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Abstract— This paper proves best known guarantees for exact
reconstruction of a sparse signalf from few non-adaptive uni-
versal linear measurements. We consider Fourier measuremés
(random sample of frequencies of f) and random Gaussian
measurements. The method for reconstruction that has recely
gained momentum in the Sparse Approximation Theory is to
relax this highly non-convex problem to a convex problem, ad
then solve it as a linear program. What are best guarantees
for the reconstruction problem to be equivalent to its conve
relaxation is an open question. Recent work shows that the
number of measurementsk(r,n) needed to exactly reconstruct
any r-sparse signalf of length n from its linear measurements
with convex relaxation is usually O(r polylog(n)). However,
known guarantees involve huge constants, in spite of very gd
performance of the algorithms in practice. In attempt to reconcile
theory with practice, we prove the first guarantees for univesal
measurements (i.e. which work for all sparse functions) wh
reasonable constants. For Gaussian measurement&(r,n) <
11.7r[1.5 + log(n/r)], which is optimal up to constants. For
Fourier measurements, we prove the best known bounél(r, n) =
O(rlog(n) - log2gr) log(rlogn)), which is optimal within the
loglogn and log® r factors. Our arguments are based on the
technique of Geometric Functional Analysis and Probabiliy in
Banach spaces.
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problem is equivalent to its convex relaxatioBroving this
presents a mathematical challenge. Known theoretical-guar
antees work only for random measurements (e.g. random
Gaussian and Fourier measurements). Even when there is a
theoretical guarantee, it involves intractable or vergéacon-
stants, far worse than in the observed practical perforemnc

In this paper, we substantially improve best known theo-
retical guarantees for random Gaussian and Fourier (and non
harmonic Fourier) measurements. For the first time, we are
able to prove guarantees with reasonable constants (ghhou
only for Gaussian measurements). Our proofs are based on
methods of Geometric Functional Analysis, Such methods
were recently successfully used for related problems [28],

As a result, our proofs are reasonably short (and hopefully,
transparent).

In Sectiorfl, we state the sparse reconstruction problein an
describe the convex relaxation method. A guarantee of its co
rectness is a very genenalstricted isometry conditionn the
measurement ensemble, due to Candes and Tao ([5], see [3]).
Under this condition, the reconstruction problem with estp
to these measurements is equivalent to its convex relaxatio
In SectiondIll and_1V, we improve best known guarantees

During the last two years, the Sparse Approximation Theofyr the sparse reconstruction from random Fourier (and non-
benefited from a rapid development of methods based on #gmonic Fourier) measurements and Gaussian measurements
Linear Programming. The idea was to relax a sparse recq¢¥heoren 31 anf4.1 respectively).
ery problem to a convex optimization problem. The convex
problem can be further be rendered as a linear program, andi. THE SPARSERECONSTRUCTIONPROBLEM AND ITS
analyzed with all available methods of Linear Programming. CONVEX RELAXATION

Convex relaxation of sparse recovery problems can be traced

back in its rudimentary form to mid-seventies; referenaes
its early history can be found in [26]. With the developme

t We want to reconstruct an unknown signjale C" from

dinear measurementgf € C*, where® is some knowrk x n

of fast methods of Linear Programming in the eighties tHaatrix, called themeasurement matrixn the interesting case

idea of convex relaxation became truly promising. It was p

¢t < n, the problem is underdetermined, and we are interested

forward most enthusiastically and successfully by DonoHB the sparsest solution. We can state this as the optirizati

and his collaborators since the late eighties, starting ftioe

seminal paper [15] (see Theorem 8, attributed there to Logan
and Theorem 9). There is extensive work being carried out,

problem

minimize || f*||o subject to®f* = ®f, Q)

both in theory and in practice, based on the convex relaxatighere|| ||, = |supp/f| is the number of nonzero coefficients

8], [14], [16], [17], [13], [19], [24], [25], [26], [11], [9, [10],
[12], [2], [1], [4]. [8], [23], [3]. [6], [20].

