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Abstract— The problem of detecting encrypted information
flows using timing information is considered. An information
flow consists of both information-carrying packets and irrelevant
packets called chaff. A relay node can perturb the timing of
information-carrying packets as well as adding or removing chaff
packets. The goal is to detect whether there is an information flow
through certain nodes of interest by analyzing the transmission
times of these nodes. Under the assumption that the relay
of information-carrying packets is subject to a bounded delay
constraint, fundamental limits on detection are characterized as
the minimum amount of chaff needed for an information flow
to mimic independent traffic. A detector based on the optimal
chaff-inserting algorithms is proposed. The detector guarantees
detection in the presence of an amount of chaff proportional to
the total traffic size; furthermore, the proportion increases to
100% exponentially fast as the number of hops on the flow path
increases.

Index Terms— Information flow detection, Chaff-inserting al-
gorithms, Chaff tolerance.

I. I NTRODUCTION

Consider a wireless ad hoc network illustrated in Fig. 1,
where multiple source-destination pairs are communicating
along certain routes. Suppose that we do not trust any nodes
in the network, and nor do we know the routing protocol.
Furthermore, assume that all the packets are reencrypted at
every relay node so that the only observation we can obtain is
the transmission times of the nodes. Under these constraints,
we want to know how information is transmitted in the
network.

Suppose we deploy eavesdroppers in the network to record
node transmission times1. The problem is to detect information
flows based on timing information. The challenges are that
transmission times are subject to perturbations due to delays,
reshuffling, etc. Moreover, traffic multiplexing at the relay
nodes may introduce noise to the measurements. For example,
in Fig. 1, if we want to detect an information flow along
the pathS → R → D, then the other information flows
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1We assume transmitter code and that the eavesdroppers know thecode
of the monitored nodes so that energy tests can be performed to identify
transmission activities.
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Fig. 1. Detecting information flows in a wireless ad hoc network by
eavesdropping transmission activities.

through S or R will cause noise in the detection because
the measurementsS1 and S2 will contain transmissions not
belonging to the information flow of interest. Another source
of noise is dummy packets actively inserted byS or R to
evade detection. Both multiplexed traffic and dummy traffic
are calledchaff noise.

A. Related Work

The problem of detecting information flows has mainly been
addressed in the framework of intrusion detection. In1995,
Staniford and Heberlein [1] first considered the problem of
stepping-stone detection. The key problem in stepping-stone
detection is to reconstruct the intrusion path by analyzing
various characteristics of the attacking traffic. Related work
in the literature only considers pair-wise detection.

Early detection techniques are based on the content of the
traffic; see,e.g.,[1], [2]. To deal with encrypted traffic, timing
characteristics are used in detection, such as the On-Off detec-
tion by Zhang and Paxson [3], the deviation-based detectionby
Yoda and Etoh [4], and the packet interarrival-based detection
by Wang et al. [5]. The drawback of these approaches is
that they are vulnerable to active timing perturbation by the
attacker.

Donohoet al. [6] were the first to consider bounded delay
perturbation. They showed that if packet delays are bounded
by a maximum amount, then it is possible to distinguish traffic



containing information flows from independent traffic. Their
work was followed by several practical detectors, including
the watermark-based detector by Wang and Reeves [7] and
the counting-based detector by Blumet al. [8].

The problem becomes much more challenging when chaff
can be inserted. In such cases, there are only incomplete
solutions in the literature,e.g.,[6], [8]–[10]. Donohoet al. [6]
showed that there will be notable difference between informa-
tion flows and independent traffic if chaff traffic is independent
of the flows of information-carrying packets. Penget al. [9]
and Zhanget al. [10] separately proposed active and passive
packet-matching schemes which can detect information flows
if chaff packets only appear in the outgoing traffic of the relay
node. Blumet al. [8] modified their counting-based detector
to handle a limited number of chaff packets at the cost of an
increased false alarm probability.

