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Abstract—This paper analyzes the gains in delay performance
resulting from network coding. We consider a model of file
transmission to multiple receivers from a single base station.
Using this model, we show that gains in delay performance from
network coding with or without channel side information can
be substantial compared to conventional scheduling methods for
downlink transmission.

I. INTRODUCTION
With the introduction of third-generation cellular systems

over the last decade, there has been both a significant increase
in the capacity of wireless networks and a growing use of wire-
less communication for data transmission. An essential feature
of the newly emerging wireless networks is the transmission
of files to multiple (potentially heterogeneous) receivers, as
exemplified by transmission of video or music files.
While the most common approach to data transmission

builds on the scheduling approach, where information is
transmitted to one of multiple receivers as a function of
their channel conditions, it has also been recognized that
broadcasting to multiple receivers using network coding may
be more efficient for utilizing the capacity of the network (c.f.
[1, 8, 7, 9]). Although these throughput gains may appear to
imply gains in delay through Little’s law, this is not the case
since coding is performed over large blocks and each packet in
the block must await the completion of the whole block before
it can be decoded. Despite considerable practical interest in the
use of network coding in wireless communication systems,
gains in delay performance resulting from network coding
relative to traditional scheduling have not been analyzed or
quantified. The best setting to investigate such gains is the
rateless transmission scenario, where data of fixed length is
to be communicated over the channel. In this context, the
comparison in delay performance between traditional schemes
and network coding is performed through the completion times
of the whole data.
The objective of this paper is to develop a model to study

delays in file downloads with network coding and quantify the
gains resulting from network coding relative to the traditional
scheduling methods. We consider downlink transmission of
(multiple) files from a single base station to multiple receivers
with varying channel conditions. The varying channel con-
ditions are modeled as stochastic changes in ON/OFF state
of the channel. We analyze the model both when Channel

Side Information (CSI) about the state of receiver channels is
available to the base station and when transmission must be
carried without such information.
Our analysis shows that, as well as the already well-

understood capacity gains, network coding leads to significant
improvement in delay performance both with and without CSI.
This is potentially important, since depending on the applica-
tion, delay performance may be critical to the satisfaction of
the users. Equivalently, with network coding more users can
be supported with the same delay performance of scheduling.
Our paper differs from existing work in this area by ex-

plicitly modeling delay performance in file downloads and
allowing for transmission without CSI, and to the best of our
knowledge, presents the first quantification of gains in delay
performance resulting from network coding. Previous research
has instead focused on either optimal scheduling with time-
varying channel conditions (see [13, 14]), or on the capacity
gains from network coding (see [11, 5, 6, 12, 10, 15]) under
various different scenarios.
The rest of the paper is organized as follows: Section II

describes the model for downloading (multiple) files to mul-
tiple receivers and introduces different transmission strategies
considered. Section III focuses on broadcasting a single file
and investigates the performance of network coding compared
to the performance of delay optimal scheduling strategies. We
show analytically and through simulations that using network
coding results in significant gains in delay performance relative
to delay optimal scheduling strategies both with or without
CSI. In Section IV, we focus on the multiple unicast scenario.
We show that in the presence of CSI, network coding achieves
optimal performance when no coding is allowed across sep-
arate files. Moreover, it provides considerable delay gains
compared to scheduling when CSI is not available. This last
point of significant delay gains is particularly interesting given
that network coding does not provide any capacity gains for the
single hop unicast scenario. We complete with final remarks
and ideas for future work in Section V.