To have theoretical guarantees for the convex relaxati
method, one needs to show thide sparse approximation

of f. This problem is highly non-convex. So we will consider

its convex relaxation
on

minimize || f*||1 subject to®f* = ®f, 2
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where || f||, denotes thef, norm throughout this paper, number of set§” involved in this condition is exponential in
>or, |f:|")'/P. Problem [[R) can be classically reformulated\s a result, no explicit construction of a measurement matri

as thelinear program is presently known that obeys the restricted isometry dardi
n @). All known constructions of measurement matrices are
minimize Zti subjectto —t < f* <t, f* = Df, randomized.
=1

) . ) . 1ll. RECONSTRUCTION FROMFOURIER MEASUREMENTS
which can be efficiently solved using general or special

methods of Linear Programming. Then the main question is: OUr 9oal will be to reconstruct arrsparse signaf € C"
Under what conditions orb are problems{ll) and from its discrete Fourier transform evaluatedkat= k(r,n)
@) equivalent? points. These points will be chosen at random and uniformly

) , , , . in{0,...,n—1}, forming a set.

_In this paper, we will be mte_rested in tlexact reconstruction The Discrete Fourier transformi — @ f is defined by the
i.e. we expect that the solutions fd (1) aiHl (2) are equal¢b €8ET matrix ¥ with entries
other and tof. Results for approximate reconstruction can be 1
derived as consequences, see [4]. U, = —exp(—i2nwt/n), w,t€{0,...,n—1}.

For exact reconstruction to be possible at all, one has to Vn
assume that the signdl is r-sparse, that isupp(f) < r, So, our measurement matrik is the submatrix of& con-
and that the number of measuremehts= k(r,n) has to sisting of random rows (with indices if). To be able to
be at least twice the sparsity. Our goal will be to find apply Theoreni2]1, it is enough to check that the restricted
sufficient conditions (guarantees) for the exact reconstm. isometry condition[{4) holds for the random matidx with
The number of measuremerité-, n) should be kept as small high probability. The problem is — what is the smallest numbe
as possible. Intuitively, the number of measurements showf rows k(r,n) of ® for which this holds? With that number,
be of the order of, which is the ‘true’ dimension of, rather TheorenZll immediately implies the following reconstimict
than the nominal dimension. theorem for Fourier measurements:

Various results that appeared over the last two years demon:- . . )
strate that many natural measurement matribegield exact Theorem 3.1 (Reconstruction from Fourier measurements):

reconstruction, with the number of measuremektisn) — ** random set2 € {0,...,n — 1} of sizek(r, n) satisfies the
O(r - polylog(n)), see [2], [4], [5], [23]. In SectionElll and followmg with high probability. Letf be anr-sparse signal
V1 we improve best known estimates @énfor Fourier (and n Cn The_nf can be exactly reconstruct_ed from the_values
more generally, nonharmonic Fourier) and Gaussian matricoef its Fourier transform on(2 as a solution to the linear
respectively. program

A general sufficient condition for exact reconstruction is minimize|| f*||; subject tof*(w) = f(w)7 w e .
the restricted isometry conditiomn ®, due to Candes and o )
Tao ([5], see [3]). It roughly says that the matiix acts as The central remaining problem, what is the smallest value
an almost isometry on atD(r)-sparse vectors. Precisely, wef #(r7), is stil open. The best known estimate is due to
define the restricted isometry constantto be the smallest C@ndes and Tao [4]:

positive number such that the inequality k(r,n) = O(rlog®n). (5)

2 2 2
O =&)llzllz < @7zl < C(L+6,)]2 (3)  The conjectured optimal estimate would 8¢r log n), which
holds for some numbef > 0 and for allz and all subsets iS knowr! to hold for nonuniveral measuremets, i.e. doe
T C {1,...,n} of size|T| < r, whered; denotes thé: x |T'| SParse signaf and for a random se [2].
matrix that consists of the columns & indexed byT. The  In this paper, we improve on the best known boudd (5):

following theorem is due to Candes and Tao ([5], see [3])- Theorem 3.2 (Sample size): Theofer 3.1 holds with

Theorem 2.1 (Restricted Isometry Condition): l&tbe a
measurement matrix whose restricted isometry constant sat
isfies The dependence on is thus optimal within thdoglogn

O3y + 304, < 2. (4) factor and the dependence onis optimal within thelog® r
factor. So, our estimate is especially good for smalut our
Estimate always yields(r,n) = O(rlog* n).

k(r,n) = O(rlog(n) - log?(r) log(r log n)).

