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Abstract— We study the problem of quantization for distrib-
uted parameter estimation. We propose the design of score-
function quantizers to optimize different metrics of estimation
performance. Score-function quantizers are a class of quantizers
known to maximize the Fisher Information for a fixed value
of parameter θ. We show that for distributions that satisfy a
monotonicity property, the class of score-function quantizers
can be made independent of parameter θ. We then propose a
generic algorithm to obtain the optimal Score-function quantizer
that can be used to maximize three different metrics; Minimum
Fisher Information, Bayesian Fisher Information and Minimum
Asymptotic Relative Efficiency. Through numerical examples, we
illustrate that these algorithms converge to the optimal quantizers
obtained through known algorithms for maximin ARE and
Bayesian Fisher Information.

I. INTRODUCTION

A. Motivation

The design of optimal quantizers for distributed estimation
is a classical problem in statistical inference theory. The basic
setup is represented in Figure 1, wherein nodes observe data
and transmit quantized versions to a common fusion center
which estimates the underlying parameter. Quantization of the
observed data before transmission is an important problem,
especially in the context of sensor networks. The limited
battery energy at the nodes coupled with the necessity to share
the wireless channel for transmission makes quantization of
the data crucial. The goal of any optimal quantizer design is
to minimize the estimation error at the fusion center.

Consider a system as shown in Figure 1. Each node mea-
sures a random observation Xi independent and identically
distributed under some scalar parameter θ. The nodes then
transmit quantized versions of the observations, {γi(Xi)}, to
the fusion center. We assume that the quantizers at the nodes
are identical, i.e., γi(·) = γ(·). The motivation behind this
assumption is two fold. Firstly, the distribution of observations
is identical across nodes. Second, in large scale networks,
the nodes deployed in a given area are typically identical.

This work is supported in part by the National Science Foundation
under Contract CNS-0435190. Prepared through collaborative participation
in the Communications and Networks Consortium sponsored by the U. S.
Army Research Laboratory under the Collaborative Technology Alliance
Program, Cooperative Agreement DAAD19-01-2-0011. The U. S. Government
is authorized to reproduce and distribute reprints for Government purposes
notwithstanding any copyright notation thereon.

PSfrag replacements

X1 X2
Xn

f({γi(Xi)})

θ ∈ Θ

γ1(X1) γ2(X2) γn(Xn)

θ̂

Fig. 1. Distributed Estimation System

The fusion center uses the received data {γ(Xi)} to make an
estimate θ̂ of the true parameter. The assumption of i.i.d ob-
servations at n different sensors is equivalent to that of n i.i.d
observations at a single sensor. Depending on the complexity, a
sensor may choose to perform a sub-optimal sample by sample
quantization rather than a vector quantization on the set of n

high resolution samples. Quantization is inevitable in digital
processing, and trade-offs are between resolution, rate, power
consumption of quantizer and the overall metric imposed by
the problem.

The estimation performance is measured by the mean
squared error of the estimate given by E(θ̂ − θ)2. Depending
on the properties of the estimator, the mean squared error
(MSE) can be expressed as a function of the distribution of
quantized observations. It is well known that the MSE of any
unbiased estimate is lower bounded by the inverse of Fisher
Information (FI). Furthermore, if the quantized observations
are distributed according to some probability mass function
{qθ}, and a Maximum-Likelihood (M-L) estimator based on
{qθ} is implemented, then under certain regularity conditions,
the MSE of the estimate asymptotically achieves this bound.
The Fisher Information at a fixed value of parameter θ is
maximized by a class of quantizers known as Score-function
Quantizers (SFQ) [1]. Furthermore, it can be shown that this
class of quantizers optimizes a general convex metric of the
aposteriori distribution qθ at a given θ.

