolate the overall C P U power value 
placing a clamp ammeter through the C P U power lines. At 
the same time, hardware counters are gathered to build a 
complete model of the overall C P U power. Even though there 
exist models in the literature to split the contributors to power 
consumption, those models do not describe the contributors 

to dynamic power consumption in an unsupervised way, i.e 
dynamic C P U power. 

In terms of profiling, Ren et al. [15] present a contin­
uous profiling infrastructure for data centers called Google 
Wide Profiling. The system uses Oprofile to sample hardware 
counters across different machines in multiple data centers. 
Profiling is performed on a small subset of machines in the 
data center to reduce profiling overhead. Schubert et al. [16] 
developed eprof, a software profiler that relates overall dy­
namic consumption energy to specific code sections. In order to 
work, eprof requires changes in the kernel of servers. They use 
C P U and memory linear models based on hardware counters 
to compute energy. Other works, like Bruening et al. [17] 
proposes the use of dynamic binary translation to make an 
instant profiling of selected phases of execution. The main 
drawback of the previous solutions is that they either need 
code instrumentation or changes in the server platform, which 
prevents automatization. Moreover, these techniques disregard 
the trade-offs in terms of temperature, leakage and fan power 
that affect overall server power. 

As opposed to others, our work uses previous work on 
accurate server power modeling to first split the contributors 
to power consumption of enterprise servers, isolating dynamic 
power. Then, we apply an unsupervised modeling methodology 
to predict dynamic power consumption. As we prove later on, 
our devised methodology constitutes an effective technique for 
the power modeling of enterprise servers, as it exhibits higher 
accuracy than traditional approaches, and can be adapted to 
different and complex architectures in an unsupervised way. 
Because of the heterogeneous nature of data center, the pro­
posed technique is particularly useful when new power sources 
need to be incorporated, and allows to model all servers in a 
data room, predicting overall data center power consumption. 

I I I . EXPERIMENTAL METHODOLOGY 

A. Overview 

In this paper we propose a model for server dynamic power 
consumption. To this end, we first follow the methodology 
in [7] to isolate and quantify the contributors to power. For 
instance, Equation 1 shows the overall server power and how 
its various contributors can be split. Our methodology is able to 
calculate overall server, fan, memory and disk power, allowing 
us to isolate the dynamic power consumption of the server. 

Ptotal = PCPU + P f a n +Pmemories +Pd isks (1) 

We execute a wide range of workloads and sample during 
runtime a diverse set of hardware counters for each workload. 
Also, we collect different parameters of the server associated 
with every workload: CPU temperature, fan speed, overall 
power, memory, fan and disk power. 

To model dynamic power consumption in an unsupervised 
way, we propose the use of Gramatical Evolution. Our goal 
is to obtain a mathematical expression of dynamic power as a 
function of performance counters. To validate our approach we 
also generate a linear regression model following a classical 
approach. 



Fig. 1. Decathlete server internal diagram. Taken from [18] 

B. Experimental setup 

Our experiments take place on an Intel SandyBridge-
EP server belonging to the Open Compute Project (OCP) 1 

initiative, led by Facebook Inc. The idea behind choosing 
an OCP server is to exploit the benefits of flexibility and 
scalability brought by open-hardware designs, allowing to 
extend our customized monitoring, modeling and optimization 
setup easily to other platforms. 

The server chosen is an Intel S2600GZ, whose design 
is based on an Intel OCP v2.0 Decathlete board. The board 
has two sockets, each can be equipped with a 6-core In­
tel SandyBridge-EP processor providing up to 12 hardware 
threads. The server is equipped with one Intel SandyBridge-EP 
processor, eight 4GB memory DIMMs, four 1TB hard drives, 
two PSUs and five fans. Figure 1 shows a diagram of the server 
internals. 

The server runs a CentOS 6.5 Linux operating system. We 
use IPMI2 to poll the available server sensors: i) CPU temper­
ature, ii) fan speed and iii) overall server power consumption. 
Fan speed in this server can be controlled by setting different 
PWM values to the fan controllers via the BIOS [18]. For 
workload monitoring we use the Oprofile tool to poll the server 
hardware counters during runtime 3. 