Let f be anr-sparse signal. Then the solution to the linea
program (@) is unique and is equal tg.

Remark 3.3:Our results hold for transforms more general
an the discrete Fourier transform. One can replace the DFT

. . X . atrix U by any orthogonal matrix with entries of magnitude
problem [[1) is equivalent to its convex relaxatigh (2) for afl X
r-sparse function. O(1/+/n). Theorem$§=3]1 and 3.2 hold for any such matrix.

A problem with the use of Theorelm 2.1 is that the restricted In the remainder of this section, we prove Theofenh 3.2. Let
isometry condition[{¥4) is usually difficult to check. Inde¢de 2 be a random subset ¢0),...,n} of sizek. Recall that the

This theorem says that under the restricted isometry cqp
dition @) on the measurement matrix, the reconstruction



measurement matri$ that consists of the rows of whose Lemma 3.5:Let x4, ..., 2, kK < n, be vectors inC" with
indices are inf2). In view of Theoren{B, it suffices to proveuniformly bounded entrieg}z;| - < K for all ;. Then
that the restricted isometry constantof ® satisfies . .

Zsix?@)x? Zx?@x;‘r

i=1 i=1

Es, <e 6) Esup
rlogn) log (rlogn wherek; < C1(K)/rlog(r)y/logny/logk.

IT|<r
: ) 1og?r, % o _
€ € Let us show how Lemmiad.5 implies TheorEml 3.4. We first
wheree > 0 is arbitrary, and”' is some absolute constant. condition on a choice dR and apply LemmB33l5 for;, i € Q.
Let 41, ...,yr denote the rows of the matrik. Dualizing Then we take the expectation with respecfXoWe then use
@ we see thaf6) is equivalent to the following inequality the a consequence of Holder inequaliif| X |z) < (E|X|)2
and the triangle inequality. Let us denote the left hand side

1
2

< k1 sup 9)
IT|<r

whenever

kZC(

E sup |lider —C' Yyl @yl|| <e @) by E. We obtain:
IT|<r i€EQ
. , 2k1 1 T T 3 2kq 1
with ¢/ = 1/4/C. Here and thereafter, for vectorsy < E<—ZEsup |- ) z; Qu; || < —4=(E+1)=2.
C™ the tensorz ® y is the rank-one linear operator given by ITI<n "™ jecq

(z®y)(z) = (x,y)z, where(-) is the canonical inner product ok . ok
on C”. The notation:” stands for the restriction of a vector't follows that - < Cp Tz, provided that 7z = O(1).
2 on its coordinates in the s&t. The operatorider in @ 1neorem3K now follows from our choice &f= k(r, n).
is the identity onC”, and the norm is the operator norm for
operators o3 .

The orthogonality of & can be expressed a&lc» =
Z?;(} y; ® y;. We shall re-normalize the vectois, letting

Hence it is only left to prove Lemma_3.5. Throughout the
proof, By and B! denote the unit ball of the norrh- ||, on

C™. To this end, we first replace Bernoulli r.vés by standard

) independent normal random variablgs using a comparison

z; = v/n yi—1. Now we have|zil|lo = O(1) for all i. The  incinle (inequality (4.8) in [27]). Then our problem beses
proof has now reduced to the following probabilistic sta¢et) ;1 pound the Gaussian process, indexed by the union of the
which we interpret as a law of large numbers for randof\it Euclidean balls3T in CT for all subsetd of {1,...,n}

operators. of size at mostr. We apply Dudley’s inequality (Theorem

Theorem 3.4 (Uniform Operator Law of Large Numbers):11.17 in [27]), which is a general upper bound on Gaussian
Let zi,...,z, be vectors in C* with uniformly processes. Let us denote the left hand siddlof (8FhyWe

bounded entries:||z;||. < K for all i. Assume that obtain:

iden = LY " 2; @ z;. Let Q be a random subset of k
{1,...,n} of sizek. Then Ey < CsE sup || Y gia] @]
|T|<r "2
1 1=1
E sup ||idcr —EinTGQ:EiT <e (8) k
|T|<r i€Q = C3E sup Zgi <xi,x>2}
providedk satisfies(d) (with constantC' that may depend on Qé; =1
K). ’

