
Using Grammatical Evolution Techniques to Model
the Dynamic Power Consumption of Enterprise

Servers

Juan C. Salinas-Hilburg , Marina Zapater , José L. Risco-Martín , José M. Moya , José L. Ayala

Abstract—The increasing demand for computational resources
has led to a significant growth of data center facilities. A
major concern has appeared regarding energy efficiency and
consumption in servers and data centers. The use of flexible
and scalable server power models is a must in order to enable
proactive energy optimization strategies. This paper proposes the
use of Evolutionary Computation to obtain a model for server
dynamic power consumption. To accomplish this, we collect a
significant number of server performance counters for a wide
range of sequential and parallel applications, and obtain a model
via Genetic Programming techniques. Our methodology enables
the unsupervised generation of models for arbitrary server
architectures, in a way that is robust to the type of application
being executed in the server. With our generated models, we
are able to predict the overall server power consumption for
arbitrary workloads, outperforming previous approaches in the
state-of-the-art.

I. INTRODUCTION

Modern data centers are a huge source of power con­
sumption and, hence, generate a tremendous amount of heat.
The popularization of Cloud Computing and next-generation
applications such as Smart Cities or e-Health, has dramatically
increased the computational needs of data center facilities, and
suposes an important challenge from the energy perspective.
In 2010, data center electricity represented 1.3% of all the
electricity use in the world, and 2% of all electricity use in
the US [1]. In year 2012 alone, global data center power
consumption increased to 38GW, and further rise of 17% to
43GW was estimated in 2013 [2].

Data center power budget is mainly devoted to the energy
drawn by servers and the cooling needed to keep IT equip­
ment under safe environmental conditions, avoiding thermal
redlining [3]. In the last years Power Usage Efectiveness
(PUE), defined as the ratio between total facility power and IT
power, has become an important metric to measure the energy
efficiency of these facilities. In year 2013, world average
PUE reached 1.65 [4], whereas some major players such as
Google are already reporting PUE values of around 1.13 [5].
Even though cooling efficiency minimizes the electricity bill,
reducing PUE alone is not enough, as the major contributor to
data center power is IT equipment, mainly enterprise servers.

Both industry and academy have focused their efforts on
the development of data center optimization strategies to min­
imize energy from the computational and cooling perspective.

In order to propose such policies we need to predict, with suffi­
cient accuracy, the power consumption of the enteprise servers
and the temperature attained when running a certain workload.
Prediction enables the deployment of proactive optimization
policies. Moreover, prediction is considered a must when data
centers participate in demand-response programs for Smart
Grid integration, as the facilities need to constantly forecast,
track and adjust their power consumption. These techniques
have recently proved to yield substantial energy savings, but
require overall data center power prediction [6].

Recent research has shown the importance of splitting
the various contributors to power in enterprise servers to
leverage energy minimization strategies [7]. However, even
though these strategies propose several models that isolate
and quantify the various contributors to power, they lack
the prediction of dynamic server power consumption, i.e.
they cannot estimate server dynamic power given workload
characteristics. Other techniques in the state of the art that
model dynamic power make use of classical approaches based
on data regression, but require manual model tuning. Data
Center facilities are heterogeneous by nature, and a large set
of servers from different architectures and manufacturers are
usually found in the same data room. Therefore, in order to
predict overall data center power, a model for each server needs
to be created. In this sense, the use of models that require
human interaction to be generated is not feasible.

Our work proposes the use of Genetic Programming
techniques -and more specifically, Grammatical Evolution- to
obtain a model for server dynamic power consumption in an
unsupervised way, with minimal user interaction, as a first
step towards data center wide power prediction. Our solu­
tion is robust to server architecture, workload allocation and
applications. To develop our models we collect a significant
amount of performance counters during runtime execution of
the application, using them to predict server dynamic CPU
power. By applying our dynamic power model with previous
temperature, leakage and cooling models in the state of the
art, we are able to estimate overall server power consumption
with high accuracy.

The main contributions of our work can be summarized as
follows:

• We propose an unsupervised modeling methodology
based on Grammatical Evolution (GE) that uses Fea-

ture Engineering as a way to automatically extract
relevant features, while obtaining a mathematical ex­
pression for dynamic power.

• We show how our model is able to predict the dynamic
power as a function of performance counters with high
accuracy, improving the Root Mean Square Error of
classical approaches by more than 7%.

• We validate our approach on a presently-shipping
enterprise server for a wide range of sequential and
parallel applications, and show how our methodology
can be extended to arbitrary scenarios.

Our work contributes to the state of the art by proposing
the use of Gramatical Evolution as a way to predict, in an
unsupervised way, dynamic power consumption of enterprise
servers in data centers. Our solution enables the generation
of models in heterogeneous data center environments without
human interaction, leveraging the use of proactive optimization
policies.