II. SYSTEM MODEL

In this work, we consider the cellular downlink scenario
where the base station holds a set of files, F . The set of
receivers is denoted by N . File f ∈ F is demanded by the



set Nf ⊆ N of receivers1. We are interested in the minimum
average time required to complete the download of all the files
by all the interested receivers, where the transmissions have
to be done over a time varying channel. We seek an answer
to this problem with and without the availability of CSI at
the base station and with and without the possibility of linear
coding in the manner we will describe.
A given file f ∈ F is composed of Kf packets, where

Packet-k of file f is referred to as Pf,k, which is a vector2 of
lengthm over a finite field Fq. It is assumed that transmissions
occur in time slots, each of which is of duration just long
enough to accommodate a single packet transmission. The
channel between the base station and the ith receiver is a
randomly varying ON/OFF channel. We let Ci[t] ∈ {0, 1}
denote the state of user i’s channel in slot t. We assume that
Receiver-i successfully receives the packet transmitted at slot
t if Ci[t] = 1, and it cannot receive anything if Ci[t] = 0.
We will take each Ci[t] to be a Bernoulli random variable
with mean ci that are independent across time and across
receivers. The channels of different receivers can in general be
asymmetric. However, in parts of the subsequent analysis we
will restrict our attention to symmetric cases in order to have
tractable formulations. The presence of CSI implies that the
channel state vector, C[t], is known at the transmitter at the
beginning of slot t. The system model is depicted in Figure 1.
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Fig. 1. System model

Let us use P[t] to denote the packet chosen for transmission
in slot t. If the base station is not allowed to code, then at any
given slot it must transmit a single packet from one of the files.
Thus, we have P[t] ∈ {Pf,k}

{k=1,··· ,Kf}
{f∈F} . This is the typical

mode of transmission considered in literature. We will refer
to this mode as the Scheduling Mode (or simply Scheduling).
If coding is allowed, then in a slot, say t, any linear

combination of the packets can be transmitted. Specifically,
we have

P[t] =
∑

f∈F

Kf∑

k=1

af,k[t]Pk,f ,

where af,k[t] ∈ Fq for each f ∈ F and k ∈ {1, · · · ,Kf}. The
transmitter chooses the coefficients {af,k[t]} at every time slot
1We will occasionally use F, N and Nf to denote the cardinalities of the

sets F ,N and Nf , respectively.
2We will consistently use boldface letters to denote vectors.

t. This mode of transmission will be referred to as the Coding
Mode (or simply Coding) henceforth.
Given the above model, we are interested in minimizing the

amount of time necessary for all the files to be transmitted to
all the interested receivers. We will refer to this metric as the
completion time. In particular, we would like to find answers
to the following questions:

• If we restrict ourselves to scheduling policies, then what
is the policy that minimizes the average completion time?

• If coding is allowed, then what is the best policy and
what is its delay performance?

• How do these two policies’ performances compare?
We seek answers to these questions under various scenarios.

In Section III, we focus on the case of a single file demanded
by all the receivers (broadcast scenario). Then, in Section IV,
we will consider the other extreme of each receiver demanding
a unique file (multiple unicasts scenario). We will discuss
extensions in Section V.

III. BROADCASTING A SINGLE FILE
In this section, we are concerned with the transmission of

a single file to all the receivers. Since |F| = 1, we will drop
the subscript f in our notation, and denote Packet-k as Pk

and the size of the file as K. We will study the minimum
mean completion time of the file using coding in Section III-
A, where we will observe the asymptotic optimality of coding
over all possible strategies. Then, we will characterize the opti-
mal scheduling strategy with and without CSI in Section III-B.
Comparison of the findings will be presented in Section III-C
along with a discussion on the strengths and weaknesses.

A. Coding with and without CSI
It has been shown in the literature that linear coding is

sufficient to achieve the maximum achievable rate for multicast
networks [8]. Noticing that the broadcast scenario is a special
instance of a multicast transmission, we consider the set of
policies where the transmitted packet in slot t is given by

P[t] =
K∑

k=1

ak[t]Pk, with ak[t] ∈ Fq for each k ∈ {1, · · · ,K}.