>~ 1/2 T
Theorem[3W¥ is proved by the techniques developed in = 04/0 log N(U‘T‘ST By»9, u) du,

Probability in Banach spaces. The general roadmap is simil .
ton [21], [22]. We first observe that v%ere N(Z,6,u) denotes the minimal number of balls of

R radiusu in metric § centered in points of, needed to cover
1 1 . the setZ. The metricd in Dudley’s inequality is defined by
E= T gl =2 T o2l = iden ) : o
k ,EZQ% R n X;IZ ®x; = dcn, the Gaussian process, and in our case it is
K3 1=
so the random operator whose norm we estimatdlin (8) has M ) o213
mean zero. Then the standard symmetrization (see [27] Lemmd (%, Y) = [Z (<~’Cia )" — (i, y) ) }

6.3) implies that the left-hand side ¢l (8) does not exceed =1

k 1
1 212
LS el 9al < |2 (ana) + (@w)’]” max|(ia =)
i€Q

1
Wh_ere(al-) are independent symmetrje-1, 1}-valued random < 2 max [Z@iv Zﬂ * max (25, 2 — y)|
variables; also (jointly) independent 8f Then the conclusion ITI<r i<k

of Theorem:3¥ will be easily deduced from the following #€8,

lemma. =2R r?<aé<|<xi, T — ),

2E sup
|T|<r

i=1



where For_ eachz'., i o= Z}n:lgj(Zj,.xZ) is.a Gaussian random
variable with zero mean and with variance

R := sup T, & a:
|T|<r ; m
= (> 1z P < Kvm,
Hence i=1
1 . . .
E < C5R\/—/ g2 N (\/_DQ’", | |lx,u) du. (10) since|(Z;,z;)| < ||zi] < K. Using a simple bound on the
" maximum of Gaussian random variables (see (3.13) in [27]),
Here we obtain
D" = U Bl H$||X:I?<3]§<|<Iu$>| E4 §C7EIZD<3§<|%'| < Cs/logkmaxo; < Cg/log kK v/m.
|T|<r - - -
We will use containments Taking the expectation with respect {&;) we obtain
1
rn rn rn n 2 203K +/log k
ZFD" e DI"C KBy, DI"CB, (1) By < 2E(Ey) < 2K Vioek

N

whereB denotes the unit ball of the norfn||x. The second With the choice ofn made in the statement of the lemma, we

containment follows from the uniform boundedness(ef). conclude thaf; < u. We have shown that for evelgye B

We can thus replac?—D in (@) by Dy". Comparing[(10) there exists & € C" of the formz = L oo 2oy Zj such that
to the right hand side of19) we see that, in order to compleﬁ ~|lx < u. EachZ; takes2n values 20z takes(2n)

the proof of Lemm43ls, it suffices to show that values. Hence3}' can be covered by d2n)™ balls of norm
K | -llx of radiUSu. A standard argument shows that we can
/ log"? N (D™, || - || x,u)du < Celog(r)\/logny/logk, assume that these balls are centered in pointBpf This
0 (12) completes the proof of Lemnia3.6. [ |
with Cs = Cg(K). To this end, we will estimate the covering
numbers in this integral in two different ways. For higwe
will just use the second containment [mX11), which allows u
to replaceD"" by B7.

For small u, we will use a simple volumetric estimate.
he diameter ofB] considered as a set i@" is at most
with respect to the nornj - || x (this was stated as the

last containment in[{31)). It follows thaW (B, || - ||,u) <

Lemma 3.6:Letz,..., 2, k < n, be vectors as in Lemma (1 + 2K /u)" for all » > 0, see (5.7) in [PIi]. The seD]"
B3. Then for allu > 0 we have consists ofd(r,n) = >"_, ('}) balls of form B , thus

N(BT, |- [[x,u) < (2n)™, N(DY™ |- |x,u) < d(n,r)(1+2K/u)".  (13)

_ 2 2
wherem = Cr K log(k)/u®. Now we combine the estimate of the covering number

Proof. We use the empirical method of Maurey. Fix aV(u) = log"/> N(D}™, || - | x,u) of Lemma 3.6, and the
vectory € BI. Define a random vectof € R" that takes Volumetric estimate[{13), to bound the integral[inl (12).rigsi
values (0, . ..,0,sign(y(i)),0,...,0) with probability |y(i)| Stiring’s approximation, we see thak(r,n) < (Con/r)".
each,i = 1, ...,n (all entries of that vector are zero except NUS
i-th). Heresign(z) = z/|z|, whenever # 0, and0 otherwise.

