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Abstract— The problem of distributed detection and estimation
in a sensor network over a multiaccess fading channel is
considered. A communication scheme known as the Type-Based
Random Access (TBRA) is employed and its performance is
characterized with respect to the mean transmission rate and
the channel coherence index. For extreme values of channel
coherence index i.e., 0 and co, we give an optimal TBRA scheme
which is essentially a sensor activation strategy that achieves the
optimal allocation of transmission energy to spatial and temporal
domains. For channels with zero coherence index, it is shown that
there exists a finite optimal mean transmission rate maximizing
performance. This optimal rate can be calculated numerically
or estimated using the Gaussian approximation. On the other
hand, for channels with infinite coherence index (i.c., no fading)
the optimal strategy is to allocate all the energy to the spatial
domain. Numerical examples and simulations confirm our theory.

Index Terms—Signal Processing for Communications, distributed
detection, distributed estimation, multi-sensor systems, perfor-
mance analysis.

I. INTRODUCTION

We consider the problem of distributed statistical inference
over a multiaccess fading channel. Our focus is on the commu-
nication (or random access) aspect of the problem. The com-
munication scheme we employ is the so-called Type-Based
Random Access (TBRA) [1], [2], in which sensors transmit
probabilistically using a set of orthogonal waveforms keyed
to their measurement. Specifically, sensors with the same data
value transmit using the same waveform on a multiaccess
fading channel. The use of orthogonal waveforms eliminates
interference among users with different data values and makes
it possible to have coherent combining of transmissions in the
absence of fading. However, we will see that the behavior
is more complicated in presence of fading, since there is a
possibility of cancelation among the signals. A schematic of
our problem is illustrated in Fig. 1 with model definition given
in Section II.

A. Summary of Main Results

Given the fixed local quantization rule at the sensors and
the available set of orthogonal waveforms for transmission,
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Fig. 1. Distributed Detection/ Estimation in Multiaccess.

the design of TBRA reduces to the optimal choice of the
mean transmission rate A\ by maximizing a performance metric
E(X). Intuitively, if A is too small, not enough sensors
transmit, and performance suffers. On the other hand, if too
many sensors transmit, the energy consumption is high. Since
they transmit on a multiaccess channel, it is not obvious that
sensors will not interfere with each other, resulting in poor
performance.

The exact form of the performance metric E()) depends
on the type of detection (Neyman-Pearson or Bayesian) or
estimation (Maximum likelihood or Bayesian). But it turns
out that they all show similar dependence on the fading
characteristics of the multiaccess channel. In particular, F/(\)
crucially depends on “channel coherence index” v defined by

L [EGDP 0
Var(H)’
where H is the fading coefficient between a sensor and the
fusion center. Intuitively, higher + leads to better coherent
addition of signals.

Illustrated in Fig. 2 are sketches of E(\) as functions of
A and ~. The shapes of these curves will be justified by the
analytical and numerical results in Section III and Section IV.
We see that for low coherence indices, there exists an optimal
A« for which E()) is maximized. This implies that there is
an optimal sensor activation probability so that the average
number of transmitting sensors is optimal. The intuition is



A

Fig. 2. Performance Metric E(\) as a function of A for different channel
coherence indices y (see (1)).

that for fading channels with zero mean, v = 0, sensors
transmitting using the same waveform tend to cancel each
other (in the mean), which is the reason that TBMA schemes
involving a single data collection fail [3], [4]. A sharp contrast
is the extreme case when the channel is deterministic without
fading (v = o0). We show that there does not exist an
optimizing A, which means that the optimal strategy is to
make all sensors transmitting at the same time in order to take
advantage of channel coherency. This paper aims to provide
insights into the optimal tradeoff.

We show the existence of optimal average transmission
rate A, when channel coherence index is small. We also
characterize of E/(\) when ) is large. It is in fact the behavior
of E(A\) as A — oo that helps us to describe the shape
of the curve in Fig. 2. By letting A — oo, we employ a
version of the Central Limit Theorem (CLT) that involves
random summand, and the limiting distribution allows us to
characterize E(oco) analytically. For large A’s, Gaussian ap-
proximation can be used to obtain estimates of F/(\). Perhaps
more importantly in practice, \. obtained by optimizing the
Gaussian approximation is close to the true optimal \.. We
evaluate the accuracy of such an approximation via numerical
evaluation and simulations.

