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Abstract— This paper proves best known guarantees for exact
reconstruction of a sparse signalf from few non-adaptive uni-
versal linear measurements. We consider Fourier measurements
(random sample of frequencies off ) and random Gaussian
measurements. The method for reconstruction that has recently
gained momentum in the Sparse Approximation Theory is to
relax this highly non-convex problem to a convex problem, and
then solve it as a linear program. What are best guarantees
for the reconstruction problem to be equivalent to its convex
relaxation is an open question. Recent work shows that the
number of measurementsk(r, n) needed to exactly reconstruct
any r-sparse signalf of length n from its linear measurements
with convex relaxation is usually O(r polylog(n)). However,
known guarantees involve huge constants, in spite of very good
performance of the algorithms in practice. In attempt to reconcile
theory with practice, we prove the first guarantees for universal
measurements (i.e. which work for all sparse functions) with
reasonable constants. For Gaussian measurements,k(r, n) .
11.7 r

[

1.5 + log(n/r)
]

, which is optimal up to constants. For
Fourier measurements, we prove the best known boundk(r, n) =
O(r log(n) · log2(r) log(r log n)), which is optimal within the
log log n and log3 r factors. Our arguments are based on the
technique of Geometric Functional Analysis and Probability in
Banach spaces.

I. I NTRODUCTION

During the last two years, the Sparse Approximation Theory
benefited from a rapid development of methods based on the
Linear Programming. The idea was to relax a sparse recov-
ery problem to a convex optimization problem. The convex
problem can be further be rendered as a linear program, and
analyzed with all available methods of Linear Programming.

Convex relaxation of sparse recovery problems can be traced
back in its rudimentary form to mid-seventies; references to
its early history can be found in [26]. With the development
of fast methods of Linear Programming in the eighties, the
idea of convex relaxation became truly promising. It was put
forward most enthusiastically and successfully by Donoho
and his collaborators since the late eighties, starting from the
seminal paper [15] (see Theorem 8, attributed there to Logan,
and Theorem 9). There is extensive work being carried out,
both in theory and in practice, based on the convex relaxation
[8], [14], [16], [17], [13], [19], [24], [25], [26], [11], [9], [10],
[12], [2], [1], [4], [5], [23], [3], [6], [20].

To have theoretical guarantees for the convex relaxation
method, one needs to show thatthe sparse approximation

problem is equivalent to its convex relaxation. Proving this
presents a mathematical challenge. Known theoretical guar-
antees work only for random measurements (e.g. random
Gaussian and Fourier measurements). Even when there is a
theoretical guarantee, it involves intractable or very large con-
stants, far worse than in the observed practical performances.

In this paper, we substantially improve best known theo-
retical guarantees for random Gaussian and Fourier (and non-
harmonic Fourier) measurements. For the first time, we are
able to prove guarantees with reasonable constants (although
only for Gaussian measurements). Our proofs are based on
methods of Geometric Functional Analysis, Such methods
were recently successfully used for related problems [23],[20].
As a result, our proofs are reasonably short (and hopefully,
transparent).

In Section II, we state the sparse reconstruction problem and
describe the convex relaxation method. A guarantee of its cor-
rectness is a very generalrestricted isometry conditionon the
measurement ensemble, due to Candes and Tao ([5], see [3]).
Under this condition, the reconstruction problem with respect
to these measurements is equivalent to its convex relaxation.
In Sections III and IV, we improve best known guarantees
for the sparse reconstruction from random Fourier (and non-
harmonic Fourier) measurements and Gaussian measurements
(Theorem 3.1 and 4.1 respectively).

II. T HE SPARSERECONSTRUCTIONPROBLEM AND ITS

CONVEX RELAXATION

We want to reconstruct an unknown signalf ∈ Cn from
linear measurementsΦf ∈ Ck, whereΦ is some knownk×n
matrix, called themeasurement matrix. In the interesting case
k < n, the problem is underdetermined, and we are interested
in the sparsest solution. We can state this as the optimization
problem

minimize ‖f∗‖0 subject toΦf∗ = Φf, (1)

where‖f‖0 = |suppf | is the number of nonzero coefficients
of f . This problem is highly non-convex. So we will consider
its convex relaxation:

minimize ‖f∗‖1 subject toΦf∗ = Φf, (2)
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where ‖f‖p denotes theℓp norm throughout this paper,
(
∑n

i=1
|fi|p)1/p. Problem (2) can be classically reformulated

as thelinear program

minimize
n

∑

i=1

ti subject to− t ≤ f∗ ≤ t, Φf∗ = Φf,

which can be efficiently solved using general or special
methods of Linear Programming. Then the main question is:

Under what conditions onΦ are problems(1) and
(2) equivalent?