The remainder of the paper is organized as follows: Sec­
tion I I discusses the related work. Section I I I shows our
experimental methodology. A classical modeling approach
for dynamic power consumption is presented in Section I V ,
whereas Section V describes the Gramatical Evolution ap­
proach. Results are presented in Section V I and Section V I I
concludes the paper.

I I . RELATED WORK

Previous work on server power modeling commonly fo­
cuses on estimating the dynamic power consumption of enter­
prise servers assuming that leakage has minimal impact. Lewis
et al. [8] build a linear regression model based on performance
events to determine run-time system-wide power prediction.
Other models define overall server power as a quadratic func­
tion of C P U utilization [9]. The power modeling methodology
vMeter [10], detect a correlation between the overall system
power consumption and component utilization, and develops a
linear total server power model. Cochran et al. [11] determine
a set of relevant workload metrics for energy consumption
minimization and handle tradeoffs between energy and delay.
Our work, as opposed to others, takes in count the leakage
power consumption in order to model the dynamic power
consumption of an enterprise server.

Several works present models that isolate contributors to
the overall server power consumption. Economou et al. [12]
measure the total and component-level power for a set or
workloads. Overall power is calculated with a non-intrusive
method called Mantis. This model relies on the component-
level power and a series of metrics such as utilization or
hardware counters. Arjona et al. [13] isolate the power from
CPU, disks and network, and propose a power and energy
characterization of different type of servers. Isci et al. [14]
proposed a methodology for runtime power monitoring with
intrusive techniques. They isolate the overall C P U power value
placing a clamp ammeter through the C P U power lines. At
the same time, hardware counters are gathered to build a
complete model of the overall C P U power. Even though there
exist models in the literature to split the contributors to power
consumption, those models do not describe the contributors

to dynamic power consumption in an unsupervised way, i.e
dynamic C P U power.

In terms of profiling, Ren et al. [15] present a contin­
uous profiling infrastructure for data centers called Google
Wide Profiling. The system uses Oprofile to sample hardware
counters across different machines in multiple data centers.
Profiling is performed on a small subset of machines in the
data center to reduce profiling overhead. Schubert et al. [16]
developed eprof, a software profiler that relates overall dy­
namic consumption energy to specific code sections. In order to
work, eprof requires changes in the kernel of servers. They use
C P U and memory linear models based on hardware counters
to compute energy. Other works, like Bruening et al. [17]
proposes the use of dynamic binary translation to make an
instant profiling of selected phases of execution. The main
drawback of the previous solutions is that they either need
code instrumentation or changes in the server platform, which
prevents automatization. Moreover, these techniques disregard
the trade-offs in terms of temperature, leakage and fan power
that affect overall server power.

As opposed to others, our work uses previous work on
accurate server power modeling to first split the contributors
to power consumption of enterprise servers, isolating dynamic
power. Then, we apply an unsupervised modeling methodology
to predict dynamic power consumption. As we prove later on,
our devised methodology constitutes an effective technique for
the power modeling of enterprise servers, as it exhibits higher
accuracy than traditional approaches, and can be adapted to
different and complex architectures in an unsupervised way.
Because of the heterogeneous nature of data center, the pro­
posed technique is particularly useful when new power sources
need to be incorporated, and allows to model all servers in a
data room, predicting overall data center power consumption.

I I I . EXPERIMENTAL METHODOLOGY

A. Overview

In this paper we propose a model for server dynamic power
consumption. To this end, we first follow the methodology
in [7] to isolate and quantify the contributors to power. For
instance, Equation 1 shows the overall server power and how
its various contributors can be split. Our methodology is able to
calculate overall server, fan, memory and disk power, allowing
us to isolate the dynamic power consumption of the server.

Ptotal = PCPU + P f a n +Pmemories +Pd isks (1)

We execute a wide range of workloads and sample during
runtime a diverse set of hardware counters for each workload.
Also, we collect different parameters of the server associated
with every workload: CPU temperature, fan speed, overall
power, memory, fan and disk power.

To model dynamic power consumption in an unsupervised
way, we propose the use of Gramatical Evolution. Our goal
is to obtain a mathematical expression of dynamic power as a
function of performance counters. To validate our approach we
also generate a linear regression model following a classical
approach.

Fig. 1. Decathlete server internal diagram. Taken from [18]

B. Experimental setup

Our experiments take place on an Intel SandyBridge-
EP server belonging to the Open Compute Project (OCP) 1

initiative, led by Facebook Inc. The idea behind choosing
an OCP server is to exploit the benefits of flexibility and
scalability brought by open-hardware designs, allowing to
extend our customized monitoring, modeling and optimization
setup easily to other platforms.