B. Related Work

The problem of classical distributed detection has been
investigated in considerable detail. [5]. In the context of power
and bandwidth-constrained wireless sensor networks, large
deviation techniques have been used for the optimal design
of local quantization rules [6], [7]. We too use large deviation
techniques, but for the design of multiaccess communications.
Distributed detection in the presence of channel fading is
considered in [8], [9] when each user has a dedicated channel
to the fusion center. Distributed Estimation has been studied
under information theoretic setup. See [10] for a survey.

The problem of of distributed statistical inference on multi-
access channels are more recent [3], [4]. The transmission
scheme used is the so-called Type Based Multiple Access
(TBMA) proposed independently by Mergen and Tong [11],
[3] and by Liu and Sayeed [4]. The positive result of TBMA
is that, when there is no fading, the asymptotic performance
of TBMA (as the number of sensors approaches infinity) is
same as that when the fusion center has direct access to sensor
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observations. The negative result, however, is that when the
channel has zero mean fading, TBMA fails to be consistent.
Furthermore, these results apply only when the number of sen-
sors is deterministic. In [1], we proposed Type Based Random
Access (TBRA) as a multiaccess scheme incorporating random
number of sensors. We used large deviation approaches to
compare detection performance of TBRA with TBMA for non-
zero mean fading channels.

In [2], we employ TBRA in the context of distributed de-
tection while allowing the fading channels to have zero mean.
This scenario is relevant since in practice it may be difficult
to synchronize transmissions among geographically distributed
nodes to achieve phase coherency at the receiver. In this paper
we will focus on the problem of distributed estimation and also
unify the optimal strategies for both distributed detection and
estimation under a common framework.

II. MODEL AND PROBLEM FORMULATION
A. TBRA: Transceiver and Sufficient Statistics

For the estimation problem, we assume a non-random real
parameter # lying in some set A. As illustrated in Fig. 1,
the fusion center collects data in multiple time slots indexed
by . In each collection, there are IN; sensors involved in the
transmission, where [N; is a random variable with mean A\ and
Probability Mass Function (PMF) g(n, )\)é Pr(N; = n). We
assume that the sequence N; is IID.

In the " data collection, a sensor involved in the trans-
mission!, say sensor j, has measurement X,;e{l,---, M}
quantized to M levels. We assume that the sensor data (X;;)
are conditionally IID across time and sensors with PMF py(+).
In a vector notation,

Xi; M pg = (po(1), -, pa(M)).

In the " collection, the transmitter j encodes X ; to a certain
waveform and transmits it over a multiaccess fading channel.
As in TBMA, a set of M ortho-normal waveforms {¢x(t), k =
1,---, M} are used, each corresponding to a specific data
value. Specifically, if £ is the energy of the transmission, then
the signal transmitted by sensor j in collection ¢ is S; ;(t) =
\/ggbx ij (t) .

At the fusion center, assuming that there is no inter-
collection interference, the received signal is given by

N;
Yi(t) =Y HijSij(t—7i,) +Wi(t), i=1,--,1 (2)
j=1

where 7; ; are the different delays experienced by sensors?, the
noise W;(t) is assumed to be zero-mean and white Gaussian
with power density o2, and the channel fading coefficients®

IWithout loss of generality, we will only consider those sensors involved
in the transmission.

2Due to lack of synchronization, the delays experienced by each sensor
transmission in a data collection slot could be different.

3The results of this paper can be generalized to complex-valued channel
gains with minor changes.



(H;; € R) are IID with mean ,uHéE(Hiyj) and variance
J%{éVar(Hi7j). We define (transmitter) SNR by SNRé%.
Under the narrow-band signal assumption, the flat fading
approximation which neglects the time dispersion is valid and
therefore S; ;(t — 7; ;) ~ S; ;(t). Therefore

N;
Yi(t) =Y HijSij(t) + Wi(t), i=1,-.1 (3
j=1

The sufficient statistics {Y;} are generated from the bank of
filters matched to orthogonal basis {¢y(t)}. For " collection,

1>

1
Vi 2 2 [(0.00) 0 (B0, 0m()]

N;

Z H;jex,, + Wi,
j=1

“

where (Y;(:), ¢x(-)) is the output of the matched filter corre-
sponding to ¢ (t), e the unit vector with non-zero entry at
the k" position, and W; ~ (0, ;RI)

To see the intuition behind the coherence index - defined in

(1), we write explicitly the m" entry of Y; = [V 1,--- , Y m]"
N;

Yim =Y Hijlix, ,—m} + Wim, )
j=1

where 14 is the event indicator function. The extreme case is
when the channel is deterministic with H; ; = 1 (y = 00).
Transmissions from those sensors observing data value m add
up coherently, and Y; ,,, is the number of sensors that observe
data level m (plus noise), which gives rise to notion of type-
based transmission*. On the other hand, when v=0, (ug =
0), the transmissions add up non-coherently, and the mean of
Y; contains no information of the model.