In this paper, we will be interested in theexact reconstruction,
i.e. we expect that the solutions to (1) and (2) are equal to each
other and tof . Results for approximate reconstruction can be
derived as consequences, see [4].

For exact reconstruction to be possible at all, one has to
assume that the signalf is r-sparse, that issupp(f) ≤ r,
and that the number of measurementsk = k(r, n) has to
be at least twice the sparsityr. Our goal will be to find
sufficient conditions (guarantees) for the exact reconstruction.
The number of measurementsk(r, n) should be kept as small
as possible. Intuitively, the number of measurements should
be of the order ofr, which is the ‘true’ dimension off , rather
than the nominal dimensionn.

Various results that appeared over the last two years demon-
strate that many natural measurement matricesΦ yield exact
reconstruction, with the number of measurementsk(r, n) =
O(r · polylog(n)), see [2], [4], [5], [23]. In Sections III and
IV, we improve best known estimates onk for Fourier (and,
more generally, nonharmonic Fourier) and Gaussian matrices
respectively.

A general sufficient condition for exact reconstruction is
the restricted isometry conditionon Φ, due to Candes and
Tao ([5], see [3]). It roughly says that the matrixΦ acts as
an almost isometry on allO(r)-sparse vectors. Precisely, we
define the restricted isometry constantδr to be the smallest
positive number such that the inequality

C(1 − δr)‖x‖2
2 ≤ ‖ΦT x‖2

2 ≤ C(1 + δr)‖x‖2
2 (3)

holds for some numberC > 0 and for all x and all subsets
T ⊂ {1, . . . , n} of size|T | ≤ r, whereΦT denotes thek×|T |
matrix that consists of the columns ofΦ indexed byT . The
following theorem is due to Candes and Tao ([5], see [3]).

Theorem 2.1 (Restricted Isometry Condition): LetΦ be a
measurement matrix whose restricted isometry constant sat-
isfies

δ3r + 3δ4r ≤ 2. (4)

Let f be anr-sparse signal. Then the solution to the linear
program (2) is unique and is equal tof .

This theorem says that under the restricted isometry con-
dition (4) on the measurement matrixΦ, the reconstruction
problem (1) is equivalent to its convex relaxation (2) for all
r-sparse functionsf .

A problem with the use of Theorem 2.1 is that the restricted
isometry condition (4) is usually difficult to check. Indeed, the

number of setsT involved in this condition is exponential inr.
As a result, no explicit construction of a measurement matrix
is presently known that obeys the restricted isometry condition
(4). All known constructions of measurement matrices are
randomized.

III. R ECONSTRUCTION FROMFOURIER MEASUREMENTS

Our goal will be to reconstruct anr-sparse signalf ∈ C
n

from its discrete Fourier transform evaluated atk = k(r, n)
points. These points will be chosen at random and uniformly
in {0, . . . , n − 1}, forming a setΩ.

The Discrete Fourier transform̂f = Ψf is defined by the
DFT matrix Ψ with entries

Ψω,t =
1√
n

exp(−i2πωt/n), ω, t ∈ {0, . . . , n − 1}.

So, our measurement matrixΦ is the submatrix ofΨ con-
sisting of random rows (with indices inΩ). To be able to
apply Theorem 2.1, it is enough to check that the restricted
isometry condition (4) holds for the random matrixΦ with
high probability. The problem is – what is the smallest number
of rows k(r, n) of Φ for which this holds? With that number,
Theorem 2.1 immediately implies the following reconstruction
theorem for Fourier measurements:

Theorem 3.1 (Reconstruction from Fourier measurements):
A random setΩ ∈ {0, . . . , n − 1} of sizek(r, n) satisfies the
following with high probability. Letf be anr-sparse signal
in Cn. Thenf can be exactly reconstructed from the values
of its Fourier transform onΩ as a solution to the linear
program

minimize‖f∗‖1 subject tof̂∗(ω) = f̂(ω), ω ∈ Ω.

