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Abstract— In this paper we present some analogies between
thermodynamics and certain Shannon theory results. We revisit
the previously published results that relate notion of energy and
information. We then introduce a thermodynamic system that
could be used to store information. The ideal gas is considered.
We present the corresponding thermodynamic analysis and
establish equivalence with the additive white Gaussian noise
(AWGN) channel capacity formula. Specifically, we show thatthe
average energy needed for adiabatic compression of the ideal gas
to 1/N of its initial volume is the same as the average energy
needed to achieve the capacityC = log

2
N of the equivalent

AWGN channel. In addition, the analysis is extended to show a
link between the gas volume and minimum squared codeword
distance. Furthermore, we show that the ideal gas which went
through the adiabatic compression, and later settled according
to the second law of thermodynamics, will reach an equilibrium
state which is directly related to Shannon random coding and
joint typicality decoding.

I. I NTRODUCTION

In the early days of information theory a tentative link with
thermodynamics and its probabilistic aspects was recognized.
Shannon entropy, which was defined in the ground-breaking
work [1], was named after the well knownthermodynamic
entropy. Thermodynamic entropy, as a measure of how energy
is distributed among system components, was introduced by
Clausius (circa 1850) while its probabilistic interpretation
was attributed to Boltzmann (at the turn of the twentieth
century). The functional resemblance between the entropies
was recognized by Shannon and Von Neumann. An anecdote
goes that Von Neumann advised Shannon to adopt this term
because it would give him ”... a great edge in debates because
nobody really knows what entropy is anyway.” [2]

Since the beginning, information theory took on a life of its
own, but there has been a number of efforts to apply its results
in different branches of physics. For example, certain results
from information theory are applied in statistical and quantum
mechanics [3], [4]. Furthermore, the notion of information
became a central point in many studies in theoretical physics.
In particular, there has been an interest in determining the
limits on how much information can be stored in unit mass
and what the limits on speed of information processing are
(see [5] and references therein).

Attempts to understand energy limits of computation led to
a number of results connecting thermodynamics and theory
of computation [6]. In addition to computation problems, the

studies have addressed the issue of how much energy has to be
invested into a thermodynamic system to half the number of
its available states (i.e., the system loses one bit of information
needed to describe its state). Furthermore, it was shown that
a knowledge of the system state leads to an ability to extract
energy out of the system. For the given amount of knowledge,
described by the number of information bits, there is a limit
on the energy that can be extracted [7], [8]. The results will
be reviewed later in the text. In this paper, we extend the basic
ideas that are used to derive the above results, and focus on the
analogies with Shannon theory and communication systems.

The paper is organized as follows. In Section II the basic
properties of the ideal gas are presented. Furthermore, we
revisit and summarize the previously reported results that
relate notion of energy and information. In Section III we show
that the average energy needed for adiabatic compression of
the ideal gas to1/N of its initial volume is the same as the
average energy needed to communicateC = log2 N bits per
channel use over the equivalent additive white Gaussian noise
(AWGN) channel (i.e., to achieve the channel capacityC). The
analysis is extended to show a link between the gas volume
and minimum squared codeword distance. Furthermore, we
show that the ideal gas which went through the adiabatic
compression, and later settled according to the second law
of thermodynamics, will reach an equilibrium state which is
directly related to Shannon random coding and joint typicality
decoding. We conclude in Section IV.

II. SUMMARY OF PREVIOUSLY PUBLISHED RESULTS

In this section we first repeat certain communication theory
results that are relevant to this study. We then present basic
definitions and equations of thermodynamics. Furthermore,we
revisit some results that connect notion of energy and infor-
mation. Focusing on information and communication theory
aspects, we present two theorems summarizing the results.

A. Additive White Gaussian Noise Channel

In this study we consider a complex AWGN channel. The
output of the AWGN channel is

y = x + n (1)

where x is the transmitted symbol, andn is the additive
noise with complex Gaussian distributionCN (0, N0), where



N0 = E[nn∗] is the channel noise variance. The transmitted
symbol x is assumed to be circularly symmetric random
variable with complex Gaussian distributionCN (0, Es), where
Es = E[xx∗] is the average energy of the transmitted symbol
per channel use.

