Relay Placement and Movement Control for
Realization of Fault-Tolerant Ad Hoc Networks*

Abhishek Kashyap and Mark Shayman
Department of Electrical and Computer Engineering, University of Maryland, College Park MD 20742
Email: {kashyap, shayman}@eng.umd.edu

Abstract— Wireless communication is a critical component of
battlefield networks. Nodes in a battlefield network exist in hostile
environments and thus fault-tolerance against node and link
failures is a desirable property for the communication topology
of such networks. The network nodes are mobile and move
depending on the objective they try to achieve; thus the topology
needs to be re-established periodically. The transmitters used for
communication have a fixed transmission range, so additional
nodes are required for the construction of a fault-tolerant
topology among network nodes. As the network nodes move, the
additional nodes need to be moved as well; and it is desirable
to move them a minimum amount to re-establish the topology
as quickly as possible. We propose algorithms for minimizing
the number of additional nodes required and the distance they
need to move for construction of a topology with desired levels
of fault-tolerance. We show via extensive simulations that the
algorithms perform much better than an algorithm that does not
take minimizing the movement of additional nodes into account.

I. INTRODUCTION

Battlefield communication networks are networks of mobile
nodes, communicating with each other using wireless links.
The nodes in the battlefield refer to soldiers, army vehicles,
UAVSs, robots, etc. The network may also be a team of nodes
engaged together to perform a large scale reconnaissance
mission. The capability of a device to communicate with all
nodes (using single or multiple hops) is very critical for the
collaborative missions to succeed. In these applications, the
nodes are in hostile conditions, and the nodes or communica-
tion links between nodes may fail. Thus, it is critical for the
communication network between the nodes to be connected
even after a few failures. Also, since the nodes are mobile, it
is necessary to re-configure the communication topology as it
changes substantially.

We model the communication topology as a graph on the
nodes, assuming a fixed transmission range for each device.
Each device is considered to be a vertex in the graph, and
an edge exists between two vertices if they are within each
other’s transmission range. Fault-tolerance is tolerance against
device and link failures, thus we refer to fault-tolerance as
the existence of &k (> 1) edge-digoint (or & internally vertex-
digoint) paths between each pair of vertices in the graph.
This property makes the graph k-edge (vertex) connected, i.e.,
simultaneous failure of up to & — 1 edges (vertices) does not

*This research was partialy supported by AFOSR under grant
F496200210217 and NSF under grant CNS-0435206.

disconnect the graph (communication is still possible between
all nodes).

The network may be a hierarchical network [1], [2], with
clusters of ad-hoc nodes connected to a central node (cluster-
head), and the cluster-heads forming a communication topol-
ogy (backbone network) among themselves. In the hierarchical
model, traffic is routed from an ad-hoc node to the nearest
cluster-head, and is then forwarded through the backbone
network to a cluster-head close to the destination ad-hoc node.
In this scenario, providing fault-tolerance to the backbone
network is much more critical as it carries aggregate traffic
from clusters of ad-hoc nodes. Our framework can be applied
to design the backbone topology separately from the topology
of individual clusters. For the case of backbone network
design, the nodes in consideration would be the cluster-heads.
From now on, we cal the nodes we want to construct a
topology on as terminal nodes.

There has been recent work in construction of a 2-vertex
connected topology on a network of maobile robots [3]. The au-
thors propose algorithms for movement of robots to construct a
topology that remains connected after failure of a single robot.
They minimize the total movement of the robots needed to
construct the topology. They propose an optimal agorithm for
robots distributed on a Euclidian line, and heuristics for robots
distributed on a plane. In a typical network, it is not possible
to control the movement of all nodes as that might hamper
the objective the nodes are trying to achieve. We consider
the scenario where we can control the movement of only a
subset of nodes, and those nodes are used just to provide
the desired connectivity among the terminal nodes. Thus,
the data originates and ends at terminal nodes only, and we
need digoint paths between the terminal nodes. We call these
additional nodes relay nodes. Relays are required because
of the limited transmission range of terminals. Transmission
power control may not be enough to construct a desired
topology as the nodes may be outside the maximum possible
transmission range of the transmitters being used.