Note thatEZ = y. Let Z4, ..., Z,, be independent copies of V(u) < Crov/r[Vlog(n/r) + V/log(1 + 2/u)] =: Ny (u),

Z. Using symmetrization as before, we see that N(u) < @\/@ Nlogn =: No(u)
u

1 m
Es = EH?J - whereCyg = C1o(K). Then we bound the integral ii{12) as
=1

K A K
Now we condition on a choice ¢Z;) and take the expectation / N(u) du < / Ny (u) du + / Na(u) du
with respect to random signé:;). Using comparison to 0 A

Gaussian variables as before, we obtain < C11 AVr[/log(n/r) +log(1 + 2/4)]

m + Cy1log(1/A)+/log k+/logn,
il x < C7EH ZngJ
J=1

where C1; = Cy1(K). ChoosingA = 1/4/r, we conclude
= C7IEIZ;1S&]§( ‘ ;gj<Zj,xi> .

that the integral in[[M2) is at mos{/log(n/r) + logr +
log(r)+/Tog kv/logn. This proves[[IPR), which completes the
proof of Lemmd3kb and thus of Theoremsl3.4 3.2m




IV. RECONSTRUCTION FROMGAUSSIAN MEASUREMENTS Theorem 4.2 (Escape Through the Mesh (Gordon)): et
- i 1in R™
Our goal will be to reconstruct an-sparse signaf € R” be a Zubset of thg. unit E_ucllclieatr: sphé‘f%n 'Q.R _.bLeté/ b(_e
from k = k(r,n) Gaussian measurements. These are giv?r{ar: qm(;]z—k)- Imensiona Slrj] space &1, h'sm uted uni-
by ®f € R¥, where® is ak x n random matrix (‘Gaussian :rm yin the Grassn\%m?rrrll wit resple((;)t tq :1 € Hl:\abr_lmeasure.
matrix’ in the sequel), whose entries are independé(i, 1) ssume thaw(S) > vk. ThenY' NS = § with probability at

random variables. The reconstruction will be achieved 6§a5t

solving the linear progranil2). 1—3.5 exp ( _ (k/\/ﬁ _ w(s))Q/lg)_
The problem again is to find the smallest number of mea-

surementsk(r, n) for which, with high probability, we have

an exact reconstruciton of everysparse signalf from its

measurement® f? It has recently been shown in [5], [23

[3] that minimize || f — g*||1 subject todg* € Ker(®) =: Y. (16)

k(r,n) = Olrlog(n/r), (14) Y is a(n—k)-dimensional subspace &f*. Due to the rotation
and was extended in [20] to sub-gaussian measuremeigariance of the Gaussian random vectdrsjs distributed
This is asymptotically optimal. However, the constant dact uniformly in the Grassmania@',, 1 ,, of (n — k)-dimensional
implicit in (&) has not been known; previous proofs ofubspaces dR™, with respect to the Haar measure.

(@3 yield unreasonably weak constants (of ordgd00 and  Now, 0 is the unique solution td{16) if and only i is
higher). In fact,there has not been known any theoreticahe unique metric projection of onto the subspack in the
guarantees with reasonable constants for Linear Programgmi norm || - ||;. This in turn is equivalent to the fact thatis the
based reconstructionsSo, there is presently a gap betweernique contact point between the subspacand the ball of
theoretical guarantees and good practical performance-of the norm|| - [|; centered aff:

construction [[R) (see e.g. [3]). Here we shall prove a first n -

practically reasonable guarantee of the fofm (14): (F 1 Br) Ny = {0} (47)