Although, SFQs are dependent on the parameter θ, for a



certain class of distributions, any SFQ can be expressed as
a set of thresholds on the sufficient statistic of the distri-
bution, independent of the parameter value. For this class
of distributions, we propose the use of SFQs to optimize
some estimation performance metrics. Since SFQs maximize
Fisher Information for a given parameter value, we use this
as a heuristic and design the best SFQ that optimizes known
metrics of performance based on Fisher Information. The
metrics that we consider are as follows. i) Maximin Fisher
Information: Maximize the minimum Fisher Information over
θ, ii) Maximin ARE: Maximize the minimum Asymptotic
Relative Efficiency between quantized and unquantized M-L
estimators over θ. iii) Maximum Bayesian Fisher Information:
Maximize the average Fisher Information for a random para-
meter.

Optimal quantizers for maximin ARE and Bayesian Fisher
Information have been proposed in literature [2], [3]. However,
those algorithms do not specify a regular structure for the
quantizer. Since SFQs can be expressed as thresholds on the
sufficient statistic, they are easily represented and simple to
implement. Furthermore, our numerical results indicate that for
the class of distributions we consider, the SFQs are identical
to the optimal quantizers for those two metrics.

B. Main Contributions

In this paper, we consider the design of quantizers within
a sub-class of quantizers known as Score-Function Quantizers
(SFQ). It has been shown that the maximum Fisher Informa-
tion at a given parameter value is achieved by an SFQ. When
the Score-function of the underlying distribution satisfies a
monotonicity property, we show that the set of SFQs for a
particular value of the parameter is the same for any value
of the parameter. These quantizers can then be expressed as
a set of thresholds on the sufficient statistic. For distributions
that satisfy the monotonicity property, we present a generic
algorithm to iteratively obtain the optimal SFQ for metrics
based on Fisher Information. The metrics that we consider
are Maximin Fisher Information, Maximin ARE between
quantized and unquantized estimators and Bayesian Fisher
Information. Through numerical simulations, we illustrate the
performance of the algorithm for the three metrics. The
optimal SFQs for Bayesian Fisher Information and Maximin
ARE are shown to be identical to the quantizers obtained
through known unrestricted quantizer design algorithms.

C. Related Work

There is extensive literature on data compression for dis-
tributed statistical inference. For a distributed detection setup,
when sensors have i.i.d data, Tsitsiklis showed that quantizing
the Likelihood Ratio optimizes detection performance metrics
like Kullback-Leibler distance and Chernoff Information [4].
In the distributed estimation scenario, Lam and Reibman [3]
developed an iterative quantizer to maximize the Bayesian
Fisher Information of a random parameter. For certain restric-
tive types of estimators, Gubner [5] and Zhang and Li [6]
provided optimal quantizers to minimize the mean squared

error for a random parameter. For a deterministic parameter
in additive noise, Ribiero and Giannakis [7] showed that the
quantizer that maximizes the Fisher Information at a particular
θ is represented by a single threshold in the observation space.
In a recent work [2], we presented an iterative algorithm to
optimize the Maximin ARE metric without any assumptions
on type of quantizer.

The paper is organized as follows. The basic system model
and some fundamentals are discussed in Section II. Score-
function quantizers and their optimality are explained in
Section III. The estimation metrics and the iterative algorithm
to optimize those metrics are presented in Section IV. Some
numerical results and conclusions are given in Section 5 and
6 respectively.

II. SYSTEM MODEL

Consider a network of n nodes as shown in Figure 1. Each
node observes i.i.d measurements Xi based on a parameter θ.
We assume as a model, a family of distributions for the random
measurement Xi, indexed by a parameter θ taking values in
a parameter set Θ; we have the family {Pθ; θ ∈ Θ}, where
Pθ denotes a probability measure on the observation space X

having σ-field G. Throughout this paper, we assume that the
parameter set Θ ⊆ R.

We define a deterministic quantizer as a G−measurable
mapping γ : X 7→ {1, ..., D}, where D is a constant. Let Γ
denote the set of all deterministic quantizers. In our setup, the
quantized observations γ(Xi), i = 1, ..n are used to estimate
the parameter θ. Let the probability mass function (p.m.f) of
the quantized variable γ(Xi) be specified by

qi
θ = {qi

θ(1), ..., q
i
θ(D)},

qi
θ(k) = Pθ(γ(Xi) = k), k = 1, ..., D.

