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Abstract— In this paper we present some analogies between studies have addressed the issue of how much energy has to be
thermodynamics and certain Shannon theory results. We reit  jnvested into a thermodynamic system to half the number of
the previously published results that relate notion of enegy and its available states (i.e., the system loses one bit of inétion

information. We then introduce a thermodynamic system that Lo .
could be used to store information. The ideal gas is consided. needed to describe its state). Furthermore, it was shown tha

We present the Corresponding thermodynamic ana|ysis and a knoWIedge Of the SyStem State |eadS to an ab|l|ty to extract
establish equivalence with the additive white Gaussian neé energy out of the system. For the given amount of knowledge,
(AWGN) channel capacity formula. Specifically, we show thathe  described by the number of information bits, there is a limit
average energy needed for adiabatic compression of the idegas o the energy that can be extracted [7], [8]. The results will
to 1/N of its initial volume is the same as the average energy be reviewed later in the text. In this paper, we extend th&bas
needed to achieve the capacityC’ = log, N of the equivalent A '
AWGN channel. In addition, the analysis is extended to show a ideas that are used to derive the above results, and focireon t
link between the gas volume and minimum squared codeword analogies with Shannon theory and communication systems.
distance. Furthermore, we show that the ideal gas which went  The paper is organized as follows. In Section Il the basic
through the adiabatic compression, and later settled accaling |, oharties of the ideal gas are presented. Furthermore, we
to the second law of thermodynamics, will reach an equilibrim . . .
state which is directly related to Shannon random coding and revisit an.d summarize thFT' preV'OPS'y report_ed results that
joint typicality decoding. relate notion of energy and information. In Section Il wesh
that the average energy needed for adiabatic compression of
. INTRODUCTION the ideal gas td /N of its initial volume is the same as the

In the early days of information theory a tentative link withraverage energy needed to communiadte- log, N bits per
thermodynamics and its probabilistic aspects was recegnizchannel use over the equivalent additive white Gaussiagenoi
Shannon entropy, which was defined in the ground-breakindAWGN) channel (i.e., to achieve the channel capa€ifyThe
work [1], was named after the well knowthermodynamic analysis is extended to show a link between the gas volume
entropy. Thermodynamic entropy, as a measure of how energgd minimum squared codeword distance. Furthermore, we
is distributed among system components, was introduced ¢hyow that the ideal gas which went through the adiabatic
Clausius (circa 1850) while its probabilistic interpréat compression, and later settled according to the second law
was attributed to Boltzmann (at the turn of the twentiethf thermodynamics, will reach an equilibrium state which is
century). The functional resemblance between the entsopdairectly related to Shannon random coding and joint tyjitical
was recognized by Shannon and Von Neumann. An anecddéeoding. We conclude in Section IV.
goes that Von Neumann advised Shannon to adopt this term
because it would give him "... a great edge in debates because "
nobody really knows what entropy is anyway.” [2] In this section we first repeat certain communication theory

Since the beginning, information theory took on a life of itsesults that are relevant to this study. We then present basi
own, but there has been a number of efforts to apply its esudiefinitions and equations of thermodynamics. Furthermeee,
in different branches of physics. For example, certain ltgsurevisit some results that connect notion of energy and infor
from information theory are applied in statistical and cfuam mation. Focusing on information and communication theory
mechanics [3], [4]. Furthermore, the notion of informatio@spects, we present two theorems summarizing the results.
Iloecam_e a central point in many stl_Jd|es in 'Fheorencal_ pby5| " Additive White Gaussian Noise Channel
n particular, there has been an interest in determining thé
limits on how much information can be stored in unit mass In this study we consider a complex AWGN channel. The
and what the limits on speed of information processing aféltput of the AWGN channel is
(see [5] and references therein).