We will consider the following randomized strategy (c.f. [4]).
RANDOMIZED BROADCAST CODING (RBC):

While (File is incomplete)
Pick ak[t] uniformly at random from Fq for each k;
Transmit P[t] = K

k=1 ak[t]Pk,;
t ← t + 1;

Each receiver keeps the incoming packets that it could
receive and then decodes all the packets {Pk}{k=1,··· ,K} as
soon as K linearly independent combinations of the packets
are collected (c.f. [4] and references therein). Random linear
coding arguments imply that the expected number of slots
before K linearly independent combinations can be collected
with RBC is given by

K∑

k=1

1
(1− (1/q)k)

.



This expression can be upper-bounded byKq/(q−1), which in
turn can be made close to K even with reasonably low values
of q. Thus, for all practical purposes, for a large enough field
size q, it is sufficient for each receiver to be active K slots
on average before it can decode the whole file. Notice that
information theoretically it is impossible to send the file with
less than K transmissions, and so RBC asymptotically (in q)
achieves the best possible performance over all strategies.
Another important issue is the overhead related with this

mode of transmission. Coding requires $K log2 q% bits of
overhead to contain the coefficients of the associated linear
combination, whereas the packet size is $m log2 q% bits. Thus,
for m >> K, the overhead is negligible. Henceforth, we will
consider this scenario, and ignore the overhead.
Notice that RBC is not only easy to implement, but also

requires no knowledge of the channel state vector, and as-
ymptotically achieves the smallest mean completion time over
all policies. We will see in Section III-B that the optimal
scheduling policy is much more difficult to characterize, even
for the symmetric channel conditions.
Next, we find the mean completion time expression for

RBC. Let us define the random variable Yi as the number
of slots before Receiver-i’s channel is ON K times, for
i = 1, · · · , N. Then, we can claim that the mean completion
time is equal to E

[
max

i∈{1,·,N}
Yi

]
, which is given in the next

proposition.

Proposition 1. Let T1 denote the completion time of the opti-
mal coding policy given above. Then, we have

E[T1] = K +
∞∑

t=K

[
1−

N∏

i=1

(
t∑

τ=K

(
τ − 1
K − 1

)
c̄(τ−K)
i cK

i

)]
,

where n
m

gives the number of combinations of sizem of n

elements, and c̄i ! (1− ci).
Proof: The proof follows from combinatorial arguments

and is omitted due to space constraints.

B. Scheduling Mode
In this mode, unlike in the coding mode, the presence or lack

of CSI affects the performance. Hence, these two cases will
be studied separately. Throughout, we will assume symmetric
channels for tractability.
1) Scheduling without CSI: To minimize the load of uplink

transmission which is typically the bottleneck in cellular
systems, we assume that the transmitter receives feedback
from each receiver only at the time when it has just received
the whole file. Notice that in this case, all packets have equal
priority. Also, since the channels are independent and identi-
cally distributed (i.i.d.) over time and users, one of the optimal
scheduling policies is Round Robin (RR), where Packet-k is
transmitted in time slots (mK + k) for m = 0, 1, · · · until all
the receivers get the file.
To compute the mean completion time of the above RR

scheduler, we define Xi
k to be the number of transmissions of

Pk before it is received by Receiver-i. Then,

Y i ! max
k∈{1,··· ,K}

{
KXi

k + k
}

gives the time slot when Receiver-i receives the whole file.
Finally, T2 ! max

i∈{1,··· ,N}
Y i gives the completion time of the

algorithm. Its mean is described in the next proposition.

Proposition 2. Under symmetric channel conditions (i.e. ci =
c ∈ (0, 1) for all i), we have

E[T2]
K

= γ +
∞∑

t=1

[
1−

(
1− (1− c)t

)KN
]
,

for some γ ∈ (1/2, 1).
Proof: The upper bound of 1 for γ is due to the fact

that k ≤ K. The lower bound of 1/2 follows from stochastic
coupling arguments and heavily relies on the symmetry of
the channel distributions. In particular, consider a sample path
of the channel state process, ω ! (C[1],C[2], · · · ). We use
i(ω) to denote the receiver that was the last to complete the
file, and k(ω) to denote the index number of the last packet
that Receiver-i(ω) received. With our earlier notation, Y (ω)
gives the completion time of the file at Receiver-i(ω) under
the given sample path. Also, notice that we have Y (ω) =
Xi(ω)

k(ω)(ω)K + k, for some integer Xi(ω)
k(ω) that depends on ω.