The central remaining problem, what is the smallest value
of k(r, n), is still open. The best known estimate is due to
Candes and Tao [4]:

k(r, n) = O(r log6 n). (5)

The conjectured optimal estimate would beO(r log n), which
is known to hold for nonuniveral measuremets, i.e. forone
sparse signalf and for a random setΩ [2].

In this paper, we improve on the best known bound (5):

Theorem 3.2 (Sample size): Theorem 3.1 holds with

k(r, n) = O(r log(n) · log2(r) log(r log n)).

The dependence onn is thus optimal within thelog log n
factor and the dependence onr is optimal within thelog3 r
factor. So, our estimate is especially good for smallr, but our
estimate always yieldsk(r, n) = O(r log4 n).

Remark 3.3:Our results hold for transforms more general
than the discrete Fourier transform. One can replace the DFT
matrix Ψ by any orthogonal matrix with entries of magnitude
O(1/

√
n). Theorems 3.1 and 3.2 hold for any such matrix.

In the remainder of this section, we prove Theorem 3.2. Let
Ω be a random subset of{0, . . . , n} of sizek. Recall that the



measurement matrixΦ that consists of the rows ofΨ whose
indices are inΩ). In view of Theorem 3, it suffices to prove
that the restricted isometry constantδr of Φ satisfies

Eδr ≤ ε (6)

whenever

k ≥ C
(r log n

ε2

)

log
(r log n

ε2

)

log2 r, (7)

whereε > 0 is arbitrary, andC is some absolute constant.
Let y1, . . . , yk denote the rows of the matrixΨ. Dualizing

(3) we see that (6) is equivalent to the following inequality:

E sup
|T |≤r

∥

∥

∥
idCT − C′

∑

i∈Ω

yT
i ⊗ yT

i

∥

∥

∥
≤ ε

with C′ = 1/
√

C. Here and thereafter, for vectorsx, y ∈
Cn the tensorx ⊗ y is the rank-one linear operator given by
(x⊗ y)(z) = 〈x, y〉z, where〈·〉 is the canonical inner product
on Cn. The notationxT stands for the restriction of a vector
x on its coordinates in the setT . The operatoridCT in (8)
is the identity onCT , and the norm is the operator norm for
operators onℓT

2 .
The orthogonality ofΨ can be expressed asidCn =

∑n−1

i=0
yi ⊗ yi. We shall re-normalize the vectorsyi, letting

xi =
√

n yi−1. Now we have‖xi‖∞ = O(1) for all i. The
proof has now reduced to the following probabilistic statement,
which we interpret as a law of large numbers for random
operators.

Theorem 3.4 (Uniform Operator Law of Large Numbers):
Let x1, . . . , xn be vectors in Cn with uniformly
bounded entries:‖xi‖∞ ≤ K for all i. Assume that
idCn = 1

n

∑n
i=1

xi ⊗ xi. Let Ω be a random subset of
{1, . . . , n} of sizek. Then

E sup
|T |≤r

∥

∥

∥
idCT − 1

k

∑

i∈Ω

xT
i ⊗ xT

i

∥

∥

∥
≤ ε (8)

providedk satisfies(7) (with constantC that may depend on
K).

Theorem 3.4 is proved by the techniques developed in
Probability in Banach spaces. The general roadmap is similar
ton [21], [22]. We first observe that

E
1

k

∑

i∈Ω

xT
i ⊗ xT

i =
1

n

n
∑

i=1

xT
i ⊗ xT

i = idCn ,

so the random operator whose norm we estimate in (8) has
mean zero. Then the standard symmetrization (see [27] Lemma
6.3) implies that the left-hand side of (8) does not exceed

2 E sup
|T |≤r

∥

∥

∥

1

k

∑

i∈Ω

εi xT
i ⊗ xT

i

∥

∥

∥

where(εi) are independent symmetric{−1, 1}-valued random
variables; also (jointly) independent ofΩ. Then the conclusion
of Theorem 3.4 will be easily deduced from the following
lemma.

Lemma 3.5:Let x1, . . . , xk, k ≤ n, be vectors inCn with
uniformly bounded entries,‖xi‖∞ ≤ K for all i. Then

E sup
|T |≤r

∥

∥

∥

k
∑

i=1

εi xT
i ⊗ xT

i

∥

∥

∥
≤ k1 sup

|T |≤r

∥

∥

∥

k
∑

i=1

xT
i ⊗ xT

i

∥

∥

∥

1
2

(9)

wherek1 ≤ C1(K)
√

r log(r)
√

log n
√

log k.