The maximum achievable communication data rate (i.e.,
capacity) of the above AWGN channel is

C = log2

(
1 +

Es

No

)
(2)

and
Es = N0(2

C − 1). (3)

By definition,C information bits are transmitted per channel
use, therefore the average transmitted energy per one informa-
tion bit is

Eb =
Es

C
= N0

(2C − 1)

C
. (4)

Furthermore, the minimum energy needed to infinitely slowly
communicate one bit of information over the AWGN channel
is

Emin
b = N0 lim

C→0

2C − 1

C
= N0 ln 2. (5)

Note that it can be shown that a complex AWGN channel
is equivalent to a real AWGN channel with two degrees of
freedom [9]. Specifically, per each signal dimension the noise
variance and the average energy of the transmitted symbol are
N0/2 andEs/2, respectively.

B. Ideal Gas

In this study we use the ideal gas model. The ideal gas
corresponds to a set of particles (i.e., molecules) that are
confined within a container. The particles do not interact
with each other, except during collisions, which are assumed
to be perfectly elastic. Thus, the energy of each particle is
exclusively translational kinetic energy. The internal energyU
of the gas is the sum of energies of the particles.

A differential change of the internal gas energy is

dU = dQ − dW (6)

where dQ is the thermal energy, i.e., the heat exchanged
with the surrounding environment, anddW is the differential
mechanical work [10]. The above equation is a consequence
of the conservation of energy, i.e., the first law of thermody-
namics. The exchanged thermal energy is

dQ = TdS (7)

whereT is the temperature of the gas, whiledS is the dif-
ferential change of its thermodynamic entropy. As mentioned
earlier, the thermodynamic entropy is a fundamental quantity
that describes how the internal energyU is distributed among
the system components (i.e., in this case among the particles
of the gas). Further, the differential mechanical work is

dW = p dV (8)

where p is the pressure that gas exerts on the walls of the
container, whiledV is the differential change of its volume.

The average energy of a particle, whose energy depends
quadratically on its velocity, equalskT/2 per a degree of
freedom, wherek is Boltzmann’s constant [11]. The change
of the average internal energyU is

dU =
LMk

2
dT (9)

whereL is the number of gas particles, andM is the number
of degrees of freedom. Furthermore, the following well known
relationship connects the gas pressure, volume and temperature
as

p V = Lk T. (10)

Note that the above expression can be directly derived from
the classical Newtonian mechanics under the ideal gas assump-
tions.

Without loss of generality, we will consider the ideal single-
particle gas,L = 1, where the particle has two degrees
of freedom, M = 2. For example, this assumption may
correspond to a case of the particle being confined to a plane.
Note that we will revisit these assumptions later in the text.

C. Volume Halving

In this subsection we assume that the walls of the container
are thermally conductive. The container is submerged into
a thermal bath, which is an infinitely large container at the
constant temperatureT . Let us compress the gas to one half
of its initial volume. The compression is done infinitely slowly
keeping the temperature of the gas constant. This process is
known as isothermal compression. Thus,dT = 0 and the
equation (6) becomes

0 = TdS − pdV = TdS −
kTdV

V
. (11)

After compressing the gas tõV = V/2, whereV is its initial
volume, from the above equation we get

∆W̃ = −

∫ V/2

V

kTdV

V
= kT ln 2 (12)

where∆W̃ is the external mechanical work that is invested
to perform the compression.

Let us now argue how the above exercise relates to infor-
mation.

First, by halving the volume of the thermodynamic system,
the number of available states where the gas particle could
be is also halved. Therefore, we’ll need one information bit
less to describe its state compared to the initial full-volume
state. Considering the thermodynamics of computation, the
result in (12) is determined as the minimum energy needed
for discarding one bit during the computation, i.e., information
processing. This result is known asLandauer’s principle of
erasure and plays crucial role in determining how much energy
is needed to perform a computation [6]–[8], [12].