Next, for each sample path ω that leads to k(ω) ∈
{1, · · · , 'K/2(}, we will construct another sample path ω̃
that has the same probability of occurrence as ω, but leads
to Y (ω̃) = Xi(ω)

k(ω)(ω)K + (K − k(ω)). This implies that

E[Y ] ≥ (K + 1)
2

+ KE[max
i,k

Xi
k]. (1)

The construction of ω̃ = (C̃[1], C̃[2], · · · ) follows the
following rule:

C̃j [rK + l] =






Cj [rK + (K − l)], if r = Xi(ω)
k(ω)(ω),

j = i(ω),
l ∈ {k(ω),K − k(ω)},

Cj [rK + l], otherwise.

It is easy to see that under symmetric conditions this sample
path has the properties listed above.
Next, we would like to find the second term in (1). Due to

i.i.d. assumptions, Xi
k are also i.i.d. with distribution P(Xi

k =
m) = (1 − c)m−1c, m = 1, 2, · · · . Since this distribution is
independent of i and k, we can compute

E[max
i,k

Xi
k] =

∞∑

t=1

[
1−

(
1− (1− c)t

)KN
]
. (2)

The proof is complete once (2) is substituted into (1).
2) Scheduling with CSI: Before we characterize the optimal

scheduling rule with CSI, we demonstrate the suboptimality
of scheduling compared to coding with the following simple
example.
Example 1: Consider the case of K = 3 and N = 3,

i.e. three packets are to be broadcasted to three receivers.



Consider the channel realizations C[1] = (0, 1, 1),C[2] =
(1, 0, 1),C[3] = (1, 1, 0), and C[4] = (1, 1, 1). Thus, in the
first four slots, each receiver can hear the transmission three
times. The optimal scheduling rule would transmit P1,P2,P3

in the first three slots, leaving Receiver-i in demand for Packet-
i in the fourth slot. Clearly, no scheduling rule can ever com-
plete the file download at all three receivers in the fourth slot.
With coding, on the other hand, the following transmissions
will complete the transmissions: (P1 +P2), (P2 +P3), (P1 +
P3), (P1 + P2 + P3) (see Table I). It is not difficult to see
that coding will never require more slots than is necessary for
scheduling for all other realizations. Hence, we achieve strictly
better completion times with coding.

t = 1 t = 2 t = 3 t = 4

R1 − P2|(P2+P3) P3|(P1+P3) ?|(P1+P2+P3)

R2 P1|(P1+P2) − P3|(P1+P3) ?|(P1+P2+P3)

R3 P1|(P1+P2) P2|(P2+P3) − ?|(P1+P2+P3)

TABLE I. Demonstration of Example 1:Ri corresponds to Receiver-i, ‘−’
denotes OFF channel states, and the entry a|b gives the optimal trans-
missions with scheduling and coding, respectively. With scheduling, no
choice of {Pi} in slot 4 can complete the file at all the receivers for the
given channel realization.

OPTIMAL SCHEDULING FOR SYMMETRIC CHANNELS:
We use Dynamic Programming to find the characterization

of the optimal scheduling policy for symmetric channel con-
ditions, i.e. ci = c for all i ∈ {1, · · · , N}. Given C[t], the
scheduler can choose any one of the packets {P1, · · · ,PK}
for transmission. A little thought reveals the need of memory
about the previous receptions at each of the receivers. For this
purpose, we define Mi,k[t] to be the memory bit associated
with Packet-k and Receiver-i. In particular, Mi,k[t] = 1 (or
0) implies that Receiver-i has not received (or has received)
Packet-k in the slots 1, · · · , t−1. Moreover, we will use M[t]
to denote the matrix of memory bits [Mi,k[t]]k=1,··· ,K