The server chosen is an Intel S2600GZ, whose design
is based on an Intel OCP v2.0 Decathlete board. The board
has two sockets, each can be equipped with a 6-core In­
tel SandyBridge-EP processor providing up to 12 hardware
threads. The server is equipped with one Intel SandyBridge-EP
processor, eight 4GB memory DIMMs, four 1TB hard drives,
two PSUs and five fans. Figure 1 shows a diagram of the server
internals.

The server runs a CentOS 6.5 Linux operating system. We
use IPMI2 to poll the available server sensors: i) CPU temper­
ature, ii) fan speed and iii) overall server power consumption.
Fan speed in this server can be controlled by setting different
PWM values to the fan controllers via the BIOS [18]. For
workload monitoring we use the Oprofile tool to poll the server
hardware counters during runtime 3.

The original server monitoring via IPMI does not provide
values for the CPU, fan, memory or disk power. In order
to apply our modeling methodology we need to be able to
split and quantify all these contributors to power. To this end,
we deploy intrusive current measument sensors in the critical
board components: i) fans, ii) memory DIMMs and iii) hard
disk drives. This way we are able to isolate the contribution
from cooling power, memory and disk from that of CPU power.

To measure power consumption, we use the commercial
chip from Texas Instruments INA219. This chip uses an in­
tegrated power measurement circuit that measures the voltage
drop in a shunt resistor placed in series with the power supply
of the device to be measured. This setup allows to measure the
power drawn by one memory DIMM, one fan, and the disks.
The shunt resistor selected for each component must ensure a
voltage drop low enough to keep the devices working.

Because fans and disks are powered directly via the PSU
of the system, we can insert our sensor in between the power
supply wires. However, because the memory DIMMs are
powered via the motherboard, we need to insert a memory
expander that incorporates the shunt resistors to enable power
measurement.

To measure overal fan power we simply multiply the
fan power of a single fan by the number of fans, as the
server default fan control policy always drives all fans at the
same speed. After running several experiments with memory-
intensive benchmarks, we see that the power consumption of
the memory is equally spread accross DIMMs, therefore we
can also obtain total memory power multiplying by the amount
of DIMMs in our system.

The INA219 current measurement chip has an I2C interface
that we connect to a wireless microcontroller node that re­
trieves all the information from the chip and sends it wirelessly
to a gateway [19]. The wireless node can be placed either
inside or on top of the server, allowing to place the server
inside a rack.

Finally, all the collected values are sent periodically via
UDP to a monitoring tool called graphite. Every value can be
retrieved from graphite on csv format file for post processing.
In this scenario, power samples are gathered in 10-second
intervals.

For more information on the monitoring setup the reader
is referred to [20].

C. Test and Training sets

To develop the CPU dynamic consumption model we run
a set of workloads to train and test our models. We use the
following set of benchmarks:

• All the benckmarks from the CPU- and memory-
intensive SPEC CPU2006 [21] benchmark suite.

• All benchmarks of PARSEC, a multi-threaded bench­
mark suite [22] that assesses the performance of
multiprocessor systems.

In order to train our model we select a subset of 6
Integer benchmarks and 6 Floating Point benchmarks of SPEC
CPU2006. This selection is made using the dendrogram pro­
vided by Phansalkar et.al. [23]. In the case of PARSEC, we
select a set of benchmarks showing different computational
behavior between them, according to [22].

• PARSEC: blackscholes, facesim, ferret, swaptions,
vips and streamcluster.

• SPEC CPU2006: gcc, mcf, hmmer, sjeng, libquantum,
xalancbmk, milc, cactusADM, soplex, povray, lbm
and wrf.

To validate our model we use all remaining SPEC
CPU2006 and PARSEC benchmarks:

•
1http://www.opencompute.org
2Intelligent Platform Management Interface
3http://oprofile.sourceforge.net/news/

PARSEC: bodytrack, freqmine, raytrace, fluidanimate,
x264 and canneal.

SPEC CPU2006: perlbench, bzip2, gobmk, h264ref,
omnetpp, astar, bwaves, gamess, zeusmp, gromacs,

http://www.opencompute.org
http://oprofile.sourceforge.net/news/

leslie3d, namd, dealII, calculix, GemsFDTD, tonto and
sphinx3.

D. Profiling methodology

In order to gather the hardware counters for modeling the
dynamic power consumption we use ocount, an Oprofile tool
that can be used to count hardware events for any specific
application, and is inspired by the Digital Continuous Profiling
Infrastructure [24]. The ocount tool takes samples from the
hardware counters periodically and stores every set of values
in a file. Hardware counters are a special set of registers that
collect information on the performance of servers, and are
generally used for power modeling.

We execute every SPEC CPU2006 and PARSEC bench­
marks with ocount taking samples every 1 second of 21
hardware counters. PARSEC benchmarks were executed for
every possible number of threads in our system, from 1 to 12
threads. SPEC CPU2006 benchmarks were executed for 1, 2,
3, 4, 5, 6 and 12 copies. Then, we calculate a 10-second mean
on all the hardware counters collected. We do this in order to
match the timestamp of the hardware counter event values and
server sensors parameters extracted from graphite.