The second generalization we consider is providing k-
edge and k-vertex connectivity for any & > 2. We consider
minimizing the number of relays required for constructing a
topology that has k-edge (vertex) digoint paths between every
pair of terminas. The secondary objective we consider is to
minimize the total movement of existing relays in the network
to reconstruct a fault-tolerant topology on the terminals once
they move enough to disrupt the existing topology. We assume

the terminals move at a slow time-scale, as would be the case
in the backbone of a battlefield network. The problem of con-
struction of a fault-tolerant topology on terminal nodes using
minimum relays is NV P-Hard, thus we use the approximation
algorithms proposed in [4]. We propose algorithms that |ead to
considerable savings in the total movement of existing relays
and use about the same number of relays as the algorithm that
just minimizes the number of relays without taking movement
into consideration.

The paper is organized as follows: Section 2 gives the
network model and problem definition. Section 3 presents
the proposed algorithms. Section 4 gives the computational
complexity and simulation results. Section 5 concludes the

paper.

Il. NETWORK MODEL AND PROBLEM STATEMENT

The network consists of a set of termina nodes (7)) at
known locations. We assume the terminal nodes have a trans-
mission range constraint (assumed to be one by normalizing
the distances). Thus, nodes can connect only to nodes within
a unit distance. Therefore, we may require additional nodes
(which we call relays) to construct the desired fault-tolerant
topology on terminal nodes. We model the topology as a graph
G = (V,E), where V is the set of terminal and relay nodes,
and F isthe set of links between them. The links can be either
omnidirectional RF, directional RF or Free Space Optical links
(without obscuration). We assume the relay nodes are identical
to the terminal nodes in terms of their transmission range and
type of links.

We define fault-tolerance as the topology being k-edge or k-
vertex connected on the terminals. The objectiveisto minimize
the number of relays required. The problem can be stated
as follows: Given a graph G = (T, Er), find the minimum
number of relay nodes needed (and their locations) so that
the set of nodes T' is k-edge (vertex) connected (K > 2)
in the resulting graph G’ = (V',E"),T C V' Er C F.
The objective is to construct a graph such that A\(u,v) >
kVYu,v € T where A(u,v) is the number of edge-disjoint
(vertex-digioint) paths between v and v in G’. This problem
was studied in [4].

In this paper, we consider an extension of the problem in
which there is a fault-tolerant topology on the terminals, and
the terminal nodes move at a slow time scale. Thus, once
their locations have changed significantly, we would like to
re-establish the desired topology using minimum number of
relays. Since some relays already exist in the network (used
in the topology on previous terminal locations), the secondary
objective is to move the existing relay nodes a minimum
distance to the new relay positions so that the topology is
constructed quickly.

I11. PLACEMENT AND MOVEMENT ALGORITHMS

We develop algorithms for minimizing the number of relays
required to establish a fault-tolerant topology among the
terminal nodes. The secondary objective is to minimize the
total distance the existing relays have to be moved. We first

TABLE |

NOTATIONS
Symbol Definition

T Set of terminal nodes

N Number of terminal nodes

k Desired level of edge or vertex connectivity

R° Set of existing relay nodes

Go Topology on existing relays and terminals at old locations
R;?J. Set of relays associated with terminals 4, j in G,
T Number of relays associated with terminals ¢, j in G,
R? Set of vertices, one vertex per RY jw, jeT

Ge Complete graph on terminals T at their new locations

E. Set of edges of G
RP Set of potential relay nodes on edges in G,

M. Number of matched relay nodes on edge e in G.
RP . Set of relays associated with terminals i, j in G,
Rify Set of vertices, one vertex per R} ;Vi,j € T

Gn Topology on relays and terminals at new locations

R™ Set of new relay nodes in G,

describe the algorithm used to compute a k-edge or k-vertex
connected topology that tries to minimize the number of relays
required [4]. We then describe the framework followed by
the proposed algorithms to minimize the distance travelled by
existing relays as a secondary objective, and then explain the
algorithms. Table | lists the notations used in this section.

A. Algorithm for achieving k-connectivity

The algorithm for constructing k-edge or k-vertex connected
(k-connected for brevity) topology is described as follows. The
algorithm proceeds by forming a complete graph on the termi-
nal nodes. It then weights the edges of the graph according to
aweight function W (e). Equation 1 gives the weight function
used for minimizing the number of relay nodes, where |e|
is the length of an edge. The weight represents the number
of relay nodes required to form an edge. The relay nodes are
restricted to be placed on the lines joining two terminal nodes.
We say the relay nodes are associated with the terminals they
are placed to join. Also, they are not allowed to have edges
other than the ones required to form the edge they are placed
on.

ce = [le]] =1 (@)

Then it computes an approximately minimum weight spanning
k-edge (or vertex) connected subgraph of the complete graph.
For k-edge connectivity, the 2-approximation algorithm of [5]
can be used. For k-vertex connectivity, the 2-approximation
algorithm of [6] for can be used k = 2, the 2-approximation
of [7] can be used for k& = 3, the 3-approximation of [8] can
be used for £ = 4,5, the 4-approximation algorithm of [9]
can be used for k = 6,7, and the k-approximation algorithm
of [9] can be used for & > 7.