i=1,··· ,N .
We let Π denote the set of feasible stationary policies

that can be implemented by the base station. Each policy
π ∈ Π defines a mapping from the pair (M[t],C[t]) to the
set {1, · · · ,K} describing the packet to be sent at time t.
Note that the policy is stationary in the sense that it is only
a function of the matrix and channel conditions at the time.
The i.i.d. nature of the arrivals and departures imply that this
is the optimal policy among all policies, including those that
are time dependent.
To characterize the optimal policy we let Jπ(M,C) =

E [# slots to reach θ with policy π | M[0] = M, C[0] = C] ,
where θ denotes the zero matrix. Then, J$(M,C) !
min
π∈Π

Jπ(M,C) is the minimum completion time of the
optimal algorithm if it starts from M and the first channel is
C. Also, π$(M,C) ! arg min

π∈Π
Jπ(M,C) gives the optimal

policy.
Observe that once we solve J$(M,C) for all C, we can

compute J$(M) ! EC [J$(M,C)] , where the expectation
is over the channel realizations. Thus, J$(M) denotes the
mean completion time of the optimal algorithm starting from

M. Hence, we are interested in J$([1]N×K) where [a]N×K

denotes the all a matrix of dimensions N ×K.
Before we write the recursion for J$(M,C), let us define

the function f(·) where M̂ = f(M,C, k) implies that

M̂i,k = Mi,k −Mi,kCi ∀i ∈ {1, · · · , N},
M̂i,j = Mi,j ∀i ∈ {1, · · · , N}, j ,= k.

This function describes the next state of the memory matrix
given that Packet-k is served and the channel matrix is C in
the current slot. Then, we can write the following recursion:

J$(M,C) = arg min
k∈{1,··· ,K}

{
J$(f(M,C, k)) + 1{M %=θ}

}
,

where 1{A} is the indicator function of the event A.
The monotone nature of the f(·) function enables us to

compute J$(M,C) and π$(M,C) recursively starting from
the base state J$(θ) = 0 (c.f. [2]). This DP formulation
characterizes the optimal policy and its performance, and in
theory it can be computed starting from a 1×1 matrix and in-
creasing N and K successively. However, as N and K grows,
the necessary number of operations grows exponentially and
quickly becomes impossible to handle. Thus, we propose an
efficient heuristic policy below and simulate its performance
for comparison.
HEURISTIC POLICY:
We have observed in the above discussions that the optimal

scheduling rule has a complicated structure. Yet, it is possible
to find practical scheduling algorithms that will perform close
to the optimal. Here, we describe a heuristic policy which we
believe will provide near optimal performance.
At any given time slot t, let us denote the set of nodes with

an ON channel (also called the set of active receivers) by
A[t] ! {i ∈ {1, · · · , N} : Ci[t] = 1}. Under the symmetric
conditions that we assumed, the packet that would provide the
most benefit should intuitively be transmitted over the channel.
We propose that the benefit of a packet be measured in the
number of nodes in A[t] that has not yet received that packet.
The underlying idea is to transfer the maximum number of
useful packets over the channel at any given time. These
remarks point to the heuristic algorithm given next.

HEURISTIC BROADCAST SCHEDULING (HBS):
If (t = 1)

Mi,k[t] ← 1 for all k ∈ {1, · · · , K}, i ∈ {1, · · · , N};

While
K

k=1

N

i=1

Mi,k[t] > 0

K[t] ! {k ∈ {1, · · · , K} : ∃i ∈ A[t] with Mi,k[t] = 1};
If (K[t] $= ∅)

T [t] ! arg max
k∈K[t]

i∈A[t]

Mi,k[t];

Pick a k! ∈ T [t];
Mi,k! [t] ← 0 for all i ∈ A[t];
Transmit Packet-k! over the channel at slot t;

t ← t + 1;