The original server monitoring via IPMI does not provide 
values for the CPU, fan, memory or disk power. In order 
to apply our modeling methodology we need to be able to 
split and quantify all these contributors to power. To this end, 
we deploy intrusive current measument sensors in the critical 
board components: i) fans, ii) memory DIMMs and iii) hard 
disk drives. This way we are able to isolate the contribution 
from cooling power, memory and disk from that of CPU power. 

To measure power consumption, we use the commercial 
chip from Texas Instruments INA219. This chip uses an in­
tegrated power measurement circuit that measures the voltage 
drop in a shunt resistor placed in series with the power supply 
of the device to be measured. This setup allows to measure the 
power drawn by one memory DIMM, one fan, and the disks. 
The shunt resistor selected for each component must ensure a 
voltage drop low enough to keep the devices working. 

Because fans and disks are powered directly via the PSU 
of the system, we can insert our sensor in between the power 
supply wires. However, because the memory DIMMs are 
powered via the motherboard, we need to insert a memory 
expander that incorporates the shunt resistors to enable power 
measurement. 

To measure overal fan power we simply multiply the 
fan power of a single fan by the number of fans, as the 
server default fan control policy always drives all fans at the 
same speed. After running several experiments with memory-
intensive benchmarks, we see that the power consumption of 
the memory is equally spread accross DIMMs, therefore we 
can also obtain total memory power multiplying by the amount 
of DIMMs in our system. 

The INA219 current measurement chip has an I2C interface 
that we connect to a wireless microcontroller node that re­
trieves all the information from the chip and sends it wirelessly 
to a gateway [19]. The wireless node can be placed either 
inside or on top of the server, allowing to place the server 
inside a rack. 

Finally, all the collected values are sent periodically via 
UDP to a monitoring tool called graphite. Every value can be 
retrieved from graphite on csv format file for post processing. 
In this scenario, power samples are gathered in 10-second 
intervals. 

For more information on the monitoring setup the reader 
is referred to [20]. 

C. Test and Training sets 

To develop the CPU dynamic consumption model we run 
a set of workloads to train and test our models. We use the 
following set of benchmarks: 

• All the benckmarks from the CPU- and memory-
intensive SPEC CPU2006 [21] benchmark suite. 

• All benchmarks of PARSEC, a multi-threaded bench­
mark suite [22] that assesses the performance of 
multiprocessor systems. 

In order to train our model we select a subset of 6 
Integer benchmarks and 6 Floating Point benchmarks of SPEC 
CPU2006. This selection is made using the dendrogram pro­
vided by Phansalkar et.al. [23]. In the case of PARSEC, we 
select a set of benchmarks showing different computational 
behavior between them, according to [22]. 

• PARSEC: blackscholes, facesim, ferret, swaptions, 
vips and streamcluster. 

• SPEC CPU2006: gcc, mcf, hmmer, sjeng, libquantum, 
xalancbmk, milc, cactusADM, soplex, povray, lbm 
and wrf. 

To validate our model we use all remaining SPEC 
CPU2006 and PARSEC benchmarks: 

• 
1http://www.opencompute.org 
2Intelligent Platform Management Interface 
3http://oprofile.sourceforge.net/news/ 

PARSEC: bodytrack, freqmine, raytrace, fluidanimate, 
x264 and canneal. 

SPEC CPU2006: perlbench, bzip2, gobmk, h264ref, 
omnetpp, astar, bwaves, gamess, zeusmp, gromacs, 

http://www.opencompute.org
http://oprofile.sourceforge.net/news/


leslie3d, namd, dealII, calculix, GemsFDTD, tonto and 
sphinx3. 

D. Profiling methodology 

In order to gather the hardware counters for modeling the 
dynamic power consumption we use ocount, an Oprofile tool 
that can be used to count hardware events for any specific 
application, and is inspired by the Digital Continuous Profiling 
Infrastructure [24]. The ocount tool takes samples from the 
hardware counters periodically and stores every set of values 
in a file. Hardware counters are a special set of registers that 
collect information on the performance of servers, and are 
generally used for power modeling. 

We execute every SPEC CPU2006 and PARSEC bench­
marks with ocount taking samples every 1 second of 21 
hardware counters. PARSEC benchmarks were executed for 
every possible number of threads in our system, from 1 to 12 
threads. SPEC CPU2006 benchmarks were executed for 1, 2, 
3, 4, 5, 6 and 12 copies. Then, we calculate a 10-second mean 
on all the hardware counters collected. We do this in order to 
match the timestamp of the hardware counter event values and 
server sensors parameters extracted from graphite. 