Let us show how Lemma 3.5 implies Theorem 3.4. We first
condition on a choice ofΩ and apply Lemma 3.5 forxi, i ∈ Ω.
Then we take the expectation with respect toΩ. We then use
the a consequence of Hölder inequality,E(|X | 12 ) ≤ (E|X |) 1

2

and the triangle inequality. Let us denote the left hand sideof
(8) by E. We obtain:

E ≤ 2k1√
k

E sup
|T |≤n

∥

∥

∥

1

k

∑

i∈Ω

xT
i ⊗ xT

i

∥

∥

∥

1
2 ≤ 2k1√

k
(E + 1)

1
2 .

It follows that E ≤ C2
2k1√

k
, provided that 2k1√

k
= O(1).

Theorem 3.4 now follows from our choice ofk = k(r, n).

Hence it is only left to prove Lemma 3.5. Throughout the
proof, Bn

p andBT
p denote the unit ball of the norm‖ · ‖p on

Cn. To this end, we first replace Bernoulli r.v.’sεi by standard
independent normal random variablesgi, using a comparison
principle (inequality (4.8) in [27]). Then our problem becomes
to bound the Gaussian process, indexed by the union of the
unit Euclidean ballsBT

2 in CT for all subsetsI of {1, . . . , n}
of size at mostr. We apply Dudley’s inequality (Theorem
11.17 in [27]), which is a general upper bound on Gaussian
processes. Let us denote the left hand side of (8) byE1. We
obtain:

E1 ≤ C3E sup
|T |≤r

∥

∥

∥

k
∑

i=1

gi xT
i ⊗ xT

i

∥

∥

∥

= C3E sup
|T |≤r

x∈BT

2

∣

∣

∣

k
∑

i=1

gi〈xi, x〉2
∣

∣

∣

≤ C4

∫ ∞

0

log1/2 N
(

∪|T |≤r BT
2 , δ, u

)

du,

where N(Z, δ, u) denotes the minimal number of balls of
radiusu in metric δ centered in points ofZ, needed to cover
the setZ. The metricδ in Dudley’s inequality is defined by
the Gaussian process, and in our case it is

δ(x, y) =
[

M
∑

i=1

(

〈xi, x〉2 − 〈xi, y〉2
)2

]
1
2

≤
[

k
∑

i=1

(

〈xi, x〉 + 〈xi, y〉
)2

]
1
2

max
i≤k

|〈xi, x − y〉|

≤ 2 max
|T |≤r

z∈BT

2

[

k
∑

i=1

〈xi, z〉2
]

1
2

max
i≤k

|〈xi, x − y〉|

= 2R max
i≤k

|〈xi, x − y〉|,



where

R := sup
|T |≤r

∥

∥

∥

k
∑

i=1

xT
i ⊗ xT

i

∥

∥

∥

1
2

.

Hence

E1 ≤ C5R
√

r

∫ ∞

0

log1/2 N
( 1√

r
Dr,n

2 , ‖ · ‖X , u
)

du. (10)

Here

Dr,n
p =

⋃

|T |≤r

BT
p , ‖x‖X = max

i≤k
|〈xi, x〉|.

We will use containments

1√
r
Dr,n

2 ⊆ Dr,n
1 ⊆ KBX , Dr,n

1 ⊆ Bn
1 , (11)

whereBX denotes the unit ball of the norm‖·‖X . The second
containment follows from the uniform boundedness of(xi).
We can thus replace1√

r
Dr,n

2 in (10) byDr,n
1 . Comparing (10)

to the right hand side of (9) we see that, in order to complete
the proof of Lemma 3.5, it suffices to show that
∫ K

0

log1/2 N
(

Dr,n
1 , ‖ · ‖X , u

)

du ≤ C6 log(r)
√

log n
√

log k,

(12)
with C6 = C6(K). To this end, we will estimate the covering
numbers in this integral in two different ways. For bigu, we
will just use the second containment in (11), which allows us
to replaceDr,n

1 by Bn
1 .

Lemma 3.6:Let x1, . . . , xk, k ≤ n, be vectors as in Lemma
3.5. Then for allu > 0 we have

N(Bn
1 , ‖ · ‖X , u) ≤ (2n)m,

wherem = C7K
2 log(k)/u2.