B. Summary of Results and Organization

We consider the problem of detecting information flows in
a wireless ad hoc network by measuring transmission times of
the nodes of interest. Assuming that the relay of information-
carrying packets is subject to bounded delay perturbation,we
make detection based on the difference between the transmis-
sion patterns of information flows and independent traffic. The
main challenge is that our measurements may contain chaff
packets. Our goal is to investigate the limits of timing-based
detection in the presence of arbitrarily inserted chaff noise2,
and develop detectors which can tolerate a significant amount
of chaff.

The main contribution of this paper is a general form of
detector which is designed specifically to provide guaranteed
detection in the presence of chaff noise. Although previous
work (e.g., [6]) has claimed that detection is always possible
if chaff noise and the information-carrying packets are inde-
pendent, we have shown in [11] that with arbitrarily inserted
chaff, there are limits on the amount of chaff noise beyond
which no timing-based detector can work well. In this paper,
we develop a threshold detector based on the optimal chaff-
inserting algorithms. The detector guarantees detection of all
the information flows with fractions of chaff bounded by the
detection threshold. We prove that the detector has vanishing
false alarm probability as long as its threshold is smaller than
the minimum fraction of chaff needed to mimic independent
traffic. The proposed detector is shown to be optimal in dealing
with chaff noise; in particular, as the length of the flow path
increases, the tolerable fraction of chaff noise increasesto one
exponentially.

The rest of the paper is organized as follows. Section II
formulates the problem. Section III characterizes the funda-
mental limits on timing-based detection. Section IV presents
an information flow detector together with its performance

2We consider arbitrarily inserted chaff noise because it is the most difficult
to handle. If (part of) the chaff noise is from multiplexed traffic on different
paths, then it may be subject to certain constraints, and our analysis will
provide lower bounds on the detection performance.

analysis. Then Section V concludes the paper with a few
comments.

II. PROBLEM FORMULATION

Suppose that we are interested in detecting information
flows throughn nodes, as illustrated in Fig. 2. LetSi (i =
1, . . . , n) be the process of transmission times of nodeRi,
i.e.,

Si = (Si(1), Si(2), Si(3), . . .), i = 1, 2, . . . , n,

whereSi(k) (k ≥ 1) is thekth transmission time3 of nodeRi.

S1:

S2:

R3

Sn:

R1

R2
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· · ·

Fig. 2. Detecting information flows through nodesR1, R2, . . . , Rn by
measuring transmission activities of these nodes.

If none ofSi (i = 1, . . . , n) belongs to the same information
flow, they should be jointly independent. Otherwise, if(Si)

n
i=1

is an information flow, then it can be decomposed into an
information-carrying part(Xi)

n
i=1 and a chaff part(Wi)

n
i=1.

That is,(Si)
n
i=1 is an information flowif4 Si = Xi

⊕

Wi for
i = 1, . . . , n, and(Xi)

n
i=1 satisfies the following definition.

Definition 2.1: A sequence of processes(X1, . . . , Xn) is a
pure information flowif there exist bijectionsgi : Xi → Xi+1

(i = 1, . . . , n−1)5 such thatgi(s)−s ∈ [0, ∆] for all s ∈ Xi.
The bijection gi is a mapping between the transmission

times of the same packets at nodesRi−1 andRi. The condition
thatgi is a bijection imposes apacket-conservationconstraint,
i.e., every information-carrying packet generates one and only
one relay packet at each relay node. The conditiongi(s)−s ≥
0 is thecausalityconstraint, which means that a packet cannot
leave a node before it arrives. In addition,gi(s) − s ≤ ∆
imposes abounded delayconstraint, meaning that no packet
can be held at a relay node for longer than∆.

Suppose that the detector starts att0 and takes observations
for a durationt. We are interested in testing the following
hypotheses:

H0 : S1, S2, . . . , Sn are jointly independent,

H1 : (Si)
n

i=1 contains an information flow,

by analyzingSi ∩ [t0, t0 + t] (i = 1, . . . , n)6. We say that

3Assume no simultaneous transmissions.
4The operator

⊕

is the superposition of processes(a1, a2, . . .) and
(b1, b2, . . .), defined as(ai)

∞

i=1

⊕

(bi)
∞

i=1
= (ci)

∞

i=1
wherec1 ≤ c2 ≤ . . .

and{ai}
∞

i=1
∪ {bi}

∞

i=1
= {ci}

∞

i=1
.