Second, compressing the gas to one or the other half may be
used to record, i.e., store one information bit. For example, if
the gas is compressed to its left or right half it will be assigned
logical ’0’ or ’1’, respectively.



We now relate the above analysis to the communication
theory results. Specifically, forN0 = kT , the above expression
(12) becomes identical to the expression (5), i.e.,

∆W̃ = Emin
b for N0 = kT. (13)

Focusing on information and communication aspects, we sum-
marized the above analysis in the following.

Theorem 1: The same amount of energy (kT ln 2 Joules) is
needed to either store one information bit by the isothermal
compression of the ideal gas or communicate one information
bit over the equivalent AWGN channel (whereN0 = kT ).
In both cases, the compression and transmission are infinitely
slow. 2

D. Energy Extraction

For the sake of simplicity let us assume that that a single-
particle gas occupies the volumeV , at the temperatureT . As
in the previous subsection, the gas container is in the thermal
bath. The particle will be in either left or right half of the
container with the equal probability. We assume that there is
a mechanism to insert a piston either from left or right side
of the container.

If there was a knowledge, i.e., information in which half
of the container the particle is, the piston could be inserted
from the opposite side. It is assumed that no energy is needed
to perform the piston insertion. The procedure is depicted in
Figure 1, for the particle being in the left half. One information
bit will be sufficient to describe in which half of the container
the particle is. 

 container 

particle 

piston 

Fig. 1. The piston is inserted from the right while the particle is in the left
half of the container.

After the insertion, the gas exerts pressure on the piston.
Under the pressure, the piston is moving into the direction
of the gas expansion. While expanding, the gas performs
mechanical work. If the piston is moving infinitely slowly,
upon reaching the initial volumeV the gas has performed the
total work that is equal to the one in (12). The expansion is
isothermal.

The above system is known asSzilard’s engine [8] and
together with Landauer’s principle is extensively used to
analyze the famous thought experiment known asMaxwell
Demon (see [13] for more details).

We summarized the above in the following.

Theorem 2: If there is a knowledge about the state of the
ideal gas corresponding to one information bit,kT ln 2 Joules
of energy can be extracted from the gas via its isothermal ex-
pansion. The gas expansion and energy extraction are infinitely
slow.2

In other words, the energy value of one bit of information
is kT ln 2 Joules.

III. F URTHER ANALOGIES WITH SHANNON THEORY

Unlike the previous two subsections, here we assume that
the gas is thermally isolated from its surroundings. Specifi-
cally, in the expression (6) the heat exchanged with the sur-
rounding environment isdQ = 0. Thermodynamic processes
with dQ = 0 are known to beadiabatic. As said earlier, we
will study a single-particle gas, where the particle has two
degrees of freedom.

A. Gas Compression and Information Storing

Let us compress the gas to1/N of its initial volume V ,
V̂ = V/N . The compression is done adiabatically, without
any constraint on how fast it is performed (unlike the case of
the isothermal compression that has to be infinitely slow).

Starting from the equations (6), (9), (10), forL = 1, M = 2
anddQ = 0 we arrive to

dU = −dW ⇒ k dT = −p dV (14)

and
dT

T
= −

dV

V
. (15)

From the above

ln
T̂

T
= − ln

V̂

V
(16)

where T̂ is the gas temperature after the compression and
V̂ = V/N . Thus,

T̂ = T N. (17)

The average external work that is invested to perform the
compression is equal to the change of the average internal
gas energy. In other words,

∆Ŵ = ∆U = k(T̂ − T ) = kT (N − 1). (18)

We now describe how the above process can be used to
record, i.e, store information. The gas container of volumeV
is divided inN disjoint compartments. The compartments are
of volume V̂ = V/N . Each compartment will assigned to a
unique string of information bits with the length of

C = log2 N bits. (19)

Storing of information is done by compressing and confining
the ideal gas to one of theN compartments depending on
C-bit-long binary word that is being stored. The confined gas
may be viewed as data symbol. Figure 2 depicts a possible
compartment and binary word arrangement forC = 3 and
N = 8.
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Fig. 2. The container is divided inN = 8 compartments, with a unique 3-bit
binary word assigned to each of the compartments. In this particular example
the gas particle is compressed and confined to the compartment corresponding
to the binary word ’101’.