Proof: We use the empirical method of Maurey. Fix a
vector y ∈ Bn

1 . Define a random vectorZ ∈ Rn that takes
values (0, . . . , 0, sign(y(i)), 0, . . . , 0) with probability |y(i)|
each,i = 1, . . . , n (all entries of that vector are zero except
i-th). Heresign(z) = z/|z|, wheneverz 6= 0, and0 otherwise.
Note thatEZ = y. Let Z1, . . . , Zm be independent copies of
Z. Using symmetrization as before, we see that

E3 := E

∥

∥

∥
y − 1

m

m
∑

j=1

Zj

∥

∥

∥

X
≤ 2

m
E

∥

∥

∥

m
∑

j=1

εjZj

∥

∥

∥

X
.

Now we condition on a choice of(Zj) and take the expectation
with respect to random signs(εj). Using comparison to
Gaussian variables as before, we obtain

E4 := E

∥

∥

∥

m
∑

j=1

εjZj

∥

∥

∥

X
≤ C7E

∥

∥

∥

m
∑

j=1

gjZj

∥

∥

∥

X

= C7E max
i≤k

∣

∣

∣

m
∑

j=1

gj〈Zj , xi〉
∣

∣

∣
.

For eachi, γi :=
∑m

j=1
gj〈Zj , xi〉 is a Gaussian random

variable with zero mean and with variance

σi =
(

m
∑

j=1

|〈Zj , xi〉|2
)1/2 ≤ K

√
m,

since|〈Zj , xi〉| ≤ ‖xi‖∞ ≤ K. Using a simple bound on the
maximum of Gaussian random variables (see (3.13) in [27]),
we obtain

E4 ≤ C7E max
i≤k

|γi| ≤ C8

√

log k max
i≤k

σi ≤ C8

√

log kK
√

m.

Taking the expectation with respect to(Zj) we obtain

E3 ≤ 2

m
E(E4) ≤

2C8K
√

log k√
m

.

With the choice ofm made in the statement of the lemma, we
conclude thatE3 ≤ u. We have shown that for everyy ∈ Bn

1 ,
there exists az ∈ Cn of the formz = 1

m

∑m
j=1

Zj such that
‖y − z‖X ≤ u. EachZj takes2n values, soz takes(2n)m

values. HenceBn
1 can be covered by at(2n)m balls of norm

‖ · ‖X of radiusu. A standard argument shows that we can
assume that these balls are centered in points ofBn

1 . This
completes the proof of Lemma 3.6.

For small u, we will use a simple volumetric estimate.
The diameter ofBr

1 considered as a set inCn is at most
K with respect to the norm‖ · ‖X (this was stated as the
last containment in (11)). It follows thatN(Br

1 , ‖ · ‖, u) ≤
(1 + 2K/u)r for all r > 0, see (5.7) in [Pi]. The setDr,n

1

consists ofd(r, n) =
∑r

j=1

(

n
i

)

balls of formBT
1 , thus

N
(

Dr,n
1 , ‖ · ‖X , u

)

≤ d(n, r)(1 + 2K/u)r. (13)

Now we combine the estimate of the covering number
N(u) = log1/2 N

(

Dr,n
1 , ‖ · ‖X , u

)

of Lemma 3.6, and the
volumetric estimate (13), to bound the integral in (12). Using
Stirling’s approximation, we see thatd(r, n) ≤ (C9n/r)r.
Thus

N(u) ≤ C10

√
r
[
√

log(n/r) +
√

log(1 + 2/u)
]

=: N1(u),

N(u) ≤ C10

u

√

log k
√

log n =: N2(u),

whereC10 = C10(K). Then we bound the integral in (12) as

∫ K

0

N(u) du ≤
∫ A

0

N1(u) du +

∫ K

A

N2(u) du

≤ C11A
√

r
[
√

log(n/r) + log(1 + 2/A)
]

+ C11 log(1/A)
√

log k
√

log n,

where C11 = C11(K). ChoosingA = 1/
√

r, we conclude
that the integral in (12) is at most

√

log(n/r) + log r +
log(r)

√
log k

√
log n. This proves (12), which completes the

proof of Lemma 3.5 and thus of Theorems 3.4 and 3.2.