5We useXi to denote the set of elements inXi.
6Given a processS = (sj)

∞

j=1
, S ∩ [a, b] is the truncated process defined

as (sj)
l
j=k

, wheresk−1 < a ≤ sk, andsl ≤ b < sl+1.



(Si)
n

i=1 contains an information flowif ∃I ⊆ {1, . . . , n} such
that (Si)i∈I is an information flow,i.e., Si = Xi

⊕

Wi for
i ∈ I and (Xi)i∈I is a pure information flow. Assume that
the detector knows∆ but not t0 or traffic beforet0. This is
a nonparametric hypothesis testing; no statistical assumptions
are made at this point (although additional assumptions under
H0 are needed for detailed analysis).

To characterize the amount of chaff, we introduce the
following definition.

Definition 2.2: If (Si)
n
i=1 is an information flow, then its

chaff-to-traffic ratio(CTR) in the interval[t0, t0+t] is defined
as7

CTR(t; t0) =

n
∑

i=1

|Wi ∩ [t0, t0 + t]|

n
∑

i=1

|Si ∩ [t0, t0 + t]|
,

i.e., CTR(t; t0) is the fraction of chaff packets in the interval
[t0, t0 + t].

Due to the nonparametricness ofH1, we introduce a novel
measure of detection performance.

Definition 2.3: An n-hop detectorδ can tolerate r (r ∈
[0, 1]) fraction of chaff if8

1) lim
t→∞

PF (δ) = 0;

2) lim
t→∞

sup
(Si)n

i=1∈P

PM (δ) = 0, where9

P = {(Xi

⊕

Wi)
n
i=1 : lim sup

t→∞

CTR(t; t0) ≤ r a.s.}.

That is,δ has vanishing false alarm probability and vanishing
miss probability for alln-hop information flows with asymp-
totic CTR bounded byr almost surely.

The chaff toleranceof a detector is the maximum fraction
of chaff that it can tolerate.

III. F UNDAMENTAL L IMITS ON TIMING -BASED

DETECTION

From the detector’s point of view, there is no difference
between an information-carrying packet and a chaff packet.
Therefore, ideally, it is possible for an information flow to
mimic any transmission pattern as long as enough chaff can
be inserted. It implies that there must be a fundamental
limit on the chaff tolerance of any timing-based detector. In
this section, we characterize this fundamental limit by CTR∗

n

(n ≥ 2)—the minimum asymptotic CTR needed for ann-hop
information flow to mimicH0. Specifically, for(Si)

n
i=1 under

H0,

CTR∗
n

∆
= inf{r ∈ [0, 1] : ∃(Xi)

n
i=1, (Wi)

n
i=1 satisfying:

1) Si = Xi

⊕

Wi for i = 1, . . . , n;

2) (Xi)
n
i=1 is a pure information flow;

3) lim sup
t→∞

CTR(t; t0) ≤ r a.s.}. (1)

7We useWi andSi to denote the set of elements inWi andSi, respectively.
8We denote false alarm probability byPF (·), and miss probability by

PM (·).
9Herea.s.means “almost surely”.

We calculate CTR∗n by analyzing the CTR of the optimal chaff-
inserting algorithms.

A. Limits on Detecting2-hop Flows

Suppose that as illustrated in Fig. 3, we are interested in
knowing whetherR2 is relaying traffic forR1, i.e., whether
(S1, S2) forms a2-hop information flow. NodesR1 and R2

may want to hide the information flow by inserting chaff
packets to make their transmission activities independent.

R1 R2

· · ·

S1 S2

Fig. 3. H1: (S1, S2) is a 2-hop information flow.