We assume that sensors use identical quantizers, hence the
family of p.m.fs on the quantized observations is represented
by {qθ; θ ∈ Θ}. The fusion center receives the values of
γ(Xi), i = 1, · · · , n, and estimates θ. Suppose that θ̂ is
an unbiased estimate of the parameter θ, and the family qθ

satisfies certain regularity conditions ( [8], pp. 169), then

Eθ[(θ̂ − θ)2] ≥
1

nIθ

,

where

Iθ =
D

∑

i=1

1

qθ(i)

(

dqθ(i)

dθ

)2

is the Fisher Information in the variable γ(Xi), and the bound
is known as the Cramer-Rao Bound. In this work, we assume
the fusion center implements a Maximum-Likelihood (M-L)
estimator based on the distribution of quantized observations.
It is known that the MSE of the M-L estimate asymptotically
achieves the Cramer-Rao lower bound. Specifically, if θ̂ML

represents the M-L estimate, then

θ̂ML ∼ N

(

θ,
1

nIθ

)

, as n → ∞.



Therefore, Fisher Information is an appropriate metric of
performance for the M-L estimator. In the following section,
we discuss a class of quantizers called Score-function Quan-
tizers that have interesting properties with respect to Fisher
Information.

III. SCORE FUNCTION QUANTIZERS

A. Definition and Optimality

In [4], Tsitsiklis considered quantization for a distributed
detection setup and showed that Likelihood-Ratio quantizers
(LRQ) have a number of optimal properties. In particular,
they can be used to maximize detection performance metrics
like Kullback-Leibler distance and Chernoff Information. The
quantity corresponding to likelihood-ratio in an estimation
setup is the Score-function which is defined as:

Sθ(x) =
d

dθ
log pθ(x).

The definition is subject to regularity conditions mentioned
in the previous section. The Score-function, by virtue of
its dependence on the parameter θ, cannot be treated as
a statistic for distributed estimation. Therefore, the Score-
function quantizer (SFQ) is also a function of the parameter
value, and does not directly lend itself for quantization in
distributed estimation.

We define the threshold set T as the set of all vectors t =
(t1, ..., tD−1) ∈ R

D−1, satisfying −∞ ≤ t1 ≤ · · · ≤ tD−1 ≤
∞. For any t ∈ T , the associated intervals I1, ..., ID are
defined by I1 = [−∞, t1], I2 = [t1, t2], · · · , ID = [tD−1,∞].

Definition 1: A quantizer γ ∈ Γ is a monotone SFQ with
threshold vector t ∈ T , if γ(x) = d ⇐⇒ Sθ(x) ∈ Id, ∀x.
We say that a quantizer is a SFQ is there exists a permutation
mapping π : {1, · · · , D} 7→ {1, · · · , D} such that π ◦ γ is a
monotone SFQ (◦ is the composition operator).
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Fig. 2. Monotone Score-function Quantizer : Ii = (ti−1, ti) represent the
partition i

In an SFQ, indices are assigned to the data by partitioning
the score-function (see Figure 2) using D − 1 thresholds.
This is analogous to applying a conventional, perhaps non-
uniformly spaced, Analog-Digital Converter (ADC) on the
Score-function. The thresholds on the score-function map onto
corresponding thresholds on the data; data values correspond-
ing to a given quantization index are, however, not necessarily
contiguous (see Figure 3).

Score-function quantizers, like their counterparts in detec-
tion, the LRQs, have some optimal properties, albeit with
respect to a fixed parameter value. By adopting the technique
used in [4], it can be shown that any extreme point in the set
of aposteriori probability mass functions at a particular θ is
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Fig. 3. Partitions in X domain for two different distributions

achieved by an SFQ. In particular, the Fisher Information at
a given parameter value θ is maximized by an SFQ at that
θ [1]. The maximal Fisher Information which is achieved at
every θ using a different SFQ, serves as a useful benchmark
for quantizer design. We shall use this bound to compare the
performances of different quantizers in Section V.