IV. RECONSTRUCTION FROMGAUSSIAN MEASUREMENTS

Our goal will be to reconstruct anr-sparse signalf ∈ R
n

from k = k(r, n) Gaussian measurements. These are given
by Φf ∈ Rk, whereΦ is a k × n random matrix (‘Gaussian
matrix’ in the sequel), whose entries are independentN(0, 1)
random variables. The reconstruction will be achieved by
solving the linear program (2).

The problem again is to find the smallest number of mea-
surementsk(r, n) for which, with high probability, we have
an exact reconstruciton of everyr-sparse signalf from its
measurementsΦf? It has recently been shown in [5], [23],
[3] that

k(r, n) = O(r log(n/r)), (14)

and was extended in [20] to sub-gaussian measurements.
This is asymptotically optimal. However, the constant factor
implicit in (14) has not been known; previous proofs of
(14) yield unreasonably weak constants (of order2, 000 and
higher). In fact, there has not been known any theoretical
guarantees with reasonable constants for Linear Programming
based reconstructions. So, there is presently a gap between
theoretical guarantees and good practical performance of re-
construction (2) (see e.g. [3]). Here we shall prove a first
practically reasonable guarantee of the form (14):

k(r, n) ≤ c1r
[

c2 + log(n/r)
]

(1 + o(1)), (15)

c1 = 6 + 4
√

2 ≈ 11.66, c2 = 1.5.

Theorem 4.1 (Reconstruction from Gaussian measurements):
A k × n Gaussian matrixΦ with k > k(r, n) satisfies the
following with probability

1 − 3.5 exp
(

−
(
√

k −
√

k(r, n)
)2

/18
)

.

Let f be an r-sparse signal inR
n. Thenf can be exactly

reconstructed from the measurementsΦf as a unique solution
to the linear program(2).

Our proof of Theorem 4.1 is direct, we will not use
the Restricted Isometry Theorem 2.1. The first part of this
argument follows a general method of [20]. One interprets the
exact reconstruction as the fact that the (random) kernel ofΦ
misses the cone generated by the (shifted) ball ofℓ1. Then
one embeds the cone in a universal setD, which is easier to
handle, and proves that the random subspace does not intersect
D. However, to obtain good constants as in (15), we will need
to (a) improve the constant of embedding intoD from [20],
and (b) use Gordon’s Escape Through the Mesh Theorem [18],
which is tight in terms of constants. In Gordon’s theorem, one
measures the size of a setS in Rn by its Gaussian width

w(D) = E sup
x∈S

〈g, x〉,

where g is a random vector inRn whose components are
independentN(0, 1) random variables (Gaussian vector). The
following is Gordon’s theorem [18].

Theorem 4.2 (Escape Through the Mesh (Gordon)): LetS
be a subset of the unit Euclidean sphereSn−1 in Rn. LetY be
a random(n−k)-dimensional subspace ofRn, distributed uni-
formly in the Grassmanian with respect to the Haar measure.
Assume thatw(S) >

√
k. ThenY ∩S = ∅ with probability at

least

1 − 3.5 exp
(

−
(

k/
√

k + 1 − w(S)
)2

/18
)

.

We will now prove Theorem 4.1. First note that the function
f is the unique solution of (2) if and only if0 is the unique
solution of the problem

minimize ‖f − g∗‖1 subject toΦg∗ ∈ Ker(Φ) =: Y. (16)

Y is a(n−k)-dimensional subspace ofRn. Due to the rotation
invariance of the Gaussian random vectors,Y is distributed
uniformly in the GrassmanianGn−k,n of (n−k)-dimensional
subspaces ofRn, with respect to the Haar measure.

Now, 0 is the unique solution to (16) if and only if0 is
the unique metric projection off onto the subspaceY in the
norm ‖ · ‖1. This in turn is equivalent to the fact that0 is the
unique contact point between the subspaceY and the ball of
the norm‖ · ‖1 centered atf :

(f + ‖f‖1B
n
1 ) ∩ Y = {0}. (17)

(Recall thatBn
p is the unit ball of the norm‖ · ‖p.) Let Cf be

the cone inRn generated by the setf + ‖f‖1B
n
1 (the cone of

a setA ∈ Rn is defined as{ta | a ∈ A, t ∈ R+}). Then the
statement that (17) holds for allr-sparse functionsf is clearly
equivalent to

Cf ∩ Y = {0} for all r-sparse functionsf. (18)

We can represent the coneCf as follows. Let

T + = {i | f(i) > 0}, T− = {j | f(i) < 0}, T = T + ∪ T−.