We calculate the correlation between counters and remove
those whose correlation exceeds the 0.9 threshold. This thresh­
old is heuristically selected to remove counters with high
correlation between them. This way, we are able to reduce
the set of hardware counters to 13, as shown in Table I.

To maintain a robust set of samples we discard all the
benchmarks with less than 10 samples. Since the power phases
of all the benchmarks are stable we select a representative set
of samples from every benchmark. Also, we need approxi­
mately the same amount of samples from every benchmark to
train the model in a balanced way. To this end, we perform
a decimation on every benchmark with a factor of 10. This
means every benchmark has approximately 10 samples.

E. CPU dynamic consumption

The CPU power component of Equation 1 can be di­
vided into three components: (i) Pcpu,idie, which con­
tains a temperature-independent leakage component plus the
power consumption due to the Operating System running, (ii)
Pcpu,ieakT, a temperature-dependent leakage component, and
(iii) Pcpu,dyn, the dynamic power of the CPU due to an
application or workload execution:

¿CPU *C PU,idle ~T~ *G'PU,leakT ~T~ *G'PU,dyn (2)

CPU power can be obtained through the overall power
and the other components power from the server, as shown
in Equation 1. The Pcpu,idie can be easily calculated through
Equations (1) and (2), when no workload is executed on the
server. For the component Pcpu,ieakT we build a model and
obtain a linear regression relating the power of leakage with
the temperature of the CPU, as shown on Equation 3. The
leakage model is obtained through the following methodology:
we execute a CPU-intensive workload on the server, change
step-by-step the speed of the fans (through the PWM parameter
in the BIOS), and collect the CPU power consumption. This

9 0 %

8 0 %

4 5
Principal Component

Fig. 2. Percentage of the total variance explained by each principal
component.

consumption is directly related to temperature-dependent leak­
age, as changing fan speed leads to different CPU temperatures
for the same workload.

PcPU,leakT = «0 + «1 • TCPU + «2 • Top (3)

where regression coefficients are: «o = 27.5, a.\ = -1.016
and «2 = 0.0112.

To calculate C P U dynamic consumption, Pcpu,dyn, we
use Equations (1) and (2), with the component Pcpu,idie
previously calculated. The quantization error of the total power
consumption sensor of our server, Ptotai, is of 4 W Thus, the
accuracy of our models is limited by this value.

I V . SERVER POWER M O D E L I N G : CLASSICAL APPROACH

This section presents a partial least squares regression
model for the dynamic power consumption of the server, that
we use as a baseline for comparison. This approach provides an
analytic expression of the dynamic consumption power based
on the hardware counters. Additionally, it is a straightforward
method with minimal computation overhead.

A. Feature selection

We use a Principal Component Analysis (PCA) to reduce
the set of hardware counters to a lower dimension. Figure 2
shows the total variance explained by each component. Since
the first 3 principal components explain 70% of the variance
we plot the 3 principal components of the P C A output and
choose the largest and most separated vectors, as shown in
Figure 3. Those vectors represent the hardware counters that
are highly independent from each other. The final hardware
counter set is composed of the 1, 2, 5, 10, 11 counters shown
in Table I .

B. Partial least squares regression model

We used the M A T L A B function plsregress to find the ana­
lytic expression of the dynamic consumption power based on
5 hardware counters. We train and validate our model with the
test and training sets explained in Section I I I . Equation 4 shows
the dynamic power consumption linear regression expression:

PcPU,dyn =/?0 + Pi ' C\ + ¡32 • C2 + /?3 • C5 +

/?4 • C10 + /% • C\\
(4)

70 70%

60 60%

50 50%

40 4 0 %

30 30%

20 20%

10 10%

0 0%
3 7

T A B L E I . SUMMARY OF RELEVANT HARDWARE COUNTERS

Counter
CPU CLK UNHALTED
INST RETIRED
LLC MISSES
LLC_REFS
BR INST RETIRED
BR MISS PRED RETIRED
misalign mem ref 1
misalign mem ref 2
arith
resource stalls
uops dispatched
mem trans retired
mem uops retired

Number
1
2
3
4
5
6
7
8
9
10
11
12
13

Description
Clock cycles when not halted
Number of instructions retired
Last Level cache demand requests from this core that missed the LLC
Last Level cache demand requests from this core
Number of branch instructions retired
Number of mispredicted branches retired (precise)
Speculative cache-line split load uops dispatched to the L1D
Speculative cache-line split Store-address uops dispatched to L1D
Number of times that the divider is actived, includes INT, SIMD and FP
Core resource stalls (Cycles Allocation is stalled due to Resource Related reason)
Counts total number of uops dispatched from any thread
Count memory transactions
Count uops with memory accessed retired

organism. GE evolves computer programs given a set of rules,
adopting a bio-inspired genotype-phenotype mapping process.