We calculate the correlation between counters and remove 
those whose correlation exceeds the 0.9 threshold. This thresh­
old is heuristically selected to remove counters with high 
correlation between them. This way, we are able to reduce 
the set of hardware counters to 13, as shown in Table I. 

To maintain a robust set of samples we discard all the 
benchmarks with less than 10 samples. Since the power phases 
of all the benchmarks are stable we select a representative set 
of samples from every benchmark. Also, we need approxi­
mately the same amount of samples from every benchmark to 
train the model in a balanced way. To this end, we perform 
a decimation on every benchmark with a factor of 10. This 
means every benchmark has approximately 10 samples. 

E. CPU dynamic consumption 

The CPU power component of Equation 1 can be di­
vided into three components: (i) Pcpu,idie, which con­
tains a temperature-independent leakage component plus the 
power consumption due to the Operating System running, (ii) 
Pcpu,ieakT, a temperature-dependent leakage component, and 
(iii) Pcpu,dyn, the dynamic power of the CPU due to an 
application or workload execution: 

¿CPU *C PU,idle ~T~ *G'PU,leakT ~T~ *G'PU,dyn (2) 

CPU power can be obtained through the overall power 
and the other components power from the server, as shown 
in Equation 1. The Pcpu,idie can be easily calculated through 
Equations (1) and (2), when no workload is executed on the 
server. For the component Pcpu,ieakT we build a model and 
obtain a linear regression relating the power of leakage with 
the temperature of the CPU, as shown on Equation 3. The 
leakage model is obtained through the following methodology: 
we execute a CPU-intensive workload on the server, change 
step-by-step the speed of the fans (through the PWM parameter 
in the BIOS), and collect the CPU power consumption. This 
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Fig. 2. Percentage of the total variance explained by each principal 
component. 

consumption is directly related to temperature-dependent leak­
age, as changing fan speed leads to different CPU temperatures 
for the same workload. 

PcPU,leakT = «0 + «1 • TCPU + «2 • Top (3) 

where regression coefficients are: «o = 27.5, a.\ = -1.016 
and «2 = 0.0112. 

To calculate C P U dynamic consumption, Pcpu,dyn, we 
use Equations (1) and (2), with the component Pcpu,idie 
previously calculated. The quantization error of the total power 
consumption sensor of our server, Ptotai, is of 4 W Thus, the 
accuracy of our models is limited by this value. 

I V . SERVER POWER M O D E L I N G : CLASSICAL APPROACH 

This section presents a partial least squares regression 
model for the dynamic power consumption of the server, that 
we use as a baseline for comparison. This approach provides an 
analytic expression of the dynamic consumption power based 
on the hardware counters. Additionally, it is a straightforward 
method with minimal computation overhead. 

A. Feature selection 

We use a Principal Component Analysis (PCA) to reduce 
the set of hardware counters to a lower dimension. Figure 2 
shows the total variance explained by each component. Since 
the first 3 principal components explain 70% of the variance 
we plot the 3 principal components of the P C A output and 
choose the largest and most separated vectors, as shown in 
Figure 3. Those vectors represent the hardware counters that 
are highly independent from each other. The final hardware 
counter set is composed of the 1, 2, 5, 10, 11 counters shown 
in Table I . 

B. Partial least squares regression model 

We used the M A T L A B function plsregress to find the ana­
lytic expression of the dynamic consumption power based on 
5 hardware counters. We train and validate our model with the 
test and training sets explained in Section I I I . Equation 4 shows 
the dynamic power consumption linear regression expression: 

PcPU,dyn =/?0 + Pi ' C\ + ¡32 • C2 + /?3 • C5 + 

/?4 • C10 + /% • C\\ 
(4) 
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T A B L E I . SUMMARY OF RELEVANT HARDWARE COUNTERS 

Counter 
CPU CLK UNHALTED 
INST RETIRED 
LLC MISSES 
LLC_REFS 
BR INST RETIRED 
BR MISS PRED RETIRED 
misalign mem ref 1 
misalign mem ref 2 
arith 
resource stalls 
uops dispatched 
mem trans retired 
mem uops retired 