The problem becomes that givenSi (i = 1, 2), how to
partition it into Xi and Wi such that(X1, X2) is a pure
information flow.

To solve this problem, Blumet al. in [8] proposed a
greedy algorithm called “Bounded-Greedy-Match” (BGM). As
illustrated in Fig. 4, BGM

1) matches every packet transmitted at times in S1 with the
first unmatched packet transmitted in[s, s + ∆] in S2;

2) labels all the unmatched packets inS1 andS2 as chaff.

It is easy to see that BGM has complexityO(|S1| + |S2|).
Interested readers can find the pseudo code implementation of
BGM and all the algorithms in this paper in [12].

s
S1

S2

Chaff

Chaff

∆

Fig. 4. BGM: a sequential greedy match algorithm.

The output of BGM is a partition ofSi (i = 1, 2) into
(Xi, Wi). The CTR of BGM in[t0, t0 + t] is the CTR of this
partition in the given interval, denoted by CTRBGM(t; t0).

Despite being greedy, BGM has been shown in [8] to be the
optimal chaff-inserting algorithm for2-hop information flows
because it minimizes the number of chaff packets for arbitrary
traffic10.

The optimality of BGM allows us to characterize CTR∗
2 by

analyzing the CTR of BGM. If, in particular, the traffic under
H0 can be modelled as Poisson processes, then we have the
following result.

10The original proof in [8] is for independent binomial processes, but it
holds for arbitrary traffic.



Theorem 3.1:If S1 and S2 are independent Poisson pro-
cesses of ratesλ1 andλ2, respectively, then with probability
one, the CTR of BGM satisfies

lim
t→∞

CTRBGM(t; t0)

=







(λ2−λ1)
(

1+
(

λ1
λ2

)

e∆(λ1−λ2)
)

(λ1+λ2)
(

1−
(

λ1
λ2

)

e∆(λ1−λ2)
) if λ1 6= λ2,

1
1+λ1∆

if λ1 = λ2.

Proof: See Appendix.

Remark: Suppose that underH0, S1 andS2 are independent
Poisson processes with maximum rateλ. Then from Theorem
3.1, it can be shown that1/(1 + λ∆) is the minimum
asymptotic CTR for BGM to mimicH0. By the optimality
of BGM, we see that CTR∗2 = 1/(1 + λ∆).

The value of CTR∗2 establishes a fundamental limit on
pairwise detection because if nodesR1 and R2 can insert at
least CTR∗2 fraction of chaff, they can generate transmission
activities according toH0 and use BGM to schedule the trans-
missions of information-carrying packets so that no timing-
based detector can distinguish the two hypotheses. Hence,
CTR∗

2 is an upper bound on the maximum chaff tolerance.
Note that asλ∆ → ∞, CTR∗

2 → 0; indeed, this result shows
that pairwise detection is vulnerable to chaff noise.

In [11], we characterized the asymptotic CTR of BGM for
the special caseλ1 = λ2. Blum et al. in [8] gave a different
result by ignoring the causality constraint. Donohoet al. in
[6] claimed that it is possible to detect information flows
with arbitrary CTR; their claim, however, is based on the
assumption that the chaff processes are independent of the
processes of information-carrying packets.

B. Limits on Detecting Multi-hop Flows

In Section III-A, we have established a fundamental limit
on pairwise detection. In this section, we extend the results
to multi-hop information flows and show that it becomes
increasingly difficult to hide an information flow as the length
of the flow path increases. Our approach is parallel to that
for 2-hop flows. We first develop an optimal chaff-inserting
algorithm for multi-hop information flows and then analyze
the CTR of that algorithm.