In every algorithm iteration, GE computes the fitness
function for every iteration and extracts the mathematical
expression given by an individual (phenotype) by applying a
mapping process to the chromosome (genotype). This mapping
process is achieved by defining a set of rules to obtain the
mathematical expression, using grammars in Backus Naur
Form (BNF) [25].

The process does not only perform parameter identification
like in a classical regression method. In this sense, GE tries to
simultaneously obtain a mathematical expression with the set
of features that best fit the target system. This process is called
Feature Engineering, and is a particularly useful technique to
select the set of features and combination of variables that best
describe a model.

GE is particularly useful to provide solutions that include
non-linear terms offering Feature Engineering capabilities and
removing analytical modeling barriers. Also, designer’s exper­
tise is not required to process a high volume of data as GE is
an automatic method.

In this work, we propose the usage of Grammatical Evo­
lution to obtain a mathematical expression for server dynamic
CPU power. This expression is derived from experimental mea­
surements of performance counters and power consumption
values in a presently shipping enterprise server. Our goal is
to develop a methodology for the unsupervised modeling of
server CPU power, so that all servers in a data center facility
can be modeled in an automatic way.

The goal of using GE is to obtain accurate models, thus,
our fitness function needs to express the error resulting in the
estimation process. To measure the accuracy in our prediction,
we select the Root Mean Square Error (RMSE) as a fitness
function.

B. Proposed solution

In order to develop the aforementioned model by means of
Grammatical Evolution, we use the training set described in
Section I I I , i.e. a decimated set of samples belonging to SPEC
CPU and PARSEC benchmarks. As previously described,
we use the 13 performance counters that have a correlation
with power above 0.9. Because of the Feature Engineering
capability of GE, we do not need to further reduce the features.
We directly feed the GE algorithm with a grammar, the
performance counters and the training set. As a result, after

PCA1

Fig. 3. Principal Components Analysis (PCA) for the hardware counters data
set. Plot of the first 3 principal component axis.

where ¡3n corresponds to regression coefficients and Cm cor­
responds to hardware counters shown in Table I . The values
of the regression coefficients are: ¡30 = 16.22, ¡31 = 1.5 • 10-9 ,
/?2 = 1.3 • 10-9 , ¡33 = —4.0 • 10-1 0 , /?4 = —4.2 • 10-1 2 and
/?5 = — 6.0-10-1 0 . We compare the performace of this model
vs. the model obtained by G E in Section V I .

V . SERVER POWER MODEL ING: G R A M A T I C A L

E V O L U T I O N

In this section we describe our proposed modeling ap­
proach, as well as a brief description of grammatical evolution.
Moreover, we describe the feature selection process and the
fitness function used.

A. Feature selection and model definition

Evolutionary algorithms use the principles of evolution,
i.e. survival of the fittest and natural selection, to turn one
population of solutions into another, by means of selection,
crossover and mutation. Among them, Grammatical Evolution
(GE) [25] is a simple yet effective evolutionary computation
technique based on Genetic Programming to perform symbolic
regression [26]. GE is inspired in the biological process of
generating a protein given the genetic material (DNA) of an

X 10

< 10

X10

-1 .5

PCA2

a number of generations, we obtain a mathematical model that
includes the most relevant features for power prediction. To
analyze the error evolution, we let the models run for a large
number of generations, until fitness value (i.e. R M S E in our
case) does not improve further. Note that the lack of improve
in fitness does not ensure a global optimum, it only shows that
the algorithm has reached a local minimum.

Even though this paper focuses on C P U power prediction,
it needs to be taken into account that the procedure to predict
the dynamic power of other components (i.e. memory, network
or disk) is completely equivalent. We only need to feed the
algorithms with the adequate set of power data and the same
performance counters.

In the next section we describe the grammars used and
show results on the performance of our models as compared
to the classical regression methodology.

V I . RESULTS

In this section we present the results obtained for the
modeling of dynamic C P U power with Grammatical Evolution
techniques, and we also compare both the classical and G E
approaches. First, we describe the algorithm setup as well as
the grammars used and the results obtained in power prediction
for the P A R S E C and S P E C benchmarks. Finally, we discuss
the applicability and overhead of our approach.

A. Algorithm setup and grammars

After evaluating the performance of our model with several
setups, we select the following one for all models in this paper:

• Population size: 200 individuals

• Chromosome length: 100 codons

• Mutation probability: inversely proportional to the
number of rules.