B. Spatio-Temporal Tradeoff and Problem Formulation

The design of TBRA reduces to finding the optimal trans-
mission rate A that maximizes a performance metric E(\).
If the fusion center collects data using TBRA for [ slots, the
total mean number of transmissions is pé)\l, which is also
proportional to energy consumption. Fixing p, there is a spatio-
temporal tradeoff between the mean number of transmission
per slot and the total number of slots of data collection. Should
energy be allocated mostly to simultaneous transmission by
making A large? Or should we rely on taking more data
collections by choosing a large /. The optimal design of TBRA
is to achieve optimal tradeoff between A and [.

To this end, we need to characterize the mean square error
(MSE) of maximum likelihood estimation (MLE). However,
an explicit characterization is not tractable in our setup. We
thus examine the case when the total average number of

4Given Xi,; = w5, Ny = n; and the observation Y; = y;, in the
absence of noise, the type of z; ; is niyl [12], [13].
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transmissions p is large. We will optimize TBRA through
the asymptotic mean square error (MSE). We define the
performance metric as

E(M)2 lim

1
—_—. (6)
p=00 Var[,/p(Oyue — 0)]

which is equivalent to saying that the asymptotic MSE decays
as %. This will be justified in Section III. Maximizing the
performance metric F()) with respect to A is equivalent to
minimizing the asymptotic MSE.

For the detection problem, we consider two types of de-
tectors: Bayesian and Neyman-Pearson. Let P.(p, \) be the
detection error probability (either the miss detection prob-
ability of Neyman-Pearson detector or the average of miss
detection and false alarm probabilities in Bayesian setup). Here
the performance metrics are the detection error exponents
A

B2 — 1im L log P.(p, \),

p—00 p

)

We have used the same notation E()) in (6) and (7), since we
aim to unify the optimal strategies for detection and estimation.
We will justify this in Section III. Ultimately we seek

A« = argsup E(A). 8)
A

Although E(\) can be evaluated numerically for a given
statistical model and fading, it is of theoretical and practical
significance to establish that ), is finite. To this end, we need
to characterize F/(\) as A — oo and A — 0.

III. OPTIMAL TYPE-BASED RANDOM ACCESS
A. Asymptotic MSE of ML estimation
Given Y; IID, the ML estimator is given by,

l

Owe = arg %?/i{ Z; log fo(Y5). 9)

In the following theorem we characterize F/(\) in terms of
Fisher Information, based on the asymptotic efficiency of
MLE. The only trivial modification is a change in time index
to the total mean number of transmissions p.

Theorem 1 (Asymptotic Efficiency): Given mean number of
total transmissions p and mean transmission rate A, let
{Owe(p)}52; be a consistent sequence of roots of likelihood
equation. Under some regularity conditions, the ML estimator
is asymptotically efficient and therefore we can define the
performance metric EM'*(\, ) as

EME(X,0)2 lim ! = Ikig),

p—0o0 Var[\/ﬁ(éMLE(p) —0)]

(10)

SWe assume that 6 is identifiable.



where I (0) < oo is the Fisher Information of a single data
collection.
Proof: For asymptotic efficiency and related regularity condi-
tions, see [14], pp. 183-184.

For the detection problem, the expressions for F(\) under
Neyman Pearson and Bayesian Setup are given by

E0) 2 lim Llog P\ = 22Uwllfe)
p—0o0 P > N\
1
E®() 2~ lim ~log P2(p. ) = M
p—00

where Dx(fo,||fo,) is the Kullback-Leibler distance and
Cx(fo,, fo,) the Chernoff information between the two hy-
potheses. [12], [13].

B. Optimal Transmission Rate

While Theorem 1 provides the basis for defining the per-
formance metric E()), it says little about its behavior as a
function of A, especially if there exists an optimizing A. The
following Theorem gives the results for the two extreme cases:
v =0 and v = oo.