To insert chaff into ann-hop flow (n ≥ 2), we extend BGM
to a recursive greedy algorithm called “Multi-Bounded-Delay-
Relay” (MBDR). Given(Si)

n
i=1, MBDR

1) matches every packet transmitted at times1 in S1 with
the first unmatched packet in the interval[s1, s1 + ∆] in
S2, conditioned on that this packet has a match inS3;

2) for i = 2, . . . , n − 1, matches a packet atsi in Si with
the first unmatched packet in the interval[si, si + ∆] in
Si+1, conditioned on that this packet has a match inSi+2

(assume every packet inSn has a match);
3) after trying to match all the packets inS1, labels all the

unmatched packets as chaff.
For example, consider the3-hop information flow illustrated

in Fig. 5. To matchs1 ∈ S1, MBDR recursively looks for a
match fors2. Sinces2 can be matched withs3 ∈ S3, s1 is

matched withs2. If s2 does not have a match inS3, then
MBDR will try to match s1 with the next unmatched packet
in S2. If there is no more packet left in the interval[s1, s1+∆]
in S2, MBDR labelss1 as chaff.

S1

S2

S3

chaff
s1

s2

s3

Fig. 5. MBDR: a recursive greedy match algorithm.

Note that forn = 2, MBDR is equivalent to BGM. A di-
rect implementation of MBDR has complexityO((λ∆)n|S1|),
whereλ is the maximum rate ofS1, . . . , Sn. The complexity
can be reduced toO(n2|S1|) by expanding the recursions; see
[12].

In [11], we developed a chaff-inserting algorithm called
“Greedy-Relay-Embedding” (GRE). It can be shown that
MBDR and GRE are equivalent except that GRE does not
contain recursions. Algorithm GRE has been shown in [11] to
find the largest number of matched packets, or equivalently,
the minimum number of chaff packets. Therefore, MBDR is
optimal.

Let CTRMBDR(t; t0) be the CTR of then-hop information
flow (Si)

n
i=1 = (Xi

⊕

Wi)
n
i=1 partitioned by MBDR. It is

proved in [11] that if Si (i = 1, . . . , n) are independent
Poisson processes of maximum rate11 λ, then the asymptotic
fraction of information-carrying packets found by GRE is
upper bounded by(1 − e−λ∆)n−1, i.e., with probability one,

lim
t→∞

CTRMBDR(t; t0) ≥ 1 − (1 − e−λ∆)n−1. (2)

Suppose that underH0, Si’s are jointly independent Poisson
processes with rate up toλ. Then by (2) and the optimality of
MBDR, we see that CTR∗n ≥ 1− (1−e−λ∆)n−1. As n → ∞,
CTR∗

n → 1 exponentially fast. Therefore, the information flow
will eventually be saturated with chaff as the length of the flow
path increases, indicating that it is almost impossible to hide
information flows with arbitrarily long paths.

IV. I NFORMATION FLOW DETECTOR

Having established the fundamental limits on detection, we
hope to develop detectors to achieve these limits. In this
section, we present a general form of detector and analyze
its performance.

We propose to detect information flows by a threshold
detector based on the optimal chaff-inserting algorithms.Given

11The original proof was for equal rate Poisson processes, butit is easily
generalizable to the maximum rate case.



(Si ∩ [t0, t0 + t])n
i=1 (n ≥ 2), the detector is defined as12

δ((Si ∩ [t0, t0 + t])n
i=1; τn) =

{

1 if CTR′(t; t0) ≤ τn,
0 o.w.,

where CTR′(t; t0) is the CTR of MBDR on the measurements
excluding chaff packets inSi∩[t0, t0+(i−1)∆) (i = 1, . . . , n).
That is, if Wi (i = 1, . . . , n) are the chaff processes found by
MBDR, then

CTR′(t; t0) =

n
∑

i=1

|Wi ∩ [t0 + (i − 1)∆, t0 + t]|

n
∑

i=1

|Si ∩ [t0, t0 + t]|
.

The idea behind this detector is to target at the information
flows that are the most difficult to detect. Since CTR′(t; t0)
is based on the CTR of the optimal chaff-inserting algorithm
and is adjusted (by ignoring chaff inSi ∩ [t0, t0 + (i− 1)∆))
to take into account the packets stored at the relay nodes
initially, it is guaranteed to be no larger than the actual CTR in
the measurements. Therefore, by making decisions based on
CTR′(t; t0), we make sure that it is possible to evade detection
only if the information flow contains more thanτn fraction of
chaff packets; equivalently, the detector has no miss detection
for up to τn fraction of chaff.