• Crossover probability: 0.9

• Maximum wraps: 3

• Codon size: 8 bits (values from 0 to 255)

• Tournament size: 2 (binary)

We perform variable standardization for every feature (in
the range [1,2]) to assure the same probability of appear­
ance for all the variables and to enhance the G E symbolic
regression. We have trained our models using two different
grammars:

• G E Linear: this grammar is described in Grammar 1
and constraints the possible solutions to linear models.
In this sense, G E selects the most relevant features
and adjusts the constants, obtaining a model similar
to the classical regression approach, i.e: Pcpu,dyn =

• Non-linear: the second grammar adds two new
operands (product and division), to obtain more com­
plex relations between performance counters, search­
ing for a non-linear model. The only changes needed
are the modification of Rules I and I I , as shown

Non-linear - - - Linear

^ \ ^

10,000 15,000 20,000
Number of generations

Fig. 4. R M S E evolution for training set when using the linear and non-linear
grammars

T A B L E I I . NORMALIZED PHENOTYPE OBTAINED FOR BOTH
GRAMMARS USED I N DYNAMIC POWER PREDICTION

Model Phenotype

Linear (0.4 * G\ -\- 1.2 — 0.3 * C§)

Non-linear (1 . 2 + (C 2 • C\Q/'((Cs/'CQ) + ((1 + C\Q + C 3

/ C ^ 4 ~~ C10 + (C i * C4 — (C11 /C12)) / (C n / C s)
/ (((C i * GT -\- (CI/CQ)) • G\) — (C 5 / C 9))))) '

11 * 4))))

in Grammar 2, whereas the remaining Rules keep
unchanged. In this case GE selects not only the perfor­
mance counters, but also their products. If the relation
between dynamic power and performance counters is
not linear, this grammar is expected to outperform
both the GE linear and the classical regression ap­
proaches.

Grammar 1 GE linear grammar used for dynamic CPU power
modeling

{expr) ::= {expr) {op) {expr)

I (cte) * (var) \ {var) \ (cte)

{op) ::= +|-

(var) ::= C1|C2|...|C13

(cte) ::= (dgt).(dgt)

(dgt) ::= 0|1|2|3|4|5|6|7|8|9

(I)

(II)

(III)

(IV)

(V)

Grammar 2 GE Non-linear grammar used for dynamic CPU
power modeling
{expr) ::= {expr) {op) {expr /

I {var)*{var)\ {var)I'{var) \{var)\{cte)

{op) ::= +|-|*|/

(I)

(II)

Figure 4 shows the evolution of the RMSE with the
number of generations for both models. As can be seen, error
stabilizes after 5,000 generations, being lower for the non­
linear case. This indicates that second order relations exist
between performance counters that are not being considered by
linear grammars. The models obtained using both grammars
are shown in Table I I . As can be seen, the GE linear model
selects less features than the classical regression approach, i.e.
only C1 and C8. On the other hand, the non-linear model is
more complex and incorporates multiplications and divisions
of counters.

B. Dynamic power prediction

Table III shows a comparison in terms of RMSE, MAE
and maximum error of the classical approach, the GE linear
and GE non-linear models. As can be seen, the minimum

10

4
1000 5000 25,000 30,000

60

50

40

30

20

10

200 250 300 350 400 450 500
Test set samples

550 600 650

Fig. 5. Dynamic CPU power prediction for test set samples with GE and classical regression techniques

TABLE I I I . RMSE, M A E AND MAXIMUM ERROR FOR TRAINING AND
TEST SET IN CLASSICAL AND GRAMMATICAL EVOLUTION MODELS

Model
RMSE

Training set
MAE Max. RMSE

Test set
MAE Max.

Classical
GE Linear
GE Non-linear

6.6
7.5
5.9

4.8
5.6
4.1

37.1
46.4
40.8

7.8
7.9
7.21

5.4
5.7
5.5

79.3
35.5
37.1

MAE obtained is 4.1W, being RMSE around 5.5 in the best-
case scenario. Because the sensor used has an accuracy of
4W, we consider that our models are accurate enough. The
GE linear model is worse than the classical approach in the
training, but very similar in the test set. In fact, it significantly
reduces maximum error in the test set compared to the classical
approach, which is unable to follow spikes in power. The
feature engineering performed by GE, which only selects two
performance counters, outperforms the classical approach. On
the other hand, the non-linear model outperforms both linear
approaches, as it is able to incorporate more information.

Figure 5 shows the prediction of the samples in our test
set, for the three models developed. As can be seen, the non­
linear model is able to follow the trend of power more easily.
However, all models are unable to follow very low power
values, performing poorly when dynamic power is less than
15W.

The previous Figure only shows the decimated samples
of our test set. In Figure 6 we show the evolution of power
consumption for all the samples in two particular tests: i) the
benchmark Namd from SPEC CPU launched with 12 copies,
and ii) the benchmark fluidanimate from PARSEC launched
only with 1 thread. As opposed to the classical regression
model, the GE Non-linear model is able to track the power
consumption of both benchmarks during their entire execution,
providing good results both for high and low power values.