After computing the k-connected subgraph, the relays are
alowed to form edges with al relay and terminal nodes within
the transmission range. They are then sequentially removed in
an arbitrary order, if their removal does not violate the desired
connectivity. The algorithm has been proved to be a 10-
approximation for k£ = 2 for edge and vertex connectivity [4].

Algorithm 1 k-Connectivity(G, W (e), k)

1. Construct a complete graph G. = (T, E.) by forming
edges between all terminals.

2: Weight each edge e € E.. according to W (e).

3: Compute an approximately minimum weight spanning k-
connected subgraph of this graph G using an approxima-
tion algorithm. Let the resulting graph be G...

4: Place relay nodes on edges of length greater than one in
G..

5: For all pairs of nodes in G, within each other’s transmis-
sion range, form an edge.

6: For the relay nodes sorted arbitrarily, do the following
(starting at ¢ = 1):

« Remove node i (and all adjacent edges).
o Check for k-connectivity between the terminals.
« If the graph is not k-connected, put back the node i
and corresponding edges.
o Repeat for i =i+ 1.
« Stop when all relay nodes have been considered.
7: Output the resulting graph.

B. Framework for minimizing distance

We use the current positions of the existing relay nodes
along with the number of new relays required to form an
edge in the weight function W (e) that is given as an input to
Algorithm 1. An approximately minimum weight k-connected
subgraph is then computed for these weights, followed by
sequentia removal of new relay nodes. We then use minimum
weight matching [10] to move the existing relay nodes to
the new relay positions such that the total movement is
minimized. If more relay nodes are needed, they are added
to the network. The framework is given in Algorithm 2. The
initial weighting favors certain edges to be included in the
k-connected subgraph by giving them a lower weight. The
weight of each edge is reduced from the number of relays
needed if existing relays can be moved to the relay positions
on that edge. The algorithms we propose differ in the way they
assign these edge weights, and thus lead to different total relay
movement. Steps 2, 3 and 4 are the same for al agorithms.

C. Minimum Relays Algorithm (MRA)

Minimum Relays Algorithm (MRA) uses W(e) = c.
(Equation 1), i.e., the number of relays needed to form an
edge. Thus, the algorithm does not consider the existing relay
locations in computation of the k-connected subgraph.

D. Individual Matching based Algorithm (IMA)

Individual Matching based Algorithm (IMA) considers the
existing relay locations in the computation of weights W (e)
of edgesin E.. The computation of edge weights is described
in Algorithm 3. The agorithm matches the existing relay
locations with the potential relay locationsin RP, such that the
existing relays move a minimum distance. Then, the algorithm
weights each edge in E. by the number of unmatched relays
on the edge.

Algorithm 2 Framework for relay and distance minimizing
algorithms
1. Execute Algorithm 1, with edge weights W (e) depending
on the positions of existing relays and the number of relays
required to form edge e.
2: Move the existing relay nodes to the new relay positions
(at the output of Step 1) according to the following:

« Construct a bipartite graph Gy; = (Vas, Ear), where
Vv = R°UR™. E); consists of edges between each
pair of vertices (v° € R°,v™ € R™).

o Set weight w, of each edge e € E; according to the
distance between the corresponding actual and new
relay positions.

o Let W = maxccp,, We. St we =W —we +1,Ve €
Ey.

o Perform maximum weight matching (Lovasz and
Plummer [10]) on this graph to get a matching. A
matching is a subgraph of pairs of vertices connected
to each other, such that no vertex is connected to more
than one vertex.

3: Move each existing relay node to the new relay position
it is mapped to in the solution. This minimizes the total
movement of relay nodes.

4: Add new relays if there are unmatched new positions.

E. Same Terminal Pair Algorithm (STPA)

Same Terminal Pair Algorithm (STPA) tries to associate the
existing relays to the same terminal pair they were associated
with before the terminals moved. The weight function for
initial weighting W (e) is as defined in Equation 4, where
the symbols are as defined in Table I. e; ; represents the
edge between terminals ¢ and j in G.. The agorithm will
favor the formation of the same edges as in the topology
G, by assigning them a lower weight than the number of
relays required. The agorithm is expected to work well if the
terminal nodes do not move too far.