The threshold needs to be chosen to guarantee vanishing
false alarm probability. For pairwise detection, we prove the
following result.

Theorem 4.1:Assume that underH0, S1 and S2 are in-
dependent Poisson processes of maximum rateλ. If τ2 =
1/(1 + λ′∆), then the false alarm probability satisfies

lim
N→∞

1

N
log PF (δ) ≤ −Γ(λ, λ′, ∆),

where N = |S1 ∩ [t0, t0 + t]| + |S2 ∩ [t0, t0 + t]|, and
Γ(λ, λ′, ∆) > 0 for all λ′ > λ.

Proof: See Appendix.

Remark:Theorem 4.1 says that the false alarm probability
of pairwise detection decays exponentially as long asλ′ >
λ, or equivalently,τ2 < CTR∗

2. Definition of the function
Γ(λ, λ′, ∆) can be found in the proof. A key property of
Γ(λ, λ′, ∆) is that it is an increasing function ofλ′.

By similar arguments as in the proof of Theorem 4.1, it
can be shown that for generaln-hop joint detection, ifτn =
CTR∗

n − ǫ for any ǫ > 0, then the false alarm probability
satisfies

lim
N→∞

1

N
log PF (δ) ≤ −σn(ǫ; λ, ∆),

where σn(ǫ; λ, ∆) is positive for all ǫ > 0, and it is an
increasing function ofǫ.

The parameterǫ represents a tradeoff between the chaff
tolerance and the false alarm probability. A largerǫ leads
to faster decaying false alarm probability but less tolerance
of chaff, whereas a smallerǫ enables more chaff tolerance

12Hereδ(·) = 1 denotesH1, andδ(·) = 0 denotesH0.

at the cost of more false alarms. In particular, asǫ → 0,
the chaff tolerance of the proposed detector converges to the
fundamental limit. Therefore, the detector is optimal in the
sense that it provides the maximum chaff tolerance.

Note that although CTR∗n (n > 2) is unknown, one can
choose the threshold byτn = 1− (1−e−λ∆)n−1 to guarantee
exponentially decaying false alarm probability.

V. CONCLUSION

This paper presents an information flow detector which
has the maximum tolerance of arbitrarily inserted chaff noise.
We point out that although the detailed analysis is done for
independent Poisson processes, the detector also applies to
other types of traffic except that the threshold may need
adjustment. The proposed detector coupled with capacity
constraints between neighbor nodes can capture all the long-
lived information flows with positive rate and sufficiently long
paths.

VI. A PPENDIX

A. Proof of Theorem 3.1

Sequentially match packets inS1 with those inS2 and let
Yi be the delay of theith packet,i.e., Yi = S2(i) − S1(i).
Define

Zi
∆
= Yi − Yi−1 = (S2(i) − S2(i − 1)) − (S1(i) − S1(i − 1)).

We see thatZi’s are i.i.d. random variables, and eachZi is
the difference between two independent exponential random
variables with mean1/λ2 and1/λ1, respectively. The process
{Yi}

∞
i=1 is a general random walk with stepsZi’s. DefineY0 =

0.
Now for every chaff packet inserted att in S2, we insert

a virtual packet att in S1; for every chaff packet ats in
S1, we insert a virtual packet ats + ∆ in S2, as illustrated in
Fig. 6. Let the new delays after the insertion of virtual packets
be {Y ′

j }
∞
j=1. It can be shown that{Y ′

j }
∞
j=1 is also a random

walk with stepsZi’s, but it has two reflecting barriers at0 and
∆, i.e.,

Y ′
j = min(max(Y ′

j−1 + Zj , 0), ∆).

0

0 S1

S2
t

s
∆

Chaff Actual
packet

packet
Virtual

Fig. 6. Inserting virtual packets to calculate the delays ofchaff packets.