Number 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 

Description 
Clock cycles when not halted 
Number of instructions retired 
Last Level cache demand requests from this core that missed the LLC 
Last Level cache demand requests from this core 
Number of branch instructions retired 
Number of mispredicted branches retired (precise) 
Speculative cache-line split load uops dispatched to the L1D 
Speculative cache-line split Store-address uops dispatched to L1D 
Number of times that the divider is actived, includes INT, SIMD and FP 
Core resource stalls (Cycles Allocation is stalled due to Resource Related reason) 
Counts total number of uops dispatched from any thread 
Count memory transactions 
Count uops with memory accessed retired 

organism. GE evolves computer programs given a set of rules, 
adopting a bio-inspired genotype-phenotype mapping process. 

In every algorithm iteration, GE computes the fitness 
function for every iteration and extracts the mathematical 
expression given by an individual (phenotype) by applying a 
mapping process to the chromosome (genotype). This mapping 
process is achieved by defining a set of rules to obtain the 
mathematical expression, using grammars in Backus Naur 
Form (BNF) [25]. 

The process does not only perform parameter identification 
like in a classical regression method. In this sense, GE tries to 
simultaneously obtain a mathematical expression with the set 
of features that best fit the target system. This process is called 
Feature Engineering, and is a particularly useful technique to 
select the set of features and combination of variables that best 
describe a model. 

GE is particularly useful to provide solutions that include 
non-linear terms offering Feature Engineering capabilities and 
removing analytical modeling barriers. Also, designer’s exper­
tise is not required to process a high volume of data as GE is 
an automatic method. 

In this work, we propose the usage of Grammatical Evo­
lution to obtain a mathematical expression for server dynamic 
CPU power. This expression is derived from experimental mea­
surements of performance counters and power consumption 
values in a presently shipping enterprise server. Our goal is 
to develop a methodology for the unsupervised modeling of 
server CPU power, so that all servers in a data center facility 
can be modeled in an automatic way. 

The goal of using GE is to obtain accurate models, thus, 
our fitness function needs to express the error resulting in the 
estimation process. To measure the accuracy in our prediction, 
we select the Root Mean Square Error (RMSE) as a fitness 
function. 

B. Proposed solution 

In order to develop the aforementioned model by means of 
Grammatical Evolution, we use the training set described in 
Section I I I , i.e. a decimated set of samples belonging to SPEC 
CPU and PARSEC benchmarks. As previously described, 
we use the 13 performance counters that have a correlation 
with power above 0.9. Because of the Feature Engineering 
capability of GE, we do not need to further reduce the features. 
We directly feed the GE algorithm with a grammar, the 
performance counters and the training set. As a result, after 

PCA1 

Fig. 3. Principal Components Analysis (PCA) for the hardware counters data 
set. Plot of the first 3 principal component axis. 

where ¡3n corresponds to regression coefficients and Cm cor­
responds to hardware counters shown in Table I . The values 
of the regression coefficients are: ¡30 = 16.22, ¡31 = 1.5 • 10-9 , 
/?2 = 1.3 • 10-9 , ¡33 = —4.0 • 10-1 0 , /?4 = —4.2 • 10-1 2 and 
/?5 = — 6.0-10-1 0 . We compare the performace of this model 
vs. the model obtained by G E in Section V I . 

V . SERVER POWER MODEL ING: G R A M A T I C A L 

E V O L U T I O N 

In this section we describe our proposed modeling ap­
proach, as well as a brief description of grammatical evolution. 
Moreover, we describe the feature selection process and the 
fitness function used. 

A. Feature selection and model definition 

Evolutionary algorithms use the principles of evolution, 
i.e. survival of the fittest and natural selection, to turn one 
population of solutions into another, by means of selection, 
crossover and mutation. Among them, Grammatical Evolution 
(GE) [25] is a simple yet effective evolutionary computation 
technique based on Genetic Programming to perform symbolic 
regression [26]. GE is inspired in the biological process of 
generating a protein given the genetic material (DNA) of an 
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a number of generations, we obtain a mathematical model that 
includes the most relevant features for power prediction. To 
analyze the error evolution, we let the models run for a large 
number of generations, until fitness value (i.e. R M S E in our 
case) does not improve further. Note that the lack of improve 
in fitness does not ensure a global optimum, it only shows that 
the algorithm has reached a local minimum. 