Wiei;) = max{[lei ;|| =1 —r;;,0},Vei; € B (4)
F. Group Matching based Algorithm (GMA)

Group Matching based Algorithm (GMA) is a hybrid of
IMA and STPA. The agorithm maps each set of existing
relays associated with a single pair of terminals in G, to
potential relay positions, al of which are associated with a
single terminal pair in G.. However, unlike STPA, the two
terminal pairs can be different. We do not consider sets with
zero existing or potential relays. The algorithm uses minimum
weight matching asin Step 2 of Algorithm 2 to find minimum
distances between each such pair of sets of existing and
potential relays. Then it uses the distances as weights and
uses matching again to map the sets of existing relays (RY)
to sets of potentia relays (R7) such that minimum distance is
travelled. Then, the algorithm weights each edge as the number
of unmatched relays among the relays needed on each edge
in E.. Algorithm 4 describes the algorithm in more detail.

Algorithm 3 Computation of initial edge weightsin IMA

Algorithm 4 Computation of initial edge weights in GMA

1. Construct a complete graph G. = (T, E.) by forming
edges between all terminals.

2: Mark the positions of relays needed to form each edge in
E.. The number of relays needed to form an edge e of
length |e| is [|e|] — 1. In a network in the first quadrant
of a Euclidean plane, the position (x, y) of relays for edge
e of length greater than one between vertices ¢ and j can
be computed as:

i+ (x5 —a)m/[lef],m € {1, [le]] - 1}
yi + (y; — yo)m/[lel],m € {1, [le[]] - 1}
@)

3. Congtruct a bipartite graph Gy = (Vas, Enr), Where
Vi = R°U RP. E); consists of edges between each pair
of vertices (v° € R°,vP € RP).

4: Find a matching by inverting the weights and computing
maximum weight matching as in G, as in Step 2 of
Algorithm 2.

5. For each edge e € E. with M, matched new relay
positions, define weight function W(e) as

Wie)=1le[]] —1— M,,Ve € E. (©))

Tm

Ym =

G. Enhanced Group Matching based Algorithm (EGMA)

Enhanced Group Matching based Algorithm (EGMA) is
a variation of GMA that takes into account the difference
between the number of relays in sets R ; and R? ; while
assigning them weights for matching in Step 6 of Algo-
rithm 4. Rather than keeping the weight as the minimum
distance needed to move the existing relaysin 7, ;; to R}, .
for al (il,41), (i2,52), the agorithm multiplies the weight
by ma‘X{‘Rzl jll/R'LZ 32 |Rz2 j2|/R21 jl} Here* |R | (|R D
denotes the number of relays (> 0) in the set R (R)
Thus, the algorithm favors matching two sets which have Iess
disparity in the number of relays.

1V. COMPUTATIONAL COMPLEXITY AND SIMULATION
RESULTS

A. Computational Complexity

Assuming the network is in a square region of length L,
the maximum distance between (and thus the number of relays
associated with) any pair of terminalsis O(L). The number of
edges in a k-edge connected subgraph on N terminals obtained
by the agorithm of [5] is bounded by k(N — 1). Thus, the
number of relays is N’ = O(kNL). The maximum number
of relays in any complete graph is O(N2L). Algorithm 1
takes O(k2N?2 + N'(N')N'?) = O((kNL)*) time. Maximum
weight matching on a bipartite graph of n vertices takes
O(n?%) time. Thus, Step 2 of the framework in Algorithm 2
takes O(kNL)?5 time. The adgorithms differ in the time
required for computation of weight function 1 (e) for Step
1 of the framework. If that time is O(f(k,N,L)) for an

1. Construct a complete graph G. = (T, E..) on terminals.

2: Mark the positions of potential relays needed to form each
edge in E., asin Step 2 of Algorithm 3.

3 Make a vertex corresponding to R¢; for al pairs of
terminals (i, j) which have at least one relay associated
with them. Make a vertex corresponding to Rf, ; for all
pairs of terminals (i, j) which are more than distance one
apart at new positions. Call the sets of vertices as R{, RY.

4: For each pair of vertices (v° € R{,vP € RY):

« Construct a bipartite graph on the existing and poten-
tial relay nodes in v° and v? with an edge between
each (existing, potential) relay pair.

o Find a matching in G, asin Step 2 of Algorithm 2.

o Assign a weight to the pair of this set of existing
relays and set of potentia relays as the sum of
distances between matched vertices.

