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Abstract— This paper considers broadcast channels withL
antennas at the base station andm single-antenna users, where
each user has perfect channel knowledge and the base station
obtains channel information through a finite rate feedback.The
key observation of this paper is that the optimal number of on-
users (users turned on), says, is a function of signal-to-noise ratio
(SNR) and other system parameters. Towards this observation,
we use asymptotic analysis to guide the design of feedback and
transmission strategies. AsL, m and the feedback rates approach
infinity linearly, we derive the asymptotic optimal feedback
strategy and a realistic criterion to decide which users should
be turned on. Define the corresponding asymptotic throughput
per antenna as thespatial efficiency. It is a function of the number
of on-userss, and therefore, s should be appropriately chosen.
Based on the above asymptotic results, we also develop a scheme
for a system with finite many antennas and users. Compared with
other works wheres is presumed constant, our scheme achieves a
significant gain by choosing the appropriates. Furthermore, our
analysis and scheme is valid for heterogeneous systems where
different users may have different path loss coefficients and
feedback rates.

Index Terms— broadcast channel, finite rate feedback, spatial
efficiency

I. I NTRODUCTION

It is well known that multiple antennas can improve the
spectral efficiency. This paper considers broadcast channels
with L antennas at the base station andm single-antenna users.
To achieve the full benefit, perfect channel state information
(CSI) is required at both receiver and transmitter. PerfectCSI
at the receiver can be obtained by estimation from the received
signal. However, if CSI at the transmitter (CSIT) is obtained
from feedback, perfect CSIT requires an infinite feedback rate.
As this is not feasible in practice, it is important to analyze
the effect of finite rate feedback and design efficient strategy
accordingly.

The feedback models for broadcast channels are described
as follows. To save feedback rate on power control, we assume
a power on/off strategy where each user is either turned on
with a constant power or turned off, and that the number of on-
users (the users turned on) is a constant, says, independent of
the channel realization. For any given channel realization, the
users quantize their channel states into finite bits and feedback
the corresponding indices to the base station. After receiving
the feedback from users, the base station decides which users

∗This work is supported by NSF Grant DMS-0505680 and Thomson Inc.

should be turned on and then forms beamforming vectors for
transmission.

Broadcast channels with feedback have been studied in [1],
[2]. Ideally, if the base station has the perfect CSI, zero-forcing
transmission avoids interference among users. However, with
only finite rate feedback on CSI, the base station does not
know the perfect channel state information and therefore in-
terference from other users is inevitable. The interference gets
so strong at high signal-to-noise ratio (SNR) regions that the
system throughput is upper bounded by a constant even when
SNR approach infinity. This phenomenon is called interference
domination and was reported on in [1], [2]. The analysis is
based on the assumption that the number of on-userss always
equals to the number of antennas at the base stationL (L ≤ m
is typically assumed). To limit the interference to a desired
level, Sharif and Hassibi letm grow exponentially withL such
that there areL near orthogonal users with high probability [1].
In both scenarios, a homogeneous system is assumed where
all the users share the same path loss coefficient and feedback
resource.

Different from the above approaches, this paper studies het-
erogeneous broadcast systems, where different users may have
different path loss coefficients and feedback rates. Further-
more, different from [1], we focus on systems with a relatively
small number of users. Note that a cooperative communication
network can often be viewed as a composition of multi-access
and broadcast sub-systems with a small number of users.
Research on broadcast systems of small size provides insights
into cooperative communications.

For such systems, we solve the interference domination
problem by choosing the appropriate number of on-userss.
The reason that random beams construction in [1] fails in our
small size systems is elaborated in Theorem 2.

Our solution is based on the asymptotic analysis where
L,m, s and the feedback rates approach infinity linearly with
constant ratios among them. This type of asymptotics is
applied to systems of small size. The main asymptotic results
are:

• It is asymptotically optimal to quantize the channel direc-
tions only and ignore the channel magnitude information.
The asymptotically optimal feedback function and code-
book are derived accordingly.

• A realistic on/off criterion is proposed to decide which
users should be turned on.

• The corresponding throughput per antenna converges to a
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constant, defined as thespatial efficiency. It is a function
of the normalized number of on-userss̄ = s

L
. Further,

there exists a uniquēs ∈ (0, 1) to maximize the the spatial
efficiency.

We develop a scheme to choose the appropriates for
systems with finiteL and m. Simulations show that the
gain achieved by choosings is significant compared with
the strategies wheres ≡ L. In addition, our scheme has the
following advantages.

• It is valid for heterogeneous systems.
• The set of on-users is independent of the channel real-

ization. As a result, computation complexity is low since
we do not have to perform a user selection computation
every fading block.

• Only on-users need to feedback CSI, which saves a large
amount of feedback resource.

This paper is organized as follows. The system model