Theorem 2 (Existence of optimal \): Given mean number
of transmitting sensors A, let fp x(y) be the probability density
functions of matched filter output Y under 6. Assume that
Theorem 1 holds and in addition assume that the density
function fy » is differentiable with respect to A. Also, assume
that the PMF of N, g(n, A) is differentiable in \ and satisfies
the following properties,

;%9(7%)‘) = 1{n:0}7 (11)
. d
lim ag(n,)\) —alfp—o} +algp=1y, (12

where a is a constant and 1 4 is the event indicator function.
1) If the channel has zero-mean fading, i.e., ¥ = 0. Then

lim EM¥(),0) = lim E“(),0) = 1
lim E™(A,0) = lim E™5(A,0) =0,  (13)

which implies that there exists 0 < AJ* < oo such that

1
sup E}MLE()\7 0) = —I)\];/ILE (9)
A

= (14)
2) If channel is deterministic i.e., U%I =0 or v = o0, there
does not exist optimizing A that maximizes F()\) and
E™ (X, 0) =0\ (15)
as A — oo, where the notation ® means that \ is an
exponentially tight bound.®
Proof: See Appendix A. O
We have proven an analogous result for the detection
problem in [2]. The conditions in (11) and (12) essentially state

50(a(N)) = {b(\) : 0 < cra(N) < b(A) < caa(N), VA > Ao} for some
C1,C2, Ao > 0.
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that, at low A we either have none or utmost one transmission
( e.g.,Poisson Distribution). Also in practice, the regularity
conditions on the PDF fj  assumed in Theorem 2 are satisfied
by many well behaved density functions.

Theorem 2 establishes general shape of F(\) as shown in
Fig 2 for extreme values v = 0 and 7 = oo. Note that the role
of v in E(\) is embedded through density function fy »(y),
typically a continuous function of . Therefore, we can infer
the behavior of E(\) for very small and very large ~.

C. Asymptotic Distribution and Gaussian Approximation

A key step in proving Theorem 2 is the investigation of
E(X\) when A\ — oo. The idea is to use the continuity
argument coupled by using a version of the Central Limit
Theorem (CLT) involving random number of summands [15]
to characterize E/(\) as A — oc.

We shall focus in this section on the single collection
model, and evaluate the Fisher Information using the limiting
distribution as A — oo. For ease of notation, we drop the time
index ¢ in (4), and consider the model

N
Y => Hjex, +W,
j=1

(16)

where we have a random summand N with PMF g(n, \) and
mean E(NV) = A

Theorem 3 (Asymptotic distribution of Y): Assume that
the channel gains H;’s are i.i.d distributed with mean pp
and variance U%,, and the number of sensors N is distributed
according to PMF g(n, \) taking non-negative integral values
with mean \. Assume that

N
7i1>0 as A — oo.

When pg(j) > Oforall j € {1,..., M}, the shifted and scaled
matched filter output has the asymptotic normal distribution
according to

a7

Y — A\uape 4 9 .
———— = N(0,0%Dia as A\ — 00,

where Diag(pg) = diag(pe(1),- -+ ,po(M)).

Proof : See [2].

The assumption that % % 1 is valid for many practical sce-
narios, ( e.g.,the Poisson distribution and also the deterministic
case ). Since Y is asymptotically Gaussian, in large-) regime,
the detection or the estimation problem can be cast with

(18)

. 2
Y %N (uarpo A Diag(po) + 1) (19)
We now give the closed form expression for Fisher Information
I,.(0) of the asymptotic Gaussian distribution ( for a given 6)
and specialize the results for coherent and non-coherent chan-
nels respectively. Similar results for detection error exponents
can be found in [2].
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Lemma 1 (Fisher Information): Let o%{

variance, ~ the channel coherence index, SNR = 05—2

be the channel
be the

transmitter SNR. Denote p) (j )é%pg (7). The Fisher Informa-
tion I ,(6) is given by

M

2X2 SNR 0%, [Z

v Pp(5)?
Ao% SNRpg(5) + 1

I~,\ﬁ(0) =
a3 SNR py(5)* }

(0% SNRpo ) + 12 e

Jj=1

Proof: By substituting in the expression for Fisher Informa-
tion of Gaussian Distribution. m|

We now provide expression for F(\) as A — oo. We use
this result to draw conclusions on the existence of optimal \,.

Theorem 4 (Limiting properties): The Fisher Information
I,~(0) is a monotonically increasing function of coherence
index ~, average transmission rate A and transmitter SNR.
For finite ~y, the normalized Fisher Information EM“E(A,G)
converges to a finite limit proportional to coherence index y
as A — oo given by

hm EMLE A, 0) 2D

We now investigate the case when the channel is perfectly
coherent: 4 =1 and oy — 0 implying v — oo.
Theorem 5 (Coherent channels): In the absence of fading

M
lim EMF(),0) = 2ASNR > pj(j)*

og—0

(22)
j=1

To contrast the perfectly coherent case, we examine the case
when the channel is non-coherent, i.e., g = 0 (y = 0).
Interestingly, the dependency of Fisher Information on the
average transmission rate A, SNR, and channel variance U%,
can be summarized using a single parameter—the average
receiver SNR,

