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Abstract— We analyze the performance of CDMA signature
optimization with finite rate feedback. For a particular user, the
receiver selects a signature vector from a signature codebook to
avoid the interference from other users, and feeds the correspond-
ing index back to this user through a finite rate and error-free
feedback link. We assume the codebook is randomly constructed
where the entries are independent and isotropically distributed.
It has been shown that the randomly constructed codebook is
asymptotically optimal. In this paper, we consider two types of
signature selection criteria. One is to select the signature vector
that minimizes the interference from other users. The otherone
is to select the signature vector to match the weakest interference
directions. By letting the processing gain, number of usersand
feedback bits approach infinity with fixed ratios, we derive the
exact asymptotic formulas to calculate the average interference
for both criteria. Our simulations demonstrate the theoretical
formulas. The analysis can be extended to evaluate the signal-
to-interference plus noise ratio performance for both match filter
and linear minimum mean-square error receivers.

I. I NTRODUCTION

In a direct-sequence code-division multiple access (DS-
CDMA) system, the performance is mainly limited by the
interference among users. To minimize the interference, every
particular user wants to select a signature vector from a
signature codebook to avoid the interference from other users.
In this paper, we assume that the receiver (base station) has
the perfect information of the signatures. It selects a signature
for a particular user according to some criterion, and feeds
the corresponding index to this user through a feedback link.
We also assume that the feedback link is error-free and rate
limited. Due to the finite feedback rate, there is a performance
degradation compared to the infinite feedback rate case. We are
interested in quantifying the effect of finite rate feedback.

This problem has been studied in [1]. A randomly con-
structed signature codebook is assumed in [1] where the
codebook entries are independent and isotropically distributed.
The interference signature matrix is assumed to have indepen-
dent and identically distributed (i.i.d.) Gaussian elements. A
particular user chooses the signature vector from the signature
codebook to maximize signal-to-interference plus noise ratio
(SINR). For the matched filter receiver, this criterion is equiva-
lent to select the signature to minimize the interference. In [1],
an asymptotic lower bound is given on the average interference.

The main contribution of this paper is to derive the exact
performance limit. In this paper, we use the average interference
as a performance measure, which is independent of specific
receivers and applications. We consider two signature selection
criteria. One is to minimize the interference from other users,
same as the one in [1]. The other one is more intuitive. We
select the signature vector to match the weakest interference
directions, or equivalently, to be as orthogonal as possible to
the strong interference directions. To analyze the corresponding
performance, we let the processing gain, number of users and
feedback bits approach infinity simultaneously with fixed ratios.
By asymptotic analysis, we derive lower bounds and upper
bounds on the average interference for both criteria. For each
criteria, the asymptotic upper bound meets the asymptotic lower
bound. Therefore, these bounds provide the exact performance
limit. The corresponding analysis can be extended to evaluate
the SINR performance for both match filter and linear minimum
mean-square error (MMSE) receivers.

II. SYSTEM MODEL

In a sampled discrete-time symbol-synchronous DS-CDMA
system, the received vector can be written as

Y =

m
∑

j=1

Bjsj +W,

whereBj ∈ C andsj ∈ Cn×1 are the transmitted symbol and
the signature vector for userj respectively, andW ∈ Cn×1

is the additive white Gaussian noise vector with zero mean
and covariance matrixσ2

I. The processing gain (length of the
signature vector) isn, andm is the number of users. We also
assume that the transmitted symbolsBj ’s are independent and
with the same power (variance)1.

We assume that the receiver has perfect knowledge about
the signature vectorssj ’s. For a particular user, without loss of
generality, user 1 is assumed, the receiver selects his signature
to avoid the interference from the other users. It feeds the
corresponding index back to user 1 through a finite rate and
error-free feedback link. The rate of the feedback link is
assumed to be up toRfb bits. In order to accomplish this, a

http://arxiv.org/abs/cs/0603031v1


signature codebookB with size 2Rfb is declared to both the
receiver and user 1.

We assume that the signature codebookB is randomly
constructed. Specifically,B = {v1, · · · ,v2Rfb }, wherevk =
zk/ ‖zk‖, zk = [z1,k, · · · , zn,k] and zi,k are i.i.d. CN (0, 1)
for all 1 ≤ i ≤ n and 1 ≤ k ≤ 2Rfb . In this way,
it is guaranteed thatvk ’s are independent and isotropically
distributed unitary complex vectors. It has been shown thatthe
randomly constructed codebook is asymptotically optimal [1],
[2].

In this paper, we use the average interference as the per-
formance measure. LetS ∈ Cn×(m−1) be the interference
matrix for user 1, whose columns are the interfering signatures
s2, · · · , sm. We assume thatS has i.i.d. complex Gaussian
entries with zero mean and variance1

n
, same as the assumption

in [1]1. For a given interference matrixS, the interference to
user 1 is defined by

IS ,

m
∑

j=2

|〈s1, sj〉|2 = s
†
1SS

†
s1.

The average interference is defined byI , ES [EB [IS]].
In this paper, we consider two types of signature selection

criteria. The first one is to minimize the interference from other
users, i.e.,

s1 = arg min
vk∈B

v
†
kSS

†
vk. (1)

The second one is to select the signature vector to match
the weakest interference directions (or equivalently, to be as
orthogonal as possible to the strong interference directions).
Let d be the multiplicity of the smallest singular value ofS.
Let un−d+1,un−d+2, · · · ,un be the d left singular vectors
of S corresponding to the smallest singular value andUd =
[un−d+1 · · ·un]. The direction matching criterion is

s1 = arg max
vk∈B

v
†
kUdU

†
dvk. (2)

For both criteria, we shall derive the asymptotic performance
limit in Sections III and IV respectively. The corresponding
analysis can be extended to SINR performance evaluation for
both match filter and linear MMSE receivers [2].

III. A NALYSIS FOR INTERFERENCEM INIMIZATION

This section is devoted to calculate the average interference
for the interference minimization criterion in (1). By letting the
processing gain, number of users and feedback bits approach
infinity simultaneously with fixed ratios, we derive the exact
performance limit. The result is given in Theorem 1.

1It is more natural to assume that the columns inS are independent and
isotropically distributed unitary complex vectors. However, the asymptotic
statistics ofS are the same for both assumptions. We adopt the assumption in
[1] for fair comparison. In Section V, we shall show that the difference between
these two assumptions is indistinguishable for relativelylarge systems.

Theorem 1: Define

dµλ ,



















√
(λ+−λ)(λ−λ−)

2πλ 1[λ−,λ+]dλ if n ≤ m
[

1
τ

√
(λ+−λ)(λ−λ−)

2πλ 1[λ−,λ+]

+ τ−1
τ
δ (λ)

]

dλ if n > m

(3)

for a τ ≥ 1, whereλ± = (1±√
τ )

2. For convenience, define
λ−t , λ− if n ≤ m and λ−t , 0 if n > m. For anyx ∈
(

λ−t , λ
+
)

andα ∈
[

0, 1
x−λ−

t

]

, define

ψ (x, α) ,

∫ λ+

λ
−

t

log (1 + α (λ− x)) dµλ

and

ψ̄ (x) , max
α∈
[

0, 1

x−λ
−

t

]

ψ (x, α) .

Let n, m andRfb approach infinity simultaneously with fixed
ratios τ = max (n,m) /min (n,m), r̄ = min (n,m) /n and
c = Rfb/n. For any0 < c <∞, there exists anxc ∈

(

λ−t , λ
+
)

such thatc log 2 = ψ̄ (xc) and

lim
(n,m,Rfb)→∞

I(n) = r̄xc. (4)

Remark 1: Theorem 1 is only valid when0 < c = Rfb/n <
∞. However, it also provides the exact performance limit when
c → 0+ or c → +∞. Elementary computations show that as

c→ 0+, r̄xc → r̄λ̄ , r̄
∫ λ+

λ
−

t

λdµλ the average eigenvalue, and

as c → +∞, r̄xc → r̄λ−t the minimum eigenvalue, which are
consistent with intuition.

The essential idea behind Theorem 1 is the same as that
behind the standard large deviation technique. The lower bound
is derived by Chebyshev’s inequality and the upper bound is
derived by the twisted distribution. Similar to the result in large
deviation technique, the asymptotic lower and upper boundsare
identical. We shall outline the proofs for the lower and upper
bounds in Section III-A and III-B respectively.

As a beginning, we express the average interference in a
convenient form. For a CDMA system with finiten andm, the
average interference is given by

I(n) = ES

[

EB
[

min v
†
kSS

†
vk |S

]]

,

whereI(n) is used to emphasize that they are for finiten and
m. LetHn be ann×m matrix whose entries are i.i.d. complex
GaussianCN (0, 1). Obviously, the statistics ofS is the same as
1√
n
Hn. Therefore,SS† = r

n
1
r
HnH

†
n wherer , min (n,m).



Let λi be theith eigenvalue of the matrix1
r
HnH

†
n. We have

I(n)
(a)
= ES

[

EB

[

min
k

z
†
kSS

†
zk

‖zk‖2
|S
]]

=
r

n
EHn

[

EB

[

min
k

z
†
k
1
r
HnH

†
nzk

‖zk‖2
|Hn

]]

(b)
=

r

n
EHn

[

EB

[

min
k

z
†
kUΛU

†
zk

‖zk‖2
|Hn

]]

(c)
=

r

n
Eλ

[

EB

[

min
k

∑n
i=1 λi |zi,k|

2

∑n
i=1 |zi,k|

2 |λ
]]

,

where

(a) follows from the random construction of the signature
codebookB,

(b) follows from the singular value decomposition of
1
r
HnH

†
n, and

(c) follows from the fact thatzk andUzk are statistically
equal for anyn× n unitary matrixU [3].

Note that given λ, the random variables
∑n

i=1 λi |zi,k|
2
/
∑n
i=1 |zi,k|

2, 1 ≤ k ≤ 2Rfb , are i.i.d..
Denote the corresponding conditional distribution function by
Fn (x |λ ), then

Fn (x |λ ) = Pr

(

∑n
i=1 λi |zi|

2

∑n
i=1 |zi|

2 ≤ x |λ
)

= Pr

(

n
∑

i=1

(λi − x) |zi|2 ≤ 0 |λ
)

.

It is worthy to keep in mind that this distribution func-
tion is function of λ. Due to the independence of
∑n

i=1 λi |zi,k|
2
/
∑n
i=1 |zi,k|

2, 1 ≤ k ≤ 2Rfb , for a givenλ,
we have

Pr

(

min
k

∑n
i=1 λi |zi,k|

2

∑n
i=1 |zi,k|

2 ≤ x |λ
)

= 1− (1− Fn (x |λ ))
2Rfb

.

Therefore,

EB

[

min

∑n
i=1 λi |zj |

2

∑n
i=1 |zj |

2 |λ
]

=

∫

x · d
[

1− (1− Fn (x |λ ))
2Rfb

]

= λmin +

∫ λmax

λmin

(1− Fn (x |λ ))
2Rfb

dx

and

I(n) =
r

n
Eλ

[

λmin +

∫ λmax

λmin

(1− Fn (x|λ))2
Rfb

dx

]

, (5)

whereλmin andλmax are the minimum and maximum eigen-
values of 1

r
HnH

†
n respectively.

It is difficult to calculate (5) for finiten andm. We let n,
m andRfb approach infinity with fixed ratios and derive lower
and upper bounds onI for large systems.