Based on the expressions (18) and (19), the average energy
invested to store the binary word is

∆Ŵ = kT (2C − 1), (20)

while the average energy per bit is

∆Ŵb = kT
(2C − 1)

C
. (21)

Note that forN0 = kT , the results in (21) and (4) are
identical, i.e.,

∆Ŵb = Eb for N0 = kT. (22)

The following theorem summarizes the above analysis.
Theorem 3: The same amount of average energy is needed

to either storeC information bits by the adiabatic compression
of the ideal gas or achieve the channel capacityC of the
equivalent AWGN channel (whereN0 = kT ). The ideal gas
is compressed to1/N of its original volume, whereN = 2C .
2

Note the above theorem is more general than Theorem 1. It
does not restrict the rate of information storing or transmission.

B. Volume and Codeword Distance

In this subsection we first consider a case when the average
energy in (20) is invested to compress the gas, but the initial
temperature is different thanT , i.e.,

T ′ = T + ∆T. (23)

After the compression, instead of reachingV̂ = V/N , the gas
occupies different volume

V̂ ′ = V̂ + ∆V. (24)

The temperature after the compression becomes

T̂ ′ =
Û ′

k
= T (N − 1) + T ′ = TN + ∆T (25)

whereU ′ is the average internal energy of the gas after the
compression. From the equation (15), the volumeV̂ ′ is

V̂ ′ =
V (T + ∆T )

TN + ∆T
. (26)

The rate of the compressed volume change due to the differ-
ence in the initial temperature is

µV =
∆V

V̂
=

∆T (N − 1)

TN + ∆T
. (27)

We now pose an equivalent communication problem. The
average energy of the transmitted symbol is given in (3). The
noise variance is different thanN0, i.e.,

N ′

0 = N0 + ∆N0. (28)

Consequently, the maximum achievable data rate is

C′ = log2

(
1 +

Es

N ′

0

)
. (29)

In order to achieve the capacityC in (2), the transmitter
sends one of2nC codewords, wheren → ∞. The codeword
belongs to a set of2nC typical sequences that are uniformly
distributed in the signal space [9], [14]. Due to the transmit
power constrain, the volume of the signal space is proportional
to (nEs)

n. A fraction of the signal space volume that is
allocated per codeword is

S = α
(n Es)

n

2nC
for n → ∞, (30)

where α is a proportionality constant. From the above, the
squared distance between the neighboring codewords is

s = βS1/n = γ
n Es

2C
(31)

whereβ is a proportionality constant andγ = β α1/n. s is the
minimum squared distance between the codewords, and it is
proportional to the squared radius of the sphere of exclusion
around each codeword (where different codeword spheres must
not intersect). Similarly, for a channel with the capacityC′ in
(29), the above squared distance is

s′ = s + ∆s = γ
n Es

2C′
. (32)

The rate of the minimum squared codeword distance change,
due to the difference in the noise variance is

µs =
∆s

s
=

2C − 2C′

2C′
=

∆N0(2
C − 1)

N02C + ∆N0
. (33)

Note that forN0 = kT , ∆N0 = k∆T , and N = 2C the
results in (27) and (33) are identical, i.e.,

µV = µs for N0 = kT and ∆N0 = k∆T. (34)

The following theorem summarizes the above results.
Theorem 4: Using the same amount of average energy, the

ideal gas can be adiabatically compressed to the volumeV̂ that
depends on the initial temperatureT , i.e., V̂ = V̂ (T ). Further-
more, using the same amount of average transmit energy, the
minimum squared distances between the capacity achieving



codewords depends on the noise variance, i.e.,s = s(N0).
For the equivalent AWGN channel (whereN0 = kT and
∆N0 = k∆T ), the rates of the volume and squared codeword
distance change are identical, i.e.,

V̂ (T + ∆T ) − V̂ (T )