The SFQ, as iterated earlier, is dependent on the parameter
value, rendering it not directly applicable to practical quantizer
design. It can be shown, however, that for distributions which
satisfy a monotonicity property, the set of score-function
quantizers at a particular value of parameter is independent
of the parameter itself.

B. Class of Score Function Quantizers

The class of Score-Function Quantizers Sθ at a particular
θ can be defined as

Sθ = {γθ : γθ is a SFQ at θ}.

Let {Pθ; θ ∈ Θ} correspond to the family of densities
{pθ; θ ∈ Θ}. We know that a statistic T is sufficient for θ

if and only if there are functions g(θ) and h such that

pθ(x) = gθ[T (x)]h(x), ∀x, θ

Under certain conditions on the prior distribution of obser-
vations, pθ(x), Sθ can be made independent of θ. This is clear
from the following lemma.

Lemma 1: Suppose that probability measure for observation
X , {Pθ; θ ∈ Θ} has a corresponding family of densities
{pθ; θ ∈ Θ}. Let T be a sufficient statistic for pθ. If the score
function can be expressed as Sθ(x) = fθ[T (x)], where fθ is
monotone increasing for all θ, then

i) The class of SFQs at parameter θ is identical for all θ.
i.e., Sθ = Sθ′ ,∀θ, θ′ ∈ Θ.

ii) Every SFQ γθ can be equivalently expressed as D −
1 thresholds on the sufficient statistic T (x). In other
words, there exists −∞ = t0 ≤ t1 ≤ t2 ≤ · · · ≤
tD−1) ≤ tD = ∞ such that

∀k, γθ(x) = k ⇐⇒ T (x) ∈ [tk−1, tk]
Proof: Since the score-function is monotonic in the suffi-

cient statistic, any sequence of thresholds on the score-function
will retain the same order in the sufficient statistic domain as
well. Hence, the class of SFQs are independent of θ. 2



In order to design an optimal Score-Function Quantizer
for distributions that satisfy the monotonicity property, it is
therefore sufficient to obtain the corresponding thresholds on
the sufficient statistic. The decoupling of the set of SFQs
and the parameter values, together with the known optimal
properties of SFQs make it a good candidate for practical
quantizer design. In the following section, we discuss some
known metrics of performance which are suited to the prop-
erties of SFQ, and also present an algorithm to obtain the
corresponding SFQs for those metrics.

IV. SCORE-FUNCTION QUANTIZER DESIGN

A. Metrics of Performance

Since the known optimality of SFQs is with respect to Fisher
Information, their utility is most beneficial when the fusion
center implements an M-L estimator. An ideal quantizer for
a M-L estimator would maximize the Fisher Information for
every value of the parameter. However, it is impossible to
design a single quantizer that is optimal for all θ because the
Fisher Information is a function of θ. Hence, we consider the
following metrics which are dependent on Fisher Information
but serve as measures of the performance over the parameter
set.

i) Maximin Fisher Information: We wish to design a quan-
tizer γ∗ that achieves:

γ∗ = max
γ

min
θ

Iθ.

For a given asymptotic error variance, we know that
Fisher Information is inversely related to sample size.
Therefore, a quantizer that satisfies the above metric
would also require the least sample size amongst all
deterministic quantizers. Mathematically, for given as-
ymptotic error variance ε,

γ∗ = min
γ

max
θ

nq,

where nq is the number of samples required by a
quantizer to achieve that asymptotic error variance.

ii) Maximin Asymptotic Relative Efficiency (ARE) : The
quantizer that optimizes the maximin ARE is stated as:

γ∗ = max
γ

min
θ

Iθ

Jθ

,

where Jθ is the Fisher Information of the unquantized
variable. It can be shown that the maximin ARE quan-
tizer is equivalently expressed as:

γ∗ = min
γ

max
θ

nq

nuq

.