In the algorithm, each packet in K[t] has at least one receiver
with an ON channel in slot t which demands that packet.
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Clearly, those packets that are not in K[t] should not be chosen
for transmission. If K[t] ,= ∅, then we define T [t] to be the
set of packets in K[t] that yield the most benefit in slot t.
Then, a packet from T [t] is picked for transmission in slot
t. In our simulations, we considered a random picking of
one of the packets in T [t]. However, the performance can be
slightly improved by using more sophisticated methods. For
example, for N = 2, the packet picked from T [t] may be
chosen amongst those packets that has already been received
by the OFF receiver. Then, every time a receiver is ON, it
will receive a useful packet until all its packets are complete.
Thus, this algorithm gives the optimal policy for N = 2.
The generalization of the picking method to general K is
complicated and requires increasing memory to operate. On
the other hand, the complexity of HBS at each iteration of the
loop is O(KN) and requires no extra memory, and hence it
is relatively easy to implement.

C. Comparison

In this section, we perform numerical computations and
simulations to compare the performance of various schemes
we have discussed so far. A typical scenario is depicted in
Figure 2, where a file of size 30 packets is to be transmitted
to a varying number of receivers, where each channel is ON
or OFF equiprobably at every time slot.
The figure demonstrates the strength of the coding policy

to the scheduling policy with and without CSI. We further
observe that as N increases the advantage of using coding
improves.
In this section, we have seen that either with or without

CSI, coding provides a considerable gain in the mean delay to
download a given file to multiple receivers over a time-varying
medium. Moreover, its operation is significantly easier than the
scheduling policy. However, it requires an additional decoding
operation at the receivers, which may or may not be critical

depending of the file sizes and the computation capacity of
the receivers.

IV. MULTIPLE UNICAST TRANSMISSIONS

In this section, we consider the scenario where N receivers
with symmetric channel conditions demand a unique files, i.e.
F = N. In this case, it is not clear whether coding will have
the dominating behavior as it did in the broadcast scenario.
Again, the availability of CSI is important. We will first study
the scheduling case and then move on to the coding case.

A. Scheduling for Multiple Unicasts

1) Scheduling without CSI: Without CSI, the obvious op-
timal scheduling is again Round Robin, except that it must
be performed across files and across packets in each file. In
particular, in the first round the first packet of each file is
transmitted one after another, and in the next round the second
packets are transmitted consecutively. When the end of a file
is reached, we move to the first packet and continue until all
the packets of a file is received by its receiver. Only then we
remove that file from the RR scheduler and continue with the
remaining ones.
The mean delay performance of this scheduling rule is easy

to compute using recursive arguments, which is omitted here
since it does not add any significant insights to our analysis.
2) Scheduling with CSI: Here, the constraint is to serve at

most one receiver at every time slot. This problem is a special
case of a problem studied by Tassiulas and Ephremides in
[13] with no arrivals to the system. The following policy is
introduced in [13].

LONGEST CONNECTED QUEUE (LCQ):
t ← 0;
Qi ← Ki for all i ∈ {1, · · · , N};
Do

t ← t + 1;
i![t] ← arg max

1≤i≤N
{Ci[t]Qi};

if(Ci! [t] $= 0)
Transmit Pi!,Qi! ;
Qi! ← max(0, Qi! − 1);

While
N

i=1

Qi > 0 ;

Return t; // Completion time

In the policy, Qi is used both as a pointer to the index of
the next packet to be transmitted to Receiver-i, and also as
the number of packets yet to be transmitted to Receiver-i.
Thus, LCQ is a myopic policy that favors the receiver with
the maximum number of packets to be received among all
connected receivers. We repeat the result of [13] for future
reference.

Proposition 3 ([13]). Under symmetric channel conditions
(i.e. ci = c for all i), LCQ is minimizes the delay over all
scheduling policies. In other words,

TLCQ .st Tπ,



where TLCQ denotes the completion time under the LCQ
policy and π is any other feasible scheduling policy3.
This result is very strong and implies that E[TLCQ] ≤

E[Tπ] for any feasible scheduling policy π.