Attempts to understand energy limits of computation led to
a number of results connecting thermodynamics and theamhere = is the transmitted symbol, and is the additive
of computation [6]. In addition to computation problemsg thnoise with complex Gaussian distributigiV'(0, Ny), where

SUMMARY OF PREVIOUSLY PUBLISHED RESULTS

y=z+n 1)



No = E[nn*] is the channel noise variance. The transmitted The average energy of a particle, whose energy depends
symbol = is assumed to be circularly symmetric randomuadratically on its velocity, equalsT/2 per a degree of
variable with complex Gaussian distributi6A/ (0, E;), where freedom, where; is Boltzmann's constant [11]. The change
E; = E[za*] is the average energy of the transmitted symbof the average internal enerdy is
per channel use. LMFk

The maximum achievable communication data rate (i.e., dU = ——dT 9)

capacity) of the above AWGN channel is
pacity) whereL is the number of gas particles, and is the number

_ Es of degrees of freedom. Furthermore, the following well know
C=log, (1+ 2) grees
No relationship connects the gas pressure, volume and tetnpera
and as
Ey = No(2¢ - 1). (3) pV =LET. (10)

By definition, C information bits are transmitted per channeNote that the above expression can be directly derived from
use, therefore the average transmitted energy per onariafor the classical Newtonian mechanics under the ideal gas @ssum

tion bit is . tions.
B (21 Without loss of generality, we will consider the ideal sieg|
Ey=— = Ngp—=. 4) : o .

C C particle gas,L = 1, where the particle has two degrees
Furthermore, the minimum energy needed to infinitely slowlgf freedom, M = 2. For example, this assumption may
communicate one bit of information over the AWGN channealorrespond to a case of the particle being confined to a plane.
is . Note that we will revisit these assumptions later in the.text

Ey"™ = No lm = Noln2. (5) C. Volume Halving

Note that it can be shown that a complex AWGN channel In this subsection we assume that the walls of the container
is equivalent to a real AWGN channel with two degrees @i€ thermally conductive. The container is submerged into
freedom [9]. Specifically, per each signal dimension thesaoi@ thermal bath, which is an infinitely large container at the
variance and the average energy of the transmitted syméol §pnstant temperaturg. Let us compress the gas to one half

Ny/2 and E, /2, respectively. of its initial volume. The compression is done infinitelyslgp
keeping the temperature of the gas constant. This process is
B. Ideal Gas known as isothermal compression. Thud, = 0 and the
In this study we use the ideal gas model. The ideal gaguation (6) becomes
corresponds to a set of particles (i.e., molecules) that are ETdV
confined within a container. The particles do not interact 0="TdS —pdV =TdS — — (11)

with each other, except during collisions, which are assime _ - S
to be perfectly elastic. Thus, the energy of each particle After compressing the gas %6 = V/2, whereV’ is its initial
exclusively translational kinetic energy. The internabegyU  Volume, from the above equation we get

of the gas is the sum of energies of the particles. AT — /V/2 ETdV

A differential change of the internal gas energy is — = kT In?2 (12)
v

dU =dQ — dW 6 ~ . . .

@ © where AW is the external mechanical work that is invested

where dQ is the thermal energy, i.e., the heat exchanged perform the compression.
with the surrounding environment, adll” is the differential ~ Let us now argue how the above exercise relates to infor-
mechanical work [10]. The above equation is a consequengation.
of the conservation of energy, i.e., the first law of thermody First, by halving the volume of the thermodynamic system,
namics. The exchanged thermal energy is the number of available states where the gas particle could
dQ = TdS ) be is also ha_lved_. Therefore, we’ll need on_e_information bit
less to describe its state compared to the initial full-vodu
whereT' is the temperature of the gas, whil& is the dif- state. Considering the thermodynamics of computation, the
ferential change of its thermodynamic entropy. As mentibneesult in (12) is determined as the minimum energy needed
earlier, the thermodynamic entropy is a fundamental qtiantfor discarding one bit during the computation, i.e., infation
that describes how the internal enef@yis distributed among processing. This result is known &sndauer’s principle of
the system components (i.e., in this case among the particteasure and plays crucial role in determining how much energy
of the gas). Further, the differential mechanical work is is needed to perform a computation [6]—[8], [12].
AW = pdV ) Second, compressing the gas to one or the other half may be
used to record, i.e., store one information bit. For example
where p is the pressure that gas exerts on the walls of tlilee gas is compressed to its left or right half it will be assig
container, whiledV is the differential change of its volume. logical ‘0’ or '1’, respectively.