Then

Cf =
{

t ∈ R
n |

∑

i∈T−

t(i) −
∑

i∈T+

t(i) +
∑

i∈T c

|t(i)| ≤ 0
}

.

We will now bound the coneCf by a universal set, which does
not depend onf .

Lemma 4.3:Consider the spherical part of the cone,Kf =
Cf ∩ Sn−1. ThenKf ⊂ (

√
2 + 1)D, where

D = conv{x ∈ Sn−1 | |supp(x)| ≤ r}.
Proof: Fix a pointx ∈ C ∩ Sn−1. We have

∑

i∈T

|x(i)| ≤
√

|I| ≤ √
r,

∑

i∈T c

|x(i)| ≤
∑

i∈T

|x(i)| ≤ √
r.

The norm‖ ·‖D on Rn whose unit ball isD can be computed
as

‖x‖D =

L
∑

l=1

(

∑

i∈Il

(x(i)∗)2
)1/2

,

whereL = ⌈n/r⌉, Il = {r(l − 1) + 1, . . . , rl}, for l < L,
IL = {r(L − 1) + 1, . . . , n}, and(x(i)∗) is a non-decreasing
rearrangement of the sequence(|x(i)|).



Set F = F (x) = {i | |x(i)| ≥ 1/
√

r}. Sincex ∈ Sn−1,
we have|F | ≤ r. Hence, for anyx ∈ K there exists a set
E = E(x) ⊂ {1, . . . , m}, which consists of2r elements and
such thatE ⊇ F ∪ I. Therefore,x can be represented as
x = x′+x′′ so thatsupp(x′) ⊆ E, ‖x‖2 ≤ 1, supp(x′′) ⊆ Ec,
‖x′′‖∞ ≤ 1/

√
r. Set

VE = BE
2 ×

(√
rBEc

1 ∩ 1√
r
BEc

∞

)

.

Then the above argument shows thatKf ⊂ ⋃

|E|=2r VE =: W.
The maximum of‖x‖D over x ∈ W is attained at the

extreme points of the setsVE , which have the formx = x′ +
x′′, wherex′ ∈ SE, andx′′ has coordinates 0 and±1/

√
r with

r non-zero coordinates. Notice that since|supp(x′)| ≤ 2r,
‖x′‖D ≤

√
2‖x′‖2. Thus, for any extreme pointx of VE ,

‖x‖D ≤ ‖x′‖D + ‖x′′‖D ≤
√

2‖x′‖2 + ‖x′′‖2 ≤
√

2 + 1.

The second inequality follows fromsupp(x′) ≤ 2r and
supp(x′′) = r. This completes the proof of the lemma.

To use Gordon’s escape through the mesh theorem, we have
to estimate the Gaussian width ofD.

Lemma 4.4:

w(D) ≤
√

2r log(e3/2n/r)(1 + o(1)).

Proof: By definition,

w(D) = sup
|J|=r

(

∑

i∈J

|g(i)|2
)1/2

.

Let p > 1 be a number to be chosen later. By Hölder’s
inequality, we have

w(D) ≤ E

(

∑

|J|=r

(

∑

i∈J

|g(i)|2
)p/2)1/p

≤
(

n

r

)1/p
(

E

(

r
∑

i=1

|g(i)|2
)p/2)1/p

≤
(en

r

)r/p(

2p/2 · Γ(p/2 + r/2)

Γ(r/2)

)1/p

.

By the Stirling’s formula,

2p/2 · Γ(p/2 + r/2)

Γ(r/2)
=

(

1 +
p

r

)
r+1

2

(

p + r

e

)p/2

(1 + o(1)).

Therefore,w(D) ≤
(

en
r

)r/p (

p+r
e

)1/2
(1 + o(1)). Now set

p = 2r log( en
r ). Then

w(D) ≤ (p + r)1/2(1 + o(1)) =

√

2r log
e3/2n

r
(1 + o(1)).

To deduce (18) we defineS =
⋃

f Kf , where the union is
over all r-sparse functionsf . Then (18) is equivalent to

S ∩ Y = ∅. (19)

Lemma 4.3 implies thatS ⊆ (
√

2+1)D. Then by Lemma 4.4,

w(S) ≤ (
√

2 + 1)w(D) = (1 − o(1))
√

k(r, n).

Then (19) follows Gordon’s Theorem 4.2. This completes the
proof of Theorem 4.1.
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