Even though this paper focuses on C P U power prediction, 
it needs to be taken into account that the procedure to predict 
the dynamic power of other components (i.e. memory, network 
or disk) is completely equivalent. We only need to feed the 
algorithms with the adequate set of power data and the same 
performance counters. 

In the next section we describe the grammars used and 
show results on the performance of our models as compared 
to the classical regression methodology. 

V I . RESULTS 

In this section we present the results obtained for the 
modeling of dynamic C P U power with Grammatical Evolution 
techniques, and we also compare both the classical and G E 
approaches. First, we describe the algorithm setup as well as 
the grammars used and the results obtained in power prediction 
for the P A R S E C and S P E C benchmarks. Finally, we discuss 
the applicability and overhead of our approach. 

A. Algorithm setup and grammars 

After evaluating the performance of our model with several 
setups, we select the following one for all models in this paper: 

• Population size: 200 individuals 

• Chromosome length: 100 codons 

• Mutation probability: inversely proportional to the 
number of rules. 

• Crossover probability: 0.9 

• Maximum wraps: 3 

• Codon size: 8 bits (values from 0 to 255) 

• Tournament size: 2 (binary) 

We perform variable standardization for every feature (in 
the range [1,2]) to assure the same probability of appear­
ance for all the variables and to enhance the G E symbolic 
regression. We have trained our models using two different 
grammars: 

• G E Linear: this grammar is described in Grammar 1 
and constraints the possible solutions to linear models. 
In this sense, G E selects the most relevant features 
and adjusts the constants, obtaining a model similar 
to the classical regression approach, i.e: Pcpu,dyn = 

• Non-linear: the second grammar adds two new 
operands (product and division), to obtain more com­
plex relations between performance counters, search­
ing for a non-linear model. The only changes needed 
are the modification of Rules I and I I , as shown 

Non-linear - - - Linear 

^ \ ^ 

10,000 15,000 20,000 
Number of generations 

Fig. 4. R M S E evolution for training set when using the linear and non-linear 
grammars 

T A B L E I I . NORMALIZED PHENOTYPE OBTAINED FOR BOTH 
GRAMMARS USED I N DYNAMIC POWER PREDICTION 

Model Phenotype 

Linear (0.4 * G\ -\- 1.2 — 0.3 * C§) 

Non-linear ( 1 . 2 + ( C 2 • C\Q/'((Cs/'CQ) + ( ( 1 + C\Q + C 3 

/ C ^ 4 ~~ C10 + ( C i * C4 — (C11 /C12 ) ) / ( C n / C s ) 
/ ( ( ( C i * GT -\- (CI/CQ)) • G\) — ( C 5 / C 9 ) ) ) ) ) ' 

11 * 4 ) ) ) ) 

in Grammar 2, whereas the remaining Rules keep 
unchanged. In this case GE selects not only the perfor­
mance counters, but also their products. If the relation 
between dynamic power and performance counters is 
not linear, this grammar is expected to outperform 
both the GE linear and the classical regression ap­
proaches. 

Grammar 1 GE linear grammar used for dynamic CPU power 
modeling 

{expr) ::= {expr) {op) {expr) 

I (cte) * (var) \ {var) \ (cte) 

{op) ::= +|-

(var) ::= C1|C2|...|C13 

(cte) ::= (dgt).(dgt) 

(dgt) ::= 0|1|2|3|4|5|6|7|8|9 

(I) 

(II) 

(III) 

(IV) 

(V) 

Grammar 2 GE Non-linear grammar used for dynamic CPU 
power modeling 
{expr) ::= {expr) {op) {expr / 

I {var)*{var)\ {var)I'{var) \{var)\{cte) 

{op) ::= +|-|*|/ 

(I) 

(II) 

Figure 4 shows the evolution of the RMSE with the 
number of generations for both models. As can be seen, error 
stabilizes after 5,000 generations, being lower for the non­
linear case. This indicates that second order relations exist 
between performance counters that are not being considered by 
linear grammars. The models obtained using both grammars 
are shown in Table I I . As can be seen, the GE linear model 
selects less features than the classical regression approach, i.e. 
only C1 and C8. On the other hand, the non-linear model is 
more complex and incorporates multiplications and divisions 
of counters. 