C. Applicability and computational effort

The proposed modeling approach allows the prediction of
dynamic CPU power consumption without user interaction, in
a way that is robust to the workload and the server architecture.
The methodology to model any other server is completely
equivalent. Having predicted dynamic CPU power, the result
can be used to predict temperature, leakage and overall server

50

45:

40^

'

100 200 300 400 500 600 700 800
Time(sec)

(a) Dynamic CPU power prediction for 12 copies of Namd

50 100 150 200 250
Time(sec)

300 350

(b) Dynamic CPU power prediction for 1-thread Fluidanimate

Fig. 6. Dynamic CPU power prediction for Namd and Fluidanimate for the
classical regression and the GE Non-linear model

power. This enables the development of workload and cooling-
aware strategies in the data center.

Our approach is computationally intensive during the train­
ing stage. At this point, we need to launch as many models
as different server architectures we have in the data centers.
According to our results, the G E model needs to evolve a
random initial population of 200 individuals for 5,000 gener­
ations to obtain accurate results. In our experiments, training
four models in parallel in a QuadCore Intel i7 CPU@3.4GHz
and 8GB of R A M takes 3 hours.

As for the model testing, we predict a new power sample
every 10 seconds, which is the maximum granularity of power
samples. The overhead to test one model is found to be
negligible.

V I I . CONCLUSIONS

In this paper we have presented a modeling technique
based on Gramatical Evolution to model the dynamic power

0

consumption of enteprise servers in data centers. The proposed
models are generated in an unsupervised way, by means of
the Feature Enginnering capabilities of G E techniques. We
have trained and tested two different models for C P U dynamic
power based, using a linear and a non-linear model, and
showed how adding complex relations between counters im­
proves accuracy. We have compared our results with a classical
feature selection and least-squares modeling approach.

Our models have been validated with a wide range of se­
quential and parallel applications running with different copies
and number of threads, in a real enteprise server, obtaining an
average error of 5.5W for the test set. Our modeling method­
ology outperforms classical regression techniques, improving
R M S E by 7.5% while drastically reducing maximum error by
53%.

In the future, we plan to extend our methodology to the
modeling of memory, network and disk, using a wider variety
of workloads that include IO-intensive applications. Moreover,
we also plan to validate our methodology in heterogeneous
architectures. Because of the unsupervised nature of G E tech­
niques, the changes needed to train new models are minimal.

ACKNOWLEDGMENT

This project has been partially supported by the Span­
ish Ministry of Economy and Competitiveness, under con­
tracts TEC2012-33892, IPT-2012-1041-430000 and RTC-
2014-2717-3.

REFERENCES

[1] J . Koomey, “Growth in data center electricity use 2005 to 2010,”
Analytics Press, Oakland, C A , Tech. Rep., 2011.

[2] A . Venkatraman, “Global census shows dat-
acentre power demand grew 63% in 2012,”
http://www.computerweekly.com/news/2240164589/Datacentre-power-
demand-grew-63-in-2012-Global-datacentre-census, October 2012.

[3] M . Iyengar and R. Schmidt, “Analytical modeling for thermodynamic
characterization of data center cooling systems,” Journal of Electronic
Packaging, vol. 113, Feb. 2009.

[4] J . K . Matt Stansberry, “Uptime institute 2013 data center industry
survey,” Uptime Institute, Tech. Rep., 2013.

[5] G . Inc., “Efficiency: How we do it.” [Online]. Available: http:
//www.google.com/about/datacenters/efficiency/internal/

[6] H . Chen, M . C . Caramanis, and A . K . Coskun, “The data center as a
grid load stabilizer,” in 19th Asia and South Pacific Design Automation
Conference, ASP-DAC 2014, Singapore, January 20-23, 2014, 2014,
pp. 105–112.

[7] M . Zapater, O . Tuncer, J . L . Ayala, J . M . Moya, K . Vaidyanathan,
K . Gross, and A . K . Coskun, “Leakage-aware cooling management for
improving server energy efficiency,” IEEE Transactions on Parallel and
Distributed Systems (TPDS), 2014, in Press, to appear in 2014.

[8] A . Lewis and et al., “Run-time energy consumption estimation based on
workload in server systems,” in HotPower, Berkeley, C A , U S A , 2008,
pp. 4–4.

[9] X . Fan and et al., “Power provisioning for a warehouse-sized computer,”
in ISCA, New York, NY, USA, 2007, pp. 13–23.

[10] A . Bohra and V. Chaudhary, “VMeter: Power modelling for virtualized
clouds,” in IPDPSW, 2010, pp. 1–8.

[11] R. Cochran, C . Hankendi, A . Coskun, and S. Reda, “Identifying the
optimal energy-efficient operating points of parallel workloads,” in
ICCAD, 2011, pp. 608–615.