5. Construct a bipartite graph Gy, = (Vag, Ear), Where
Vi = R{U RY. E)yy consists of edges between each pair
of vertices (v° € R{,vP € RY).

6: Weight each edge in E,; as the weight assigned to that
pair of vertices in Step 4 of this algorithm.

7. Find a matching in G, asin Step 2 of Algorithm 2.

8 For each edge e € E., define weight function W (e) as

Wi(e)=Tle]] —1— M,,Ve € E. (5)

agorithm, the total time required is O(f(k, N, L)+ (kN L)*+
O(kNL)*?) = O(f(k,N,L)+(kNL)*). Thus, for MRA and
STPA, the total time is O((kNL)*); for IMA, the total time
is O((kNL+N2L)25 4+ (kNL)*); and for GMA and EGMA,
the total time is O(kN3L*® + (kNL+ N2L)%*5 + (kNL)*).

B. Smulation Results and Discussion

The networks simulated were in a sguare region of side
length 10km. The nodes were assumed to have a transmission
range of 1km. The mobility model used was random waypoint,
in which the nodes move to a point within a circle of a certain
radius (R) around their current location randomly. Each node
independently picks a distance between 0 and R uniformly
randomly, an angle from 0 to 27 uniformly randomly, and
moves to a point at that distance and that angle. Whenever
any coordinate of the point to move to is outside the square
network region, the point is taken to be the boundary of the
network region in that coordinate.

We implemented the algorithms for finding a k-edge con-
nected network. The initial node locations were chosen in-
dependently randomly with a uniform distribution. A k-edge
connected topology was formed using the algorithm for min-
imizing the number of relays presented in Section I11-A. The
relays were placed at the required positions and the terminals
were moved using the mobility model described before. Then,
the agorithms were run to find the new relay positions to
construct the desired topology. The algorithms were compared

ance (m)

Total Dist

05 T
500 1000 1500 2000 2500 3000 3500 4000 4500 5000
aximum Movement (m)

Fig. 1. Total relay movement, varying R, N = 20, k = 2

for the number of relays they require and the movement of the
existing relays. We study the performance of the algorithms
for different values of R, and different number of terminal
nodes (N) in the network. The matching algorithm used was
an implementation of Gabow’s N-cubed weighted matching
algorithm [11].

1) Variation with movement of terminals. We first fixed
the number of terminal nodes (V) at 20, and varied the
amount of movement of the terminal nodes. The network was
formed with 10 different randomly generated node locations,
and for each set of node locations, 10 different sets of node
movements were generated. Thus, the agorithms were run a
total of 100 times. The first set of results are for achieving
2-edge connectivity among the terminal nodes. The maximum
movement allowed (R) for each node was varied from 500m
to 5km. Figure 1 shows the average total distance moved
by existing relays in MRA, IMA, STPA, GMA and EGMA.
Figure 2 shows the average total number of relays required in
the new topology formed by MRA, IMA, STPA, GMA and
EGMA. STPA and EGMA work better than GMA and IMA,
which in turn work better than MRA in terms of the total relay
movement. MRA saves only a few relays compared to the
other methods. This savings is offset by the larger movement
distance it requires. STPA works dlightly better than EGMA
when the terminal nodes do not move much, whereas EGMA
works much better than STPA as the terminal movement
increases. This is expected as STPA tries to move the existing
relays to connect the same terminal pair they were associated
with before, and thus works well for small terminal node
movements. For large movements, EGMA works better as the
terminals may move quite far from their original locations
and thus it may be better to move existing relays to connect
terminal nodes other than the ones they were associated with
before.

Figures 3 and 4 show the ratio between EGMA and MRA
of distance moved by relays and of total number of relays
required. EGMA leads to a savings of 20% in the distance
travelled by existing relays on an average, for all values of
R. Also, the number of relays required by EGMA is almost
the same as in MRA on an average. It is worthwhile to note

Total Relays Needed

.
500 1000 1500 2000 2500 3000 3500 4000 4500 5000
aximum Movement (m)

Fig. 2. Number of relays needed, varying R, N = 20, k = 2

o,
S0 1000 1500 2000 2500 3000 3500 4000 4500 5000
Maximum Movement (m)

Fig. 3. Total relative relay movement in EGMA, varying R, N = 20, k = 2

Relative Total Relays Needed

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

Fig. 4. Relative number of relays in EGMA, varying R, N = 20, k = 2

Relative Total Distance

Fig. 5. Total relative relay movement in STPA, varying R, N = 20, k = 3

—sTPA

Total Relays Needed

Fig. 6. Relative number of relaysin STPA, varying R, N =20, k =3

— seA

Fig. 7.
k=2

Total relative relay movement in STPA, varying N, R = 1500,

than in some instances MRA may require more relays because
the algorithm for finding a minimum-relay k-edge connected
topology is not optimal. Thus, other agorithms may use less
relays than MRA in some instances, though that is not true on
an average (as the results show).

We aso simulated MRA and STPA (it works as well
as EGMA for the values of R used) for the objective of
constructing a 3-edge connected topology. The number of
simulations were the same as before. Figures 5 and 6 show the
ratio between STPA and MRA of distance moved by relays
and of total number of relays required. STPA leads to a savings
of 20-25% in total relay movement on an average for varying
values of R for k = 3 as well. Also, the number of relays
used is amost the same asin MRA on an average.

2) Variation with number of terminals: We now study the
variation with respect to the number of termina nodes in
the network. The simulation set up is the same as before,
and they are done on 10 sets of network locations with 10
sets of random movements. The objective is to construct a
2-edge connected topology among the terminal nodes. The
maximum movement allowed (R) for each node is fixed at
1500m. Figures 7 and 8 show the ratio between STPA and
MRA of distance moved by relays and of total number of
relays required. STPA leads to about 15-20% less movement
of existing relays than MRA, and uses almost the same number
of relays on an average for all values of IV considered.

Thus, STPA works much better than MRA for a wide
range of number of terminals and amount of movement of
terminal nodes (R). If the amount of termina movement is

Relative Total Relays Needed

10 15 20 25 30 35 40 a5 50

Fig. 8. Relative number of relays in STPA, varying N, R = 1500, k = 2

very high, then EGMA performs better than STPA (and all
other algorithms), and thus should be used in those cases.

V. CONCLUSION

This paper considers the problem of providing fault-
tolerance to nodes in an ad-hoc network with low mobility.
The tolerance is provided against node and link failures. We
use additional relay nodes for construction of a fault-tolerant
topology due to transmission range constraints. We provide
algorithms for construction of a topology tolerant against the
desired number of failures, using as few relays as possible. The
algorithms re-establish the topology when it is disrupted due
to node movement, and try to minimize the distance travelled
by relays in the network, thus re-establishing it quickly. We
do extensive simulations to show that the proposed algorithms
lead to significant savings in the distance travelled by relays
(while using amost the same number of relays) compared to
an algorithm that only tries to minimize the number of relays.
The agorithms are shown to work well with varying amount
of terminal movement and varying number of network nodes.

REFERENCES

[1] E. Perkins, Ad Hoc Networking. Addison-Wesley, 2001.

[2] K. Xu, X. Hong, and M. Gerla, “An ad hoc network with mobile
backbones,” IEEE ICC, val. 5, pp. 3138-3143, 2002.

[3] P Basu and J. Redi, “Movement control agorithms for realization
of fault-tolerant ad hoc robot networks,” IEEE Network, pp. 3644,
July/August, 2004.

[4] A. Kashyap, S. Khuller, and M. Shayman, “Relay placement for higher
order connectivity in wireless sensor networks,” |EEE INFOCOM, 2006.

[5] S. Khuller and U. Vishkin, “Biconnectivity approximations and graph
carvings,” Journal of the ACM, val. 41, no. 2, pp. 214-235, 1994.

[6] S. Khuller and B. Raghavachari, “Improved approximation agorithms
for uniform connectivity problems” Journal of Algorithms, vol. 21,
no. 2, pp. 434450, 1996.

[7] V. Auletta, Y. Dinitz, Z. Nutov, and D. Parente, “A 2-approximation al-
gorithm for finding an optimum 3-vertex connected spanning subgraph,”
Journal of Algorithms, vol. 32, pp. 21-30, 1999.

[8] Y. Dinitz and Z. Nutov, “A 3-approximation algorithm for finding opti-
mum 4,5-vertex connected spanning subgraphs,” Journal of Algorithms,
vol. 32, pp. 3140, 1999.

[9] G. Kortsarz and Z. Nutov, “Approximating node connectivity problems

via set covers,” Algorithmica, vol. 37, pp. 75-92, 2003.

L. Lovasz and M. D. Plummer, Matching Theory. North-Holland, 1986.

H. Gabow, “Implementation of algorithms for maximum matching on

nonbipartite graphs,” Ph.D. thesis, Sanford University, 1973.

(1]
(11]