B. Dynamic power prediction 

Table III shows a comparison in terms of RMSE, MAE 
and maximum error of the classical approach, the GE linear 
and GE non-linear models. As can be seen, the minimum 
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Fig. 5. Dynamic CPU power prediction for test set samples with GE and classical regression techniques 

TABLE I I I . RMSE, M A E AND MAXIMUM ERROR FOR TRAINING AND 
TEST SET IN CLASSICAL AND GRAMMATICAL EVOLUTION MODELS 

Model 
RMSE 

Training set 
MAE Max. RMSE 

Test set 
MAE Max. 

Classical 
GE Linear 
GE Non-linear 

6.6 
7.5 
5.9 

4.8 
5.6 
4.1 

37.1 
46.4 
40.8 

7.8 
7.9 
7.21 

5.4 
5.7 
5.5 

79.3 
35.5 
37.1 

MAE obtained is 4.1W, being RMSE around 5.5 in the best-
case scenario. Because the sensor used has an accuracy of 
4W, we consider that our models are accurate enough. The 
GE linear model is worse than the classical approach in the 
training, but very similar in the test set. In fact, it significantly 
reduces maximum error in the test set compared to the classical 
approach, which is unable to follow spikes in power. The 
feature engineering performed by GE, which only selects two 
performance counters, outperforms the classical approach. On 
the other hand, the non-linear model outperforms both linear 
approaches, as it is able to incorporate more information. 

Figure 5 shows the prediction of the samples in our test 
set, for the three models developed. As can be seen, the non­
linear model is able to follow the trend of power more easily. 
However, all models are unable to follow very low power 
values, performing poorly when dynamic power is less than 
15W. 

The previous Figure only shows the decimated samples 
of our test set. In Figure 6 we show the evolution of power 
consumption for all the samples in two particular tests: i) the 
benchmark Namd from SPEC CPU launched with 12 copies, 
and ii) the benchmark fluidanimate from PARSEC launched 
only with 1 thread. As opposed to the classical regression 
model, the GE Non-linear model is able to track the power 
consumption of both benchmarks during their entire execution, 
providing good results both for high and low power values. 

C. Applicability and computational effort 

The proposed modeling approach allows the prediction of 
dynamic CPU power consumption without user interaction, in 
a way that is robust to the workload and the server architecture. 
The methodology to model any other server is completely 
equivalent. Having predicted dynamic CPU power, the result 
can be used to predict temperature, leakage and overall server 
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(b) Dynamic CPU power prediction for 1-thread Fluidanimate 

Fig. 6. Dynamic CPU power prediction for Namd and Fluidanimate for the 
classical regression and the GE Non-linear model 

power. This enables the development of workload and cooling-
aware strategies in the data center. 

Our approach is computationally intensive during the train­
ing stage. At this point, we need to launch as many models 
as different server architectures we have in the data centers. 
According to our results, the G E model needs to evolve a 
random initial population of 200 individuals for 5,000 gener­
ations to obtain accurate results. In our experiments, training 
four models in parallel in a QuadCore Intel i7 CPU@3.4GHz 
and 8GB of R A M takes 3 hours. 

As for the model testing, we predict a new power sample 
every 10 seconds, which is the maximum granularity of power 
samples. The overhead to test one model is found to be 
negligible. 

V I I . CONCLUSIONS 

In this paper we have presented a modeling technique 
based on Gramatical Evolution to model the dynamic power 

0 



consumption of enteprise servers in data centers. The proposed 
models are generated in an unsupervised way, by means of 
the Feature Enginnering capabilities of G E techniques. We 
have trained and tested two different models for C P U dynamic 
power based, using a linear and a non-linear model, and 
showed how adding complex relations between counters im­
proves accuracy. We have compared our results with a classical 
feature selection and least-squares modeling approach. 

Our models have been validated with a wide range of se­
quential and parallel applications running with different copies 
and number of threads, in a real enteprise server, obtaining an 
average error of 5.5W for the test set. Our modeling method­
ology outperforms classical regression techniques, improving 
R M S E by 7.5% while drastically reducing maximum error by 
53%. 

In the future, we plan to extend our methodology to the 
modeling of memory, network and disk, using a wider variety 
of workloads that include IO-intensive applications. Moreover, 
we also plan to validate our methodology in heterogeneous 
architectures. Because of the unsupervised nature of G E tech­
niques, the changes needed to train new models are minimal. 
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