[12] D . Economou, S. Rivoire, and C . Kozyrakis, “Full-system power
analysis and modeling for server environments,” in In Workshop on
Modeling Benchmarking and Simulation (MOBS, 2006.

[13] J. Arjona Aroca, A. Chatzipapas, A. Ferná ndez Anta, and V. Mancuso,
“A measurement-based analysis of the energy consumption of
data center servers,” in Proceedings of the 5th International
Conference on Future Energy Systems, ser. e-Energy ’14. New
York, NY, USA: ACM, 2014, pp. 63–74. [Online]. Available:
http://doi.acm.org/10.1145/2602044.2602061

[14] C. Isci and M. Martonosi, “Runtime power monitoring in high-end
processors: Methodology and empirical data,” Tech. Rep., 2003.

[15] G. Ren, E. Tune, T. Moseley, Y. Shi, S. Rus, and R. Hundt, “Google-
wide profiling: A continuous profiling infrastructure for data centers.”
IEEE Micro, vol. 30, no. 4, pp. 65–79, 2010. [Online]. Available:
http://dblp.uni-trier.de/db/journals/micro/micro30.html#RenTMSRH10

[16] S. Schubert, D. Kostic, W. Zwaenepoel, and K. G. Shin, “Profiling
software for energy consumption,” in Proceedings of the 2012 IEEE
International Conference on Green Computing and Communications,
ser. GREENCOM ’12. Washington, DC, USA: IEEE Computer
Society, 2012, pp. 515–522. [Online]. Available: http://0-dx.doi.org.
tkplib01.tut.ac.za/10.1109/GreenCom.2012.86

[17] D. Bruening, S. Mahlke, and R. Hank, “Instant profiling: Instrumenta­
tion sampling for profiling datacenter applications.”

[18] Intel, “Server Board S2600GZ/GL. Technical Product Specification,”
2014 (Revision 2.1).

[19] J. Pagán, M. Zapater, O. Cubo, P. Arroba, V. Mart´ın, and J. M.
Moya, “A Cyber-Physical approach to combined HW-SW monitoring
for improving energy efficiency in data centers,” in Conference on
Design of Circuits and Integrated Systems, ser. DCIS’13, 2013, pp.
140–145.

[20] Juan C. Salinas-Hilburg, “Analysis and characterization of a high
performance server and its impact on the energy consumption of a data
center,” Master Thesis, Universidad Polite´cnica de Madrid, Tech. Rep.,
2014.

[21] SPEC CPU Subcommittee and John L. Henning, “SPEC CPU 2006
benchmark descriptions,” http://www.spec.org/cpu2006/.

[22] C. Bienia, S. Kumar, J. P. Singh, and K. Li , “The parsec benchmark
suite: characterization and architectural implications,” in PACT, 2008,
pp. 72–81.

[23] A. Phansalkar, A. Joshi, and L. K. John, “Subsetting the spec cpu2006
benchmark suite,” SIGARCH Computer Architecture News, vol. 35,
no. 1, pp. 69–76, 2007.

[24] J. M. Anderson, L. M. Berc, J. Dean, S. Ghemawat, M. R. Henzinger,
S.-T. A. Leung, R. L. Sites, M. T. Vandevoorde, C. A. Waldspurger, and
W. E. Weihl, “Continuous profiling: Where have all the cycles gone?”
in ACM Transactions on Computer Systems, 1997, pp. 1–14.

[25] M. O’Neill and C. Ryan, “Grammatical evolution,” IEEE Transactions
on Evolutionary Computation, vol. 5, no. 4, pp. 349–358, Aug 2001.

[26] C. Ryan, J. Collins, and M. Neill, “Grammatical evolution: Evolving
programs for an arbitrary language,” in Genetic Programming, ser. Lec­
ture Notes in Computer Science, W. Banzhaf, R. Poli, M. Schoenauer,
and T. Fogarty, Eds. Springer Berlin Heidelberg, 1998, vol. 1391, pp.
83–96.

http://www.computerweekly.com/news/2240164589/Datacentre-powerdemand-grew-63-in-2012-Global-datacentre-census
http://www.computerweekly.com/news/2240164589/Datacentre-powerdemand-grew-63-in-2012-Global-datacentre-census
http://www.google.com/about/datacenters/efficiency/internal/
http://www.google.com/about/datacenters/efficiency/internal/
http://doi.acm.org/10.1145/2602044.2602061
http://dblp.uni-trier.de/db/journals/micro/micro30.html%23RenTMSRH10
http://0-dx.doi.org.tkplib01.tut.ac.za/10.1109/GreenCom.2012.86
http://0-dx.doi.org.tkplib01.tut.ac.za/10.1109/GreenCom.2012.86
http://www.spec.org/cpu2006/