We now relate the above analysis to the communicationTheorem 2: If there is a knowledge about the state of the
theory results. Specifically, fav, = kT, the above expressionideal gas corresponding to one information Bif, In 2 Joules

(12) becomes identical to the expression (5), i.e., of energy can be extracted from the gas via its isothermal ex-
—~ , ansion. The gas expansion and energy extraction are @ljinit
AW = E"™ for Ny = kT. (13) bt gasexp gy ity
Focusing on information and communication aspects, we sumJn other words, the energy value of one bit of information
marized the above analysis in the following. is kT'In2 Joules.

Theorem 1. The same amount of energyX( In 2 Joules) is
needed to either store one information bit by the isothermal
compression of the ideal gas or communicate one informationUnlike the previous two subsections, here we assume that
bit over the equivalent AWGN channel (whefé, = k7). the gas is thermally isolated from its surroundings. Specifi
In both cases, the compression and transmission are iffiniteally, in the expression (6) the heat exchanged with the sur-

Ill. FURTHERANALOGIES WITH SHANNON THEORY

slow. O rounding environment igQ) = 0. Thermodynamic processes
_ with d@Q = 0 are known to beadiabatic. As said earlier, we
D. Energy Extraction will study a single-particle gas, where the particle has two

For the sake of simplicity let us assume that that a singldegrees of freedom.
particle gas occupies the volunig at the temperatur@. As
in the previous subsection, the gas container is in the talerri~ Gas Compr
bath. The particle will be in either left or right half of the Let us compress the gas tg'N of its initial volume V,
container with the equal probability. We assume that thereW = V/N. The compression is done adiabatically, without
a mechanism to insert a piston either from left or right sidany constraint on how fast it is performed (unlike the case of
of the container. the isothermal compression that has to be infinitely slow).

If there was a knowledge, i.e., information in which half Starting from the equations (6), (9), (10), for=1, M = 2
of the container the particle is, the piston could be inskrtenddQ@ = 0 we arrive to
from the opposite side. It is assumed that no energy is needed

ession and Information Soring

to perform the piston insertion. The procedure is depicted i dU = —dW = kdT = —pdV (14)
Figure 1, for the particle being in the left half. One infotina g
bit will be sufficient to describe in which half of the contan ar _ _dv (15)
the particle is. T \%4
From the above R R
. . T Vv
container piston — = — —
\‘a ! In T In v (16)
" ! vl/heref is the gas temperature after the compression and
e i V =V/N. Thus,
P : 1771 T=TN. (17)

The average external work that is invested to perform the
compression is equal to the change of the average internal
gas energy. In other words,

AW = AU = k(T = T) = kT(N - 1). (18)

pa/rticle
Fig. 1. The piston is inserted from the right while the péetiis in the left .
half of the container. We now describe how the above process can be used to
record, i.e, store information. The gas container of volume
After the insertion, the gas exerts pressure on the pistaddivided in NV disjoint compartments. The compartments are
Under the pressure, the piston is moving into the directi@i volumeV = V/N. Each compartment will assigned to a
of the gas expansion. While expanding, the gas performsique string of information bits with the length of
mechanical work. If the piston is moving infinitely slowly, )
upon reaching the initial volumg the gas has performed the C = log, N bits. (19)
total work that is equal to the one in (12). The expansion &oring of information is done by compressing and confining
isothermal. . . . the ideal gas to one of th& compartments depending on
The above system is known &ilard's engine [8] and  C-bit-long binary word that is being stored. The confined gas
together with Landauer’s principle is extensively used fgay be viewed as data symbol. Figure 2 depicts a possible

analyze the famous thought experiment knownMexwell compartment and binary word arrangement €r= 3 and
Demon (see [13] for more details). N =8.

We summarized the above in the following.
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/
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whereU’ is the average internal energy of the gas after the

/ /

" compression. From the equation (15), the voluwieis
4 ~, V(I'+AT)
» r_ YA T AL
v TN + AT (26)
The rate of the compressed volume change due to the differ-
P ence in the initial temperature is
AV AT(N-1)
o1 o1 ]o]a]olf1 wo== TN AT (27)
oo rjprjopoerge We now pose an equivalent communication problem. The
ojlojofo |z |[2]1]1 average energy of the transmitted symbol is given in (3). The

noise variance is different thaiy, i.e.,

Fig. 2. The container is divided itv = 8 compartments, with a unique 3-bit ’
binary word assigned to each of the compartments. In thiscptar example NO = No + ANp. (28)
the gas particle is compressed and confined to the compdrtoersponding