Since it is almost surely impossible forY ′
j−1 + Zj to be

exactly equal to0 or ∆, each timeY ′
j = 0 or ∆ corresponds

to an escape across the barriers which results in a chaff packet.
Specifically, Y ′

j = 0 corresponds to a chaff packet inS2,



and Y ′
j = ∆ corresponds to a chaff packet inS1. Thus,

asymptotically, the probability for a packet to be chaff is
h∆/(1 − h0) in S1, and h0/(1 − h∆) in S2, where h0 =
lim

j→∞
Pr{Y ′

j = 0}, andh∆ = lim
j→∞

Pr{Y ′
j = ∆}. The overall

probability for a packet inS1

⊕

S2 to be chaff is

λ1h∆

(λ1 + λ2)(1 − h0)
+

λ2h0

(λ1 + λ2)(1 − h∆)
. (3)

To calculateh0 andh∆, let the equilibrium distribution func-
tion of Y ′

j be H(x), i.e., H(x) = lim
j→∞

Pr{Y ′
j ≤ x}. It is

shown in Example2.16 in [13] that

h0 = H(0) =







1−
λ1
λ2

1−
(

λ1
λ2

)2
e∆(λ1−λ2)

if λ1 6= λ2,

1
2+λ1∆

o.w.

and

h∆ = 1−H(∆−) =











(

λ1
λ2

)

e∆(λ1−λ2)
(

1−
λ1
λ2

)

1−
(

λ1
λ2

)2
e∆(λ1−λ2)

if λ1 6= λ2,

1
2+λ1∆

o.w.

By ergodicity of {Y ′
j }

∞
j=1, we see that CTRBGM(t; t0)

converges to (3) almost surely. Therefore, we have that with
probability one,

lim
t→∞

CTRBGM(t; t0)

=







(λ2−λ1)
(

1+
(

λ1
λ2

)

e∆(λ1−λ2)
)

(λ1+λ2)
(

1−
(

λ1
λ2

)

e∆(λ1−λ2)
) if λ1 6= λ2,

1
1+λ1∆

if λ1 = λ2.

B. Proof of Theorem 4.1

Define T1 to be the number of packets inS1

⊕

S2 until
the first chaff packet, including the first chaff packet, andTi

(i > 1) the number of packets between the(i − 1)th andith
chaff packets, excluding the(i−1)th chaff packet but including
the ith. Then the false alarm probability can be written as

PF (δ) = Pr{
1

N ′

N ′

∑

i=1

Ti ≥ 1 + λ′∆}, (4)

whereN ′ = N/(1 + λ′∆).
Define Yi the same as in the proof of Theorem 3.1. For

i ≥ 2, Ti’s are i.i.d. with the distribution

inf{n : Yn < 0 or Yn > ∆ | Y0 = 0}. (5)

Now that max(λ1, λ2) ≤ λ, by Theorem 3.1, we know that
the asymptotic CTR of BGM is no smaller than1/(1 + λ∆)

almost surely,i.e., lim
c→∞

1
c

c
∑

i=1

Ti ≤ 1 + λ∆ almost surely,

which implies thatE[T2] ≤ 1 + λ∆. By Sanov’s Theorem
[14], we have that

lim
N ′→∞

1

N ′
log Pr{

1

N ′

N ′

∑

i=1

Ti ≥ 1 + λ′∆} =

− min
W : E[W ]≥1+λ′∆

D(W ||T2).

Plugging in (4) yields that

lim
N→∞

1

N
log PF (δ) = −

1

1 + λ′∆
min

E[W ]≥1+λ′∆
D(W ||T2)

≤ −Γ(λ, λ′, ∆),

where

Γ(λ, λ′, ∆)
∆
=

1

1 + λ′∆
min

E[W ]≥1+λ′∆
D(W ||T̃2),

and T̃2 is defined in (5) but for the special caseλ1 = λ2 = λ.
For λ′ > λ (assume∆ > 0), we haveE[W ] > E[T̃2], and
thereforeΓ(λ, λ′, ∆) > 0.
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