Gaussian Approx. Performance Metric vs.
Transmission Rate (SNR= 0db, 0'?_1 =1,60=0.8)

6 7 8 9 0 1 2 3 4 5 6 7 8 9

Fig. 5.
Transmission Rate. ( v = 0, a'?{ =1,6=0.8)

X2Ao% SNR. (23)

Theorem 6 (Non-coherent channels): For the non-coherent
channels (uz = 0), the Fisher Information of the limiting
distribution is a function of Xé)\cr%,SNR and satisfies the
following properties:

D I 18 a monotonically increasing function of .
2) As xy — oo, fx converges to a finite limit when pg(j) >
0, Vj=1,...,M.

3) Normalized functlon X has unique a maximum.

The proofs for Theorem 4, 5 and 6 can be derived by
evaluating (20). From a practical standpoint, the Gaussian
approximation via CLT gives a computationally tractable way
to approximate E()\) and therefore, the optimal A.. The
accuracy of such approximation of course depends on the
specific distributions, and we aim demonstrate it in Section IV.

IV. NUMERICAL RESULTS AND SIMULATIONS

In this section, we resort to numerical and simulation
techniques to validate the theories developed in this paper. The
channel fading is Gaussian H; ; ~' N(upg,0%) and number
of sensors involved in each transmission /V; is IID Poisson. We
consider estimation of Bernoulli distributed data at the sensors
with 0 € (0,1) as the mean.

Since CLT is applicable only in large-\ regime, to draw
conclusions for finite A we numerically evaluated the Fisher
Information. We found that the shapes are similar to detection
error exponent plots [2]. We also found that the true EM*()\, 6)
and EMF()\,0) from Gaussian approximation have similar
shapes and share the same trend with respect to A, v and
SNR.

Fig. 3 shows the plot of true EM*()\, 0) (without Gaussian
Approximation) for a zero mean fading channel. The existence
of an optimal A, is clearly seen in the plot. Fig. 4 and Fig. 5
show the behavior of EM()\,0) vs. A for different values
of coherence index and SNR. Fig. 4 has varying channel
coherence index v with a fixed SNR and Fig. 5 has varying
SNR for v = 0. The existence of A, is evident for small ~.
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V. CONCLUSIONS

In this paper, we focus on the communication aspect—
random access in particular—of distributed statistical inference
for large sensor networks. The main advance of this paper
is the unification of optimal strategies for both detection
and estimation under a common framework. By examining
a number of extreme cases, we are able to obtain a general
characterization of the performance metric for both detection
and estimation as illustrated in Fig. 2. From a practical stand-
point, using Gaussian approximation seems to give the correct
insight into an optimal design. Such a characterization is
a valuable guide, as a network designer pursues practical
solutions.

We have left several important problems open. We have
results on the existence of optimal A\, only for extreme values
of v i.e., 0 and oo. Although we conjecture the existence of
optimal A, for finite positive 7, with simulations confirming
such a behavior, we have not proven it in this paper. We have
also not dealt with the design of local quantization rule. A
“cross-layer” optimization of local quantization, communica-
tions and global inference should be of interest.

APPENDIX
A. Proof of Theorem 2

For the PMF of N, g(n,A), applying Taylor’s expansion for
A near zero, we have

g(0,\)~1—Xa and g¢g(1,)\) = Aa.
Define the conditional PDF of matched filter output Y given

N =0,1as

for(yIN =0)2uw(y),  foa(yIN =1)2he(y),

where w(-) is the distribution of White Gaussian noise, inde-
pendent of §. Marginalizing over N, for small A we have the
PDF of Y as

foa(y) = (1 = Aa)w(y) + Aahe(y).

Differentiating with respect to 6

0 0
%fe,,\(}’) ~ M%he(}’)-

From the definition of Fisher Information

EME(),0) =
Substituting for fp x(y)

9] 2 dy
Ao <%h9 (Y)) (1= Xa)w(y) + Aahg(y)

EME (), 0) = /

y
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Since fy A(y) is a continuous function of A and y, E™*(\, 6)
is continuous in A [16]. Therefore

lim EME(), 0) = 0.
A—0

For the case when A — oo, again from the continuity of
fox(y) we have

Jim EME(),0) = lim EME(N, 0).

Therefore we use the behavior of Fisher Information of
asymptotic normal distribution. Refer Theorem 4, 5 and 6.
O
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