We will now prove Theorer4l1. First note that the function
f is the unique solution ofJ2) if and only i is the unique
]solution of the problem

(Recall thatB), is the unit ball of the nornj - [|,,.) LetC; be

k(r,n) < exr ez + log(n/r)] (1 + o(1)), (15)  the cone inR" generated by the s¢t+ || f||; B (the cone of
c1=6+4V2~x11.66, ¢ =1.5. a setA € R" is defined as{ta | a € A, t € RT}). Then the
statement thaf{17) holds for alisparse functiong is clearly

Theorem 4.1 (Reconstruction from Gaussian measuremeffigjvalent to
A k x n Gaussian matrix® with k& > k(r,n) satisfies the C;nY = {0} for all r-sparse functiong. (18)

following with probabilit
J P Y We can represent the codg as follows. Let

1=35 eXp(_ (VE = VA, "))2/18)' TH={i|f(i)>0}, T ={j| f(i)<0}, T=TtUT".

Let f be anr-sparse signal inR™. Then f can be exactly Then
reconstructed from the measuremets as a unique solution

to the linear program(@). Cr= {t cR"| Z t(i) — Z t(i) + Z HOIR= 0}'
€T~ €T+ ieTe

Our proof of TheoremL4l1 is direct, we will not us&ye il now bound the coné; by a universal set, which does
the Restricted Isometry Theordm2.1. The first part of thisot depend ory.
argument follows a general method of [20]. One interpregs th
exact reconstruction as the fact that the (random) kerndl of Lemma 4.3:Consider the spherical part of the cord¢; =
misses the cone generated by the (shifted) ball;ofThen CyNS™'. ThenK; C (v2+1)D, where
one embeds the cone in a universal Betwhich is easier to
handle, and proves that the random subspace does not aiterse
D. However, to obtain good constants asl (15), we will need Proof: Fix a pointz € C N S"~!. We have
to (a) improve the constant of embedding infofrom [20], . : .
and (b) use Gordon’s Escape Through the Mesh Theorem [18]; (0] < \/m =V 1; (@] < ; [2(@)] = V.
which is tight in terms of constants. In Gordon’s theoreng on " . :
measures the size of a sgtin R™ by its Gaussian width de norm|-[|p onR™ whose unit ball isD can be computed

L 1/2
w(D) =E s, lelo = > (S tiyy?)

=1 el

D = conv{z € S"! | |supp(x)| < r}.

where g is a random vector ifrR™ whose components are

independentV (0, 1) random variables (Gaussian vector). Th@Where L = [n/r], Iy = {r(l = 1) + 1,...,rl}, for I < L,

following is Gordon’s theorem [18]. I, ={r(L-1)+1,...,n}, and(z(i)*) is a non-decreasing
rearrangement of the sequer(¢e(i)|).



SetF = F(x) = {i | |=(i)] > 1/y/r}. Sincexz € S"~1,

we have|F| < r. Hence, for anyz € K there exists a set proof of TheoreniZ]1.

E = E(z) C {1,...,m}, which consists or elements and

Then [I9) follows Gordon's Theoreln #.2. This completes the
|
Acknowledgement. After this paper was announced,

such thatE O F U I. Therefore,x can be represented asA.Pajor pointed out that Lemma 3.6 was proved by B.Carl in

x = a’'+a" so thatsupp(z’) C E, ||z||2 < 1, supp(z”) C E*°,
[2"]loc < 1/+/r. Set

Vi = BE x (\/FB{EC N %ij).
Then the above argument shows that C U, | _,, Ve =: W.
The maximum of||z||p overx € W is attained at the
extreme points of the selgz, which have the formx = 2/ +
2", wherez’ € S¥, andz” has coordinates 0 andl/,/r with
r non-zero coordinates. Notice that singepp(z’)] < 2r,
llz'|lp < v/2||2'||2. Thus, for any extreme point of Vj,

Izl < [l2'llp + [l2"]lp < V2|2 ||z + [|l2"]l2 < V2 + 1.

The second inequality follows fromupp(z’) < 2r and
supp(z”) = r. This completes the proof of the lemma. B

[7], see Prop.3 and below. We also thank Emmanuel Candes
for important remarks.
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