V̂ (T )
=

s(N0 + ∆N0) − s(N0)

s(N0)
.2 (35)

C. Second Law and Random Coding

Let us perform the following information storing procedure.
As described earlier, it is done by compressing and confining
the ideal gas to one of theN compartments, storingC =
log2 N bits of information. Usingn gas containers (where
n → ∞), the total ofnC bits of information is stored. After
the compression, the containers are brought into a thermal
contact, while still being thermally isolated from the restof the
environment. Upon the contact, in each of the containers the
gas particle is released from the compartment it was confined
to as the result of information storing. The particle is free
to move within its container and exchange thermal energy
with the particles in other containers. The process will lead
to a thermal equilibrium of the system. In the following we
examine the properties of that equilibrium.

According to the second law of thermodynamics, in the
equilibrium the energy is distributed among the system com-
ponents in the most disorganized way. In other words, the
thermodynamic entropy of the system is maximized with
respect to the probability density function (PDF) of the gas
particle energy, i.e.,

p(E) = arg max
q(E)

(
−k

∫
∞

0

q(E) log2 q(E) dE

)
(36)

under the constraints
∫

∞

0

E p(E) dE = Û (37)

whereÛ = kTN = KT 2C, is the average internal energy of
the gas after the compression. Further,

∫
∞

0

p(E) dE = 1. (38)

The solution of the above constrained optimization is

p(E) = A exp

(
−

E

kTN

)
, E ≥ 0, (39)

whereA the normalization constant (to satisfy the constraint in
(38)). The PDFp(E) is known asBoltzmann distribution and
it is distribution of energies of the ideal gas particles (which
are identical but distinguishable) [11]. Boltzmann distribution
corresponds to the energy of circularly symmetric complex
random variable with Gaussian distributionCN (0, kTN). In
other words,

E = |X + iY |2 = X2 + Y 2 (40)

where X and Y are independent and identically distributed
each with Gaussian distributionN (0, kTN/2).

Based on the above analysis, we conclude the following.
Upon reaching the equilibrium, in each container, the gas
particle will have energy that is drawn from Boltzmann
distribution in (39). As we assumed, each particle has two
degrees of freedom. Each degree of freedom has a quantity
(e.g., a velocity) that is drawn from Gaussian distribution
N (0, kTN/2). Therefore we can abstract that each particle has
a complex quantityX+iY assigned to it. Thus, upon reaching
the thermal equilibrium, the particles inn gas containers
that are used to store total ofnC bits of information, will
be associated with a sequence of complex quantities (for
n → ∞).

Immediately after the compression, each particle is confined
to the volumeV̂ = V/N = V/2C . The particle can be
anywhere within the volumêV . Consequently, the number
of equally likely initial states is proportional tôV [11]. This
means that for each string ofnC information bits, there are
K complex sequences, where

K ∝

(
V

2C

)n

, for n → ∞. (41)

In other words, each string ofnC information bits corresponds
to a unique set of initial states and thus to a unique set of
complex sequences with the cardinalityK. There are2nC

disjoint sets, one per each string ofnC information bits.
Based on the equivalent AWGN channel that was introduced

in the previous subsections (whereEs = kT (N − 1) and
N0 = kT ) the average energy of each complex quantity is

Ē = Û = KTN = Es + N0. (42)

Based on the above, upon reaching the equilibrium, the state
of the system corresponds to a sequence of received samples
at the output of the equivalent AWGN channel. Each sample
corresponds to a state of one gas container. The average energy
per each sample is given in (42) while the samples are drawn
from the complex Gaussian distribution. To determine which
string of nC bits was stored, i.e., sent over the equivalent
channel, the receiver has to determine which set the received
sample sequence belongs to (out of2nC disjoint sets). This is
equivalent to the decoding procedure based on joint typicality
for the optimal channel coding that is described in [9]. The
following theorem summarizes the above analysis.