In other words, the optimal quantizer tries to reduce the
sample size as close to that required by the unquantized
estimator. For certain distributions, Jθ is independent of
θ, in which case, the metric is equivalent to Maximin
Fisher Information.

iii) Bayesian Fisher Information : For a random parameter,
the Bayesian Fisher Information is a known metric of

performance. If we assume that the parameter is distrib-
uted according to some distribution f(θ), the quantizer
that maximizes this metric can be specified as:

γ∗ = max
γ

E{Iθ} = max
γ

∫

Θ

f(θ)I(θ)dθ.

The Bayesian Fisher Information serves as a good lower
bound on the mean-squared error in random parameter
estimation.

B. Iterative Algorithm

In this section, we propose an algorithm for iteratively ob-
taining the optimal SFQs for the metrics discussed previously.
The basic idea behind the algorithm is this: We start with
an initial guess of thresholds on the sufficient statistic. We
then iteratively improve the quantizer by successively opti-
mizing each threshold keeping the other thresholds fixed. The
algorithm converges because the performance metric improves
with every iteration.

Denote the metric under consideration as M(γ) = fθ(Iθ).
From the definition of the metrics in the Section IV-A, we
know that M(γ) is independent of θ. More specifically, M(γ)
for the three metrics are given by:

i) Maximin Fisher Information : M(γ) = minθ Iθ.
ii) Maximin ARE : M(γ) = minθ

Iθ

Jθ
.

iii) Bayesian Fisher Information : M(γ) = E(Iθ).
Since we are only interested in distributions that satisfy the
monotonicity property, any SFQ corresponds to a set of
thresholds on the sufficient statistic. Let T (x) denote the
sufficient statistic and T represent its domain. We assume that
T ⊂ R. The formal statement of the algorithm is as follows:

i) Initialization: Let t = {t1, .., tD−1} ∈ T D−1 represent
the threshold set of the quantizer. Initialize t arbitrarily
such that t0 = −∞, tD = ∞, ti < ti+1. Evaluate the
probability mass function of the quantized variable as

qθ(i) = Pr{T (x) ∈ [ti−1, ti]}

For this qθ, evaluate the Fisher Information Iθ and the
metric M(γ).

ii) Iteration n+1: Let tnj represent the value of threshold j

in iteration n. Each iteration is divided into D−1 steps.
At step j, we would have already computed the new
threshold for tj−1. We consider all possible values of
threshold tj that lie between the updated value of tj−1

and the old value of tj+1 and we pick the value that
optimizes the metric. More formally:
For every t ∈ [tnj−1, t

n
j+1], let γt

j represent the quantizer:

γt
j(x) =















i T (x) ∈ [tn+1
i−1 , tn+1

i ], i < j

i T (x) ∈ [tni−1, t
n
i ], i > j + 1

j T (x) ∈ [tn+1
j−1 , t]

j + 1 T (x) ∈ [t, tnj+1]

The optimal threshold is chosen as:

tn+1
j = arg max

t∈[tn+1

j−1
,tn

j+1
]
M(γt

j)



Let the optimal quantizer at the end of D − 1 steps
be denoted as γn+1 and the corresponding value of the
metric M(γn+1).

iii) Termination: Choose ε close to zero. At each iteration,
evaluate M(γn). If |M(γn) − M(γn−1)| < ε, then the
algorithm terminates. In other words, when the change
in performance is very close to zero, we terminate the
algorithm.

It is easily shown that the metric cannot decrease at any
iteration. Since these metrics are strictly bounded from above,
the algorithm has to terminate. Furthermore, since we restrict
ourselves to score-function quantizers, the algorithm obtains
the best possible score-function quantizer in the absence of
local minima in the path of iteration.

We currently do not have an analytical proof that the
globally optimal quantizer for the metrics is an SFQ. However,
our numerical results along with the known optimal properties
of SFQ seem to suggest that it is indeed so.