0 the binary word '101". Consequently, the maximum achievable data rate is

E;
C' =log, (1 + W) . (29)
0

order to achieve the capacity in (2), the transmitter
sends one o2"¢ codewords, where — oo. The codeword

Based on the expressions (18) and (19), the average energy
invested to store the binary word is

AT — KT (26 — 1), (20) belongs to a set of"¢ typical sequences that are uniformly
distributed in the signal space [9], [14]. Due to the trartsmi
while the average energy per bit is power constrain, the volume of the signal space is propuatio

to (nFE,)". A fraction of the signal space volume that is

c
AW, = kT(2 — 1)_ (21) allocated per codeword is
¢ (n Eg)"

Note that for N, = kT, the results in (21) and (4) are S=a- 77— forn— oo, (30)
identical, i.e., where « is a proportionality constant. From the above, the

AW, = E; for Ny = kT. (22) squared distance between the neighboring codewords is

" n Ej
The following theorem summarizes the above analysis. s = B8V =~ o0 (31)

Theorem 3: The same amount of average energy is neede(?1

. . . _ 1/77/ .
to either store” information bits by the adiabatic compressioﬁr{vn 'r?:ﬁﬁ rTI1$sa p;cr)ggrg%?:l:tcyecggtstaegtnag?e cg g‘e c;rfjés g]ne ditis
of the ideal gas or achieve the channel capacityof the inimum squ ! W W ' o

equivalent AWGN channel (wherd, = k7). The ideal gas proportional to the squared radius of the sphere of exatusio
is compressed to/N of its original volume .Wheré\f _9C around each codeword (where different codeword spheres mus
P 9 ' ~ 7 7 notintersect). Similarly, for a channel with the capadityin

: Note the above theorem is more general than Theorem 1@?)’ the above squared distance is
does not restrict the rate of information storing or trarssioin. S —s+As=n 7121095 (32)
B. Volume and Codeword Distance The rate of the minimum squared codeword distance change,
In this subsection we first consider a case when the aver&ly¢ 0 the difference in the noise variance is
energy in (20) is invested to compress the gas, but the linitia As 2029 ANy(2¢ —1)
temperature is different thaf, i.e., B = = = 790 T N2C + AN, (33)
T =T + AT. (23) Note that forNy = kT, ANy = kAT, and N = 2 the

R results in (27) and (33) are identical, i.e.,

After t_he compression, instead of reachivig= V/N, the gas Jiv = s for No = kT and ANg = kAT. (34)
occupies different volume

PPN The following theorem summarizes the above results.

Vi=V+AV. (24) Theorem 4: Using the same amount of average energy, the
ideal gas can be adiabatically compressed to the voldrtieat
depends on the initial temperatdfei.e.,V = V(T'). Further-
U more, using the same amount of average transmit energy, the
T = T T(N-1)+T'=TN + AT (25)  minimum squared distance between the capacity achieving

The temperature after the compression becomes



codewords depends on the noise variance, ies s(Np). Based on the above analysis, we conclude the following.
For the equivalent AWGN channel (whef¥, = kT and Upon reaching the equilibrium, in each container, the gas
ANy = kAT), the rates of the volume and squared codewogdrticle will have energy that is drawn from Boltzmann
distance change are identical, i.e., distribution in (39). As we assumed, each particle has two
~ ~ degrees of freedom. Each degree of freedom has a quantity
V({T+ éT) - V(1) — s(No + ANo) — S(NO)_D (35) (e.g., a velocity) that is drawn from Gaussian distribution
V(T) 5(No) N (0, kT N/2). Therefore we can abstract that each particle has
C. Second Law and Random Coding a complex quantityX +¢Y assigned to it. Thus, upon reaching

o ] ] the thermal equilibrium, the particles in gas containers
Let us perform the following information storing proceduréat are used to store total @fC' bits of information, will
As described earlier, it is done by compressing and confinigg 5ssociated with a sequence of complex quantities (for
the ideal gas to one of th&/ compartments, storing’ = . _| ).

log, V. bits of information. Usingn gas containers (where |mmediately after the compression, each particle is codfine
n — o), the total ofnC bits of information is stored. After 5 the volume?V = V/N = V/2€. The particle can be

the compression, the containers are brought into a thermgl \yhere within the volumé’. Consequently, the number
contact, while still being thermally isolated from the reéthe ¢ equally likely initial states is proportional to [11]. This

environment. Upon the contact, in each of the containers thgans that for each string @fC' information bits, there are
gas particle is released from the compartment it was Conﬁnﬁdcomplex sequences, where

to as the result of information storing. The particle is free N
to move within its container and exchange thermal energy K o <K) for 1 — 5o (41)
with the particles in other containers. The process wildlea

to a thermal equilibrium of the system. In the following w&p other words, each string aiC information bits corresponds
examine the properties of that equilibrium. ~_ to a unique set of initial states and thus to a unique set of
According to the second law of thermodynamics, in theomplex sequences with the cardinaliiy. There are2"C
equilibrium the energy is distributed among the system cofsjoint sets, one per each string o€’ information bits.
ponents in the most disorganized way. In other words, thegased on the equivalent AWGN channel that was introduced
thermodynamic entropy of the system is maximized with, he previous subsections (whefe, = kT(N — 1) and
respect to the probability density function (PDF) of the gag, — kT) the average energy of each complex quantity is

particle energy, i.e., A
E=U=KTN = E, + Ny. (42)

p(E) = ) (_k/o ¢(E) logy ¢(E) dE) (36) Based on the above, upon reaching the equilibrium, the state
of the system corresponds to a sequence of received samples
at the output of the equivalent AWGN channel. Each sample
/°° Ep(E) dE — i 37) correspondsto a s_,tat(_e of one gas coptainer. The averaggyener

0 per each sample is given in (42) while the samples are drawn
~ o ) from the complex Gaussian distribution. To determine which
wherelU = kTN = KT2%, IS the average internal energy Ofstring of nC bits was stored, i.e., sent over the equivalent
the gas after the compression. Further, channel, the receiver has to determine which set the rateive

o0 sample sequence belongs to (ou6f’ disjoint sets). This is
/0 p(E)dE = 1. (38) equivalent to the decoding procedure based on joint tyipycal
for the optimal channel coding that is described in [9]. The
following theorem summarizes the above analysis.

E Theorem 5: nC information bits are stored in containers

p(E) = Aexp <_m) , 20, (39 with the ideal gas. In each containef, bits are stored by
adiabatic compression to one @ compartments. Upon
fhe compression, the containers are brought into a thermal
contact, and particles are freed from the compartmentedas
on the second law of thermodynamics the system will reach
the equilibrium. The state of the system will correspond to
e output of the equivalent AWGN channel with optimally
encoded transmission. To retrieve the stored information a
decoding based on joint typicality could be used.

under the constraints

The solution of the above constrained optimization is

whereA the normalization constant (to satisfy the constraint
(38)). The PDFp(FE) is known asBoltzmann distribution and
it is distribution of energies of the ideal gas particles ighh
are identical but distinguishable) [11]. Boltzmann disfition
corresponds to the energy of circularly symmetric compl
random variable with Gaussian distributiGiv'(0, kT N). In
other words,

— 12 2 2
E=[X+iV["=X"+Y (40) p. commentson Degrees of Freedom and Number of Particles

where X andY are independent and identically distributed As said earlier, we have assumed that the gas particle has
each with Gaussian distributiok’(0, k7' N/2). two degrees of freedom (e.g., the particle is confined to a
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IV. CONCLUSIONS

In this paper we presented some analogies between thermo-
dynamics and Shannon theory. We showed that the average
energy needed for adiabatic compression of the ideal gas
to 1/N of its initial volume is the same as the average
energy needed to achieve the capadity= log, N of the
equivalent AWGN channel. In addition, we presented the link
between the gas volume and minimum squared codeword
distance. Furthermore, we related the thermal equilibrafm
the corresponding system to the equivalent AWGN channel
and optimal encoding and decoding that are based on Shannon
theory.

Extending the above analogies to study limits on energy and
time needed to perform encoding and decoding is of interest
for our future work.

1For example, for three degrees of freedali,= 3, the gas particle freely
moves through the three-dimensional space within the twerta