Theorem 5: nC information bits are stored inn containers
with the ideal gas. In each container,C bits are stored by
adiabatic compression to one of2C compartments. Upon
the compression, the containers are brought into a thermal
contact, and particles are freed from the compartments. Based
on the second law of thermodynamics the system will reach
the equilibrium. The state of the system will correspond to
the output of the equivalent AWGN channel with optimally
encoded transmission. To retrieve the stored information a
decoding based on joint typicality could be used.2

D. Comments on Degrees of Freedom and Number of Particles

As said earlier, we have assumed that the gas particle has
two degrees of freedom (e.g., the particle is confined to a



plane). Similarly, the capacity in (2) corresponds to a channel
with two degrees of freedom, e.g., a complex AWGN channel
[9].

The analysis that is presented in the previous subsections
can be directly extended to a more general case where both
the gas particle and the AWGN channel haveM degrees of
freedom (i.e.,M -dimensional systems)1. Specifically, in the
case of theM -dimensional AWGN channel, per each signal
dimension the noise variance and the average energy of the
transmitted symbol have to beN0/M andEs/M , respectively.
Its capacity is

CM =
M

2
log2

(
1 +

Es

N0

)
. (43)

Furthermore, we have considered a single-particle ideal gas.
If we consider anL-particle ideal gas, instead ofN0 = kT
and∆N0 = k∆T , N0 = LMkT/2 and∆N0 = LMk∆T/2
should be used, respectively.

Using the above assumptions, we can repeat the analysis
given in the previous subsections. It can be shown that it will
lead to the equivalent analogies that are presented in Theorems
3, 4 and 5, but forM degrees of freedom andL gas particles.

IV. CONCLUSIONS

In this paper we presented some analogies between thermo-
dynamics and Shannon theory. We showed that the average
energy needed for adiabatic compression of the ideal gas
to 1/N of its initial volume is the same as the average
energy needed to achieve the capacityC = log2 N of the
equivalent AWGN channel. In addition, we presented the link
between the gas volume and minimum squared codeword
distance. Furthermore, we related the thermal equilibriumof
the corresponding system to the equivalent AWGN channel
and optimal encoding and decoding that are based on Shannon
theory.

Extending the above analogies to study limits on energy and
time needed to perform encoding and decoding is of interest
for our future work.

1For example, for three degrees of freedom,M = 3, the gas particle freely
moves through the three-dimensional space within the container.

REFERENCES

[1] C. E. Shannon, “A mathematical theory of communication,” Bell Syst.
Tech. J., vol. 27, pt. I, pp. 379–423, 1948; pt. II, pp. 623–656, 1948.

[2] R. P. Feynman,Feynman lectures on computation, Perseus Publishing,
1996.

[3] E. T. Jaynes, “Information theory and statistical mechanics,” Phys. Rev.,
vol. 106, pp. 620–630, 1957.

[4] E. T. Jaynes, “Information theory and statistical mechanics II,” Phys. Rev.,
vol. 108, pp. 171–190, 1957.

[5] S. Lloyd, “Ultimate limits on computation,”Nature, vol. 406, pp. 1047–
1054, 2000.

[6] C. H. Bennett, “Thermodynamics of computation - a review,” Intl. J.
Theoretical Physics, vol. 21, pp. 905–940, 1982.

[7] T. W. Lynch, “The energy content of knowledge,”IEEE Workshop on
Physics and Computation Physcomp’94, pp. 78–82, 1994.

[8] W. H. Zurek, “Algorithmic randomness, physical entropy, measurements
and the demon of choice,”eprint arXiv:quant-ph/9807007, 1998.

[9] T. M. Cover and J. A. Thomas,Elements of information theory, Wiley-
Interscience, 1991.

[10] E. Fermi,Thermodynamics, Dover Publications, 1956.
[11] C. Kittel and H. Kroemer,Thermal physics, Freeman, 2nd edition, 1980.
[12] R. Landauer, “Irreversibility and heat generation in the computing

process,”IBM J. of Res. and Dev., vol. 5, pp. 183–191, 1961.
[13] H.S. Leff and A. F. Rex,Maxwell demon: entropy, information, com-

puting, Adam Hilger, 1990.
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