V. NUMERICAL EXAMPLES

In this section, we compare the performance of the quantiz-
ers for different metrics under two different conditional distri-
butions. These distributions satisfy the monotonicity property
stated in Lemma 1 of Section III. The parameter is assumed
to be in a bounded set in R.

A. Parameter in AWGN

In the first example, the observation X is Gaussian with
mean θ and variance σ2. Here, the Fisher Information of the
unquantized random variable Jθ is a constant, and hence the
metrics Maximin Fisher Information and Maximin ARE are
equivalent. Figure 4 plots the Fisher Information of the optimal
Score-function quantizers for the Bayesian and Maximin met-
rics. The prior distribution of parameter is assumed uniform
for the Bayesian metric.
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Fig. 4. FI Comparison for Parameter in AWGN. Parameter Set : θ ∈ [0, 5].
Noise Variance σ2 = 1. No. of bin indices : D = 2, 4

The maximum possible Fisher Information obtained through
evaluating SFQs at each value of parameter is also shown
in the figure. As can be seen from the figure, the Maximin
quantizer has the highest lower bound on Fisher Information,
indicating that asymptotically, it requires fewer samples to
achieve the same error variance. Both these quantizers are
expressible as D−1 thresholds on the sufficient statistic, which
in this case, is the observation X . It is interesting to see that

the optimal quantizers for all the metrics are identical when
D = 2.

B. Gaussian Faded Parameter

The observation is a faded value of the parameter and the
fading coefficient is assumed to be Gaussian. In other words,

X = Hθ, H ∼ N (0, 1).

Since the Fisher Information is no longer independent of θ,
the Maximin Fisher Information metric is different from the
Maximin ARE. Figures 5 and 6 plot the Fisher Information
and the Asymptotic Relative Efficiency versus the parameter
respectively for the different quantizers.
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In this example, it can be clearly seen that the quantizer for
Maximin Fisher Information has the highest lower bound for
Fisher Information amongst other quantizers. Similarly, Figure
6 shows that the Maximin ARE quantizer has the highest lower
bound on ARE across the parameter set. When D = 2 (Figure



6), each of the quantizers meets the SFQ bound curve at some
value of the parameter. Since the performance at any parameter
cannot be better than the SFQ bound curve, this strongly
suggests that the Score-function quantizer is the optimal type
of quantizer for these metrics.

In [3], the authors had developed an algorithm to obtain
the quantizer that maximizes the Bayesian Fisher Information
of a random parameter iteratively. Their algorithm did not
pose any restrictions on quantizer type or underlying distri-
bution. Similarly, in [2], we provided an iterative algorithm
to design a quantizer for the maximin ARE metric without
making assumptions on the nature of the quantizer. Both
these quantizers, although optimal in the absence of local
minima, do not possess a regular structure in the observation
domain, and hence are hard to implement. Our numerical
simulations, however, indicate that for the distributions that
satisfy the monotonicity property, the optimal quantizers ob-
tained through these algorithms and the optimal Score-function
quantizer are identical. Although, we do not have an analytical
proof for this, we believe that with respect to these metrics,
Score-Function quantizers are optimal.

VI. CONCLUSIONS

In this paper, we considered the class of score-function
quantizers and showed that if the distribution of the obser-
vations satisfies a monotonicity property, it suffices to obtain
optimal thresholds on sufficient statistic to maximize useful
estimation performance metrics. One of the key advantages of
score-function quantizers over known algorithms for Bayesian
Fisher Information and Maximin ARE is the simplicity in
structure and representation. Furthermore, some optimality
properties of SFQs with regard to Fisher Information make
it a likely candidate for quantization when coupled with M-
L estimation. The application of this idea is not restricted
to the distributed estimation alone. In situations, where data
is received in a sequence, it may not be practical for a
single processor to hold large number of observations in full
resolution. The use of such quantizers is essential to reduce
the complexity of processing while ensuring as little loss of
information as possible.
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