A. The Asymptotic Lower Bound

The following lemma provides an asymptotic lower bound
on the average interference.

Lemma 1: Following the definitions in Theorem 1, letn, m
andRfb approach infinity simultaneously with fixed ratiosτ , r̄
andc. For any0 < c <∞,

lim
(n,m,Rfb)→∞

I(n) ≥ r̄xc.

Due to the length limit, we only sketch the proof. It is based
on Chebyshev’s inequality and the asymptotic behavior of the
spectrum of a Wishart matrix. Recall that we are dealing with
a distribution function conditioned on the random vectorλ, we
need to define some “good” set ofλ, sayAn

λ
, which will appear

soon. By Chebyshev’s inequality, it can be proved that

Fn (x|λ) = Pr

(

n
∑

i=1

(λi − x) |zi|2 ≤ 0 |λ
)

≤ 1

e−α·0

∫

e−α
∑

(λi−x)|zi|2dµz

= exp

(

−
n
∑

i=1

log (1 + α (λi − x))

)

for ∀α ∈
(

0, 1
x−λ−

t

)

andλ ∈ An
λ

, where the setAn
λ

is defined
by

Anλ , {λ : |ψn (λ, x, α)− ψ (x, α)| ≤ ǫ1}
∩
{

λ :
∣

∣λmin − λ−t
∣

∣ ≤ ǫ2
}

, (6)

ψn (λ, x, α) ,
1

n

n
∑

i=1

log (1 + α (λi − x)) ,

and the positive numbersǫ1 and ǫ2 are small enough. By the
asymptotic behavior of the spectrum of a Wishart matrix, it can
be shown thatPr (An

λ
) → 1.

Now take a smallǫ > 0 such thatxc−ǫ > λ−t . Letx = xc−ǫ.
It can be proved that we can always find anα ∈

(

0, 1
x−λ−

t

)

such thatψ (x, α) > c log 2. Then for∀δ > 0,

(1− Fn (x |λ ))2
cn

≥
(

1− e−n
1
n

∑

log(1+α(λi−x))
)2cn

= exp
(

2cn log
(

1− e−n
1
n

∑

log(1+α(λi−x))
))

(a)

≥ exp
(

−e−n[ψ(x,α)−ǫ1−c log 2] (1 + O (1))
)

(b)

≥ 1− δ, (7)

on An
λ

for n large enough, where

(a) follows by Taylor series expansion, and
(b) follows from the fact that we are able to chooseǫ1 > 0

small enough such thatψ (x, α)− ǫ1 − c log 2 > 0.



Then

Eλ

[

∫ λmax

λmin

(1− Fn (x|λ))2
cn

dx

]

(c)

≥ Eλ

[

∫ xc−ǫ

λ
−

t
+ǫ2

(1− Fn (x|λ))2
cn

dx, An
λ

]

(d)

≥ Eλ

[

∫ xc−ǫ

λ
−

t
+ǫ2

(1− δ) dx, An
λ

]

= (1− δ)
(

xc − λ−t − ǫ− ǫ2
)

· Pr (An
λ
)

→ (1− δ)
(

xc − λ−t − ǫ− ǫ2
)

,

where
(c) follows by reducing the integration domain of a non-

negative function, and
(d) follows from (7) and the fact thatFn (x|λ) is a non-

decreasing function inx.
Therefore,

lim I(n) = r̄ limEλ

[

λmin +

∫ λmax

λmin

(1− Fn (x|λ))2
cn

dx

]

≥ r̄
[

λ−t + (1− δ)
(

xc − λ−t − ǫ− ǫ2
)]

.

By takingδ, ǫ andǫ2 arbitrarily small, we havelim I(n) ≥ r̄xc.

B. The Asymptotic Upper Bound

For the interference minimization criterion in (1), the asymp-
totic upper bound on the average interference is given in
Lemma 2.

Lemma 2: Following the definitions in Theorem 1, letn, m
andRfb approach infinity simultaneously with fixed ratiosτ , r̄
andc. For any0 < c <∞,

lim
(n,m,Rfb)→∞

I(n) ≤ r̄xc.

Due to the length limit, we omit the detailed proof. A sketch
of the proof is given in the below.

To prove the upper bound, roughly speaking, it is sufficient
to show that for∀ǫ > 0 and∀δ > 0, if n is large enough, we
can upper bound(1− Fn (x|λ))2

cn

uniformly by δ, i.e.,

(1− Fn (x|λ))2
cn

< δ for all x > xc + ǫ, (8)

on the “good” setAn
λ

(6). SincePr (An
λ
) → 1,

I(n) = Eλ

[

λmin +

∫ λmax

λmin

(1− Fn (x|λ))2
Rfb

dx

]

≤ r̄

{

Eλ [λmin] + Eλ

[
∫ xc+ǫ

λmin

1dx

]

+Eλ

[

∫ λmax

xc+ǫ

1dx,Ωλ −An
λ

]

+Eλ

[

∫ λmax

xc+ǫ

δdx,An
λ

]}

= r̄ {Eλ [xc + ǫ] + (λmax − xc − ǫ) (1− Pr (Anλ))

+δ (λmax − xc − ǫ) Pr (An
λ
)}

→ r̄ {xc + ǫ+ δ (λmax − xc − ǫ)} .

By taking ǫ andδ arbitrarily small, we have

lim I(n) ≤ r̄xc.

The essential tool used to prove (8) is thetwisted distribu-
tion [4]. This tool is the main tool in proving the lower bound of
Cramer’s theorem [4], a basic result of large deviations. How-
ever, there is a fundamental difference between the standard
large deviation technique and our approach. While in Cramer’s
theorem one considers the sums of i.i.d. random variables,
here we consider the sum of(λi − x) |zi|2, where the random
variables are conditional independent but not identicallydis-
tributed and the condition itself is a random vector. While the
conditional independence requires us to discuss the statistics of
∑

(λi − x) |zi|2 on the setAn
λ

, the non-identical distribution
brings the major difficulty. That is, the twisted distribution may
or may not be well-defined. To overcome this difficulty, we
have to discuss two types ofx and define two types of twisted
distributions respectively.

We define two types ofx and two types of twisted distribu-
tions as follows. Letαx be theα such thatψ̄ (x) = ψ (x, αx).
The set ofx of the first type is defined by

X1 ,

{

x ∈
(

λ−t , λ
+
)

: αx ∈
(

0,
1

x− λ−t

)}

.

The set ofx of the second type is defined by

X2 ,

{

x ∈
(

λ−t , λ
+
)

: αx =
1

x− λ−t

}

.

It can be proved that thexc in Theorem 1 is either inX1 or in
X2. If x ∈ X1, thenαx < 1

x−λ−

t

andEz

[

e−α
∑

(λi−x)|zi|2
]

is
well defined on the setAn

λ
with ǫ2 small enough. Then we are

able to define a twisted distribution measure

dµ̃z ,
e−α

∑

(λi−x)|zi|2

Ez

[

e−α
∑

(λi−x)|zi|2
]dµz,

wheredµz is the probability measure for the random vectorz.
However, ifx ∈ X2, Ez

[

e−α
∑

(λi−x)|zi|2
]

is not well defined
on the setAn

λ
no matter how smallǫ2 > 0 we choose. For this

case, we have to define the twisted distribution in a “truncated”
way. Define theM -truncated measure forz as

dµM
z

=
n
∏

i=1

1zi∈[0,M ]dµz.

Then theM -truncated twisted distribution measure is defined
by

dµ̃M
z

,
e−α

∑

(λi−x)|zi|2

EµM
z

[

e−α
∑

(λi−x)|zi|2
]dµM

z
.

It can be verified thatdµ̃Mz is always well defined on the set
An

λ
for a finiteM > 0. In the proof of (8), we need to choose

anM sufficiently large.
With the twisted distributions, (8) can be proved. Here, we

only outline the proof forxc ∈ X1, the simpler case. Assume
that xc ∈ X1. For anǫ > 0 small enough, letx = xc +

ǫ
2 . It



can be proved thatx ∈ X1 and ψ̄ (x) = ψ (x, αx) < c log 2.
For ∀δ1 > 0 and ay > x = xc +

ǫ
2 , it can be proved that

Fn (y|λ) ≥ Pr
(

∑

(λi − x) |zi|2 ≤ nǫ3

)

(1− δ1)

on the setAn
λ

with small enoughǫ3 and large enoughn. But
for any givenǫ3 > 0, a further lower bound can be derived as
follows.

Pr
(

∑

(λi − x) |zi|2 ≤ nǫ3

)

(a)

≥ Pr
(

−αx
∑

(λi − x) |zi|2 ∈ n (−δ2, δ2)
)

(b)

≥ e−nδ2
∫

Bz

e−αx

∑

(λi−x)|zi|2dµz

(c)
= e−nδ2Ez

[

e−αx

∑

(λi−x)|zi|2
]

∫

Bz

dµ̃z

(d)

≥ exp {−n [δ′ + ψ (x, αx)]}Pµ̃z
(Bz) ,

on the setAn
λ

with large enoughn, where

(a) holds by choosingδ2 < ǫ
αx

,
(b) holds by defining

Bz ,

{

z : −αx
∑

(λi − x) |zi|2 ∈ n (−δ2, δ2)
}

,

(c) follows from the definition of the twisted distribution
for x ∈ X1, and

(d) follows by lettingδ′ = ǫ1+δ2, wherePµ̃z
(Bz) is the

probability ofBz under the twisted distribution.

We want to calculatePµ̃z
(Bz). By studying the asymptotic

behavior of d
dα

log Ez

[

e−αx

∑

(λi−x)|zi|2
]

, it can be proved

that for ∀δ′′ > 0, Pµ̃z
(Bz) ≥ 1− δ′′ on the setAn

λ
with large

enoughn. Therefore, for∀δ′′′ > 0,

Fn (y|λ) ≥ e−n[ψ̄(x)+δ
′] (1− δ′′′)

on the setAn
λ

with large enoughn. Now we chooseδ′ small
enough such that̄ψ (x) + 2δ′ < c log 2. Then it can be proved
that, for∀δ > 0,

[1− Fn (y|λ)]2
cn

≤ exp
[

− (1− δ′′′) e−n[ψ̄(x)+δ
′−c log 2]

]

< δ

on the setAn
λ

with large enoughn. Without loss of generality,
we takey = xc + ǫ > x = xc +

ǫ
2 . SinceFn (y|λ) is a non-

decreasing function, we have uniform boundedness,

[1− Fn (y|λ)]2
cn

< δ for all y > xc + ǫ

on the setAn
λ

with large enoughn. This is (8), what we want.

IV. D IRECTION MATCHING CRITERION

In this section, we shall analyze the performance correspond-
ing to the direction matching criterion in (2). Again, by letting
n,m andRfb approach infinity simultaneously with fixed ratios,
we derive the exact performance limit. The result is given in
Theorem 2.

Theorem 2: Following the definitions in Theorem 1, letn,
m andRfb approach infinity simultaneously with fixed ratios
τ , r̄ andc. For any0 < c <∞,

lim
(n,m,Rfb)→∞

I(n) =

{

λ−t (1− 2−c) + λ̄2−c if n ≤ m
xc if n > m

,

(9)
where λ̄ = m

n
, xc < m

n
satisfiesD (µr̄ ‖ µxc

) = c log 2 and
D (µr̄ ‖ µxc

) , r̄ log r̄
xc

+ (1− r̄) log 1−r̄
1−xc

is known as the
relative entropy.

Remark 2: Elementary calculations show that the asymptotic
average interferencelim I, as a function ofc, converges to
the average eigenvalue and the minimum eigenvalue asc →
0+ and c → ∞ respectively. These results are consistent with
intuitions.

The proof of Theorem 2 is based on the observation that

I(n) = r̄

n−d
∑

i=1

EU

[

EB
[

s
†
1uiu

†
i s1

]]

EΛ [λi]

+r̄
n
∑

i=n−d+1

EU

[

EB
[

s
†
1uiu

†
is1

]]

EΛ [λn] .

whereλ1 ≥ · · · ≥ λn are the singular values of1
r
HnH

†
n and

ui is the singular vector correspondingλi. For n ≤ m (full
rank) case,d = 1 with probability 1. We select the signature
s1 to matchun. The correspondingEU

[

EB
[

s
†
1unu

†
ns1

]]

can
be calculated based on our previous results in the Grassmann
manifold [5]. For n > m (deficient rank) case,d = n − m
with probability 1. We need to choose the signatures1 to
match the plane generated byUd = [un−d+1 · · ·un]. By large

deviation technique, the correspondingEU

[

EB
[

s
†
1UdU

†
ds1

]]

can be evaluated. The detailed derivation is given in [2].

V. SIMULATIONS AND DISCUSSION

Fig. 1 shows the simulation results to demonstrate the
asymptotic performance formulas (4) and (9) for both criteria.
Fig. 1(a) and 1(b) are forn ≤ m (full rank) and n > m
(deficient rank) cases respectively. From the simulations,we
can observe that the simulated average interference for both
criteria (x markers for interference minimization and circles
for direction matching) converges to the asymptotic results (the
solid line for interference minimization and the dashed line for
direction matching) asn, m andRfb approach infinity with
fixed ratios. Simulations also show that direction matchingis a
sub-optimal criterion.

We also compare our formula with the bound in [1], denoted
as SH bound in Fig 1. In [1], an asymptotic lower bound on the
average interference is given for the interference minimization
criterion. It is plotted as the dotted line in Fig. 1. Note that when
τ = 2 andn ≤ m, with infinite feedback rate (c = ∞), I(n)

should converge to the minimum eigenvalue
(

1−
√
2
)2 ≈ 0.17.

The bound in [1] is below this value even whenc is relatively
small (c ≥ 2.5 in Fig 1). Generally speaking, the bound in [1]
under-estimates the interference while our asymptotic formula
(4) gives the exact performance limit.
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Fig. 1. Simulations for both signature selection criteria
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Fig. 2. Comparison of two types of interference matrices

As mentioned in the system model section, we assume that
the interference matrixS has i.i.d. complex Gaussian entries
with zero mean and variance1

n
for fair comparison, while

it is more natural to assume thatS has independent and
isotropically distributed unitary complex columns. Fig 2 gives
the difference between these two statistical assumptions,where
the simulations are based on the interference minimization
criterion. For smalln andm, these two different assumptions
give two different results. However, asn and m increase,
for example,n = 16 and m = 32, the difference becomes
indistinguishable. Indeed, the asymptotic statistics of these two
types of random matrices are identical. The results (4) and
(9) are the exact asymptotic performance for both interference
statistical assumptions.

VI. CONCLUSION

In this paper, we quantify the average interference as a
function of finite feedback rate for CDMA signature optimiza-
tion problem. Two signature selection criteria, i.e., interfer-
ence minimization and direction matching, are analyzed. By
letting the processing gain, number of users and feedback
bits approach infinity with fixed ratios, we derive the exact
asymptotic formulas to calculate the average interferencefor
both criteria respectively. The asymptotic results are valid for
both the Gaussian interference matrix and the interference
matrix with independent and isotropically distributed columns.
Furthermore, the corresponding analysis can be extended to
SINR performance evaluation for both match filter and linear
MMSE receivers.
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