B. Coding for Multiple Unicasts
A deep understanding of achievable rates for multiple uni-

cast sessions in a network is still an open problem. In general,
it is not clear whether network coding should be performed,
and if it should what the strategy must be. We will tackle this
problem for the downlink model at hand.
We define the set of coding classes that partitions F (or

equivalently N ) into J subsets. We use Cj to denote the files
(or equivalently receivers) in Class-j.We set the restriction that
only those files within the same class will be linearly coded
with random coefficients as in RBC, while files of different
classes will not be mixed. Notice that for each class, say
Cj , this strategy effectively results in a single file of length
Kj ! ∑

f∈Cj
Kf that is demanded by bj ! |Cj | distinct

receivers. Hence, the multiple unicasts problem is converted
into a special case of multiple multicasts with each multicast
having a disjoint set of receivers. Notice that the description
of the strategy is yet incomplete, because we must describe
how to “schedule” the transmissions of different classes. We
will investigate this question with and without CSI.
1) Coding without CSI: In this case, as in Section III-B.1,

we assume that each receiver informs the base station when
it can decode its own file, which in turn implies that it can
decode all the files within its class. The optimal policy is again
going to be of the form of Round Robin over the coding
classes. We will consider the case of bj = b and Kj = K̃
equal for all j. If J denotes the total number of coding classes,
then only a combination from Cj will be transmitted in slot
(mJ + j) for m = 0, 1, · · · until all the receivers get their
files.
Notice that the analysis of the RR scheduler of Section III-

B.1 does not directly apply to this case, because here once all
the receivers of a class, say Cj , decode their file, then that class
can be extracted from the round robin cycle. Nevertheless,
similar analysis based on recursive formulations can be used
for this setting. This analysis is omitted here due to space
constraints. We remark that without CSI the gain in grouping
subsets of users as described above is only due to the decreas-
ing size of the cycles as groups complete their receptions. If
the period of each cycle were kept constant at its starting value
of J throughout the operation, then grouping would have no
effect on the average delay performance, because in such a
scenario we would be comparing the expected number of slots
before K ON channels are observed to 1/b times the expected
number of slots before bK ON channels are observed.
2) Coding with CSI: In the presence of CSI, we must

determine the optimal partitioning of the files {Cj}, and also
find the optimal scheduling policy across these classes. The
following proposition finds the optimal policy using stochastic
coupling arguments.
3"st is a stochastic ordering as described in [13].

Proposition 4. Under the symmetric channel conditions (i.e.
ci = c for all i ∈ N ), the mean delay minimizing partitioning
is obtained when bj = 1 for all j, and the optimal policy is to
implement LCQ.

Proof: Consider any given partitioning of the files, say
P = {Cj}J

j=1, and let πP denote the optimal policy for this
partitioning, which is not known in general. Also, let TπP

be the random variable that denotes the completion time of
all the files under the policy πP . In other words, TπP is the
first slot when each receiver in Class-j received Kj linear
combinations of the packets from within their class, for all j.
We use ω = (C[1],C[2], · · · ) to denote a sample path of the
channel state process. Notice that the policy and ω determines
TπP (ω).
Next, we will define a new policy π̃ and show that it satisfies

T π̃(ω) ≤ TπP (ω) for all feasible ω. For a given ω, if πP
serves Class-j in slot t, then π̃ will send only the head-of-
line packet of one of the connected receivers in the same
class which received the minimum service so far. In other
words, amongst the connected receivers in Class-j, only the
receiver that has the maximum number of remaining packets
is served. Notice that this policy does not do any coding, and
hence requires Receiver-f in Class-j to successfully receive
Kf packets of its file instead of Kj packets as in πP .
To see that T π̃(ω) ≤ TπP (ω), observe that whenever Class-

j is served under πP , at most one packet (or one degree of
freedom) can be received by each receiver in that class. Thus,
before all of its receivers can decode their own packet, Class-j
must be served at least Kj times. But, with π̃ we can send a
single degree of freedom to one of the connected receivers in
Class-j whenever that class is served under πP . Since for each
f ∈ Cj , onlyKf degrees of freedom are required for Receiver-
f with π̃, all the receivers complete their reception when
Class-j is served Kj =

∑
f∈Cj

Kf times. These arguments
prove that for any feasible sample paths the completion of the
new policy is not larger than that of πP for any partition P.
To complete the proof, we need to show that TLCQ . T π̃.

To that end, we note that π̃ is actually a scheduling policy,
where at each slot a single packet is transmitted over the
channel. Thus, an application of Proposition 3 completes the
proof.

C. Comparison
In this section, we compare the typical performance of

various policies for reasonable parameters. We take bj = b for
all j andKf = K for all f ∈ F .Moreover, we letK = 30 and
N = F = 12 and study the mean completion time behavior
of the scheduling and coding strategies with and without CSI.
Regarding the channel connectivity statistics, we assume that
ci = 1/2 for all the channels. Figure 3 depicts the simulation
results of the policies discussed above for varying number
of classes. In the figure, we observe that the performance
of the LCQ scheduler serves as a lower bound as we have
proved in Proposition 4. Since the optimal coding policy is
not specified for an arbitrary b, in the simulation we use the
following heuristic policy: at each time slot among the classes
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with the maximum number of connected receivers, the policy
serves the class with the maximum degrees of freedom yet to
be transmitted. This policy, when b = 1 is the same as the LCQ
policy. For this policy, we observe that the mean delay value
achieved decreases to half its value when b is decreased from
12 to 1.We also observe that in agreement with our arguments,
the performance of the coding without CSI improves as b
decreases, but this decrease is rather insignificant.
Without CSI, the performance of scheduling is significantly

worse than the coding solution. In this particular case, we
observe almost a threefold delay with scheduling as opposed
to coding. Given that the single-hop multiple unicasts scenario
does not improve the capacity of the channel, the presence of
such a considerable delay gain is particularly striking.
The fact that both with and without CSI the performance of

the coding strategy improves as b goes to one implies that for
unicast transmissions, it is best to code within files, but not
across them.

V. DISCUSSIONS AND FUTURE DIRECTIONS
In this work, we have introduced a simple model where

delay performance of network coding can be investigated
and compared to the traditional method of scheduling. Under
various scenarios, we have identified the optimal policies and
derived analytical expressions for the delay expressions. We
observed that with easily implementable coding strategies,
significant delay gains can be obtained.
We have analyzed two scenarios: the case when all receivers

demand a single file (broadcast case), and the case when
each receiver demands a different file (multiple unicasts case).
Under both scenarios, when the channel side information is not
available we have observed the advantage of using random
coding strategies over pure scheduling approaches. However,
when CSI is present, it turned out that coding gives consid-
erable gains for the broadcast scenario, whereas scheduling
is the best policy for the multiple unicasts scenario under

symmetric channel conditions. The assumption of perfect CSI
is unrealistic for actual systems. Instead, if we assume the
availability of CSI for a fraction of the time, then by using
random coding, significant gains can still be achieved, whereas
scheduling will be more vulnerable to the lack of CSI.
One rule of thumb we obtained from our analysis was to

code across packets within a file, but to avoid coding across
files. This observation will help us in finding the optimal policy
for the general multiple multicast scenario.
An important extension is to consider more general channel

statistics. More interestingly, one can consider a fully con-
nected network where each of the N nodes wants to broadcast
its own file to the rest of the receivers over time varying
channels (see [3] for a variation of this problem).
Another direction is to use our framework to analyze the

performance of various strategies under differentiated services.
In particular, we want to specify priority classes with vary-
ing delay constraints, and find the policy that minimizes a
weighted sum of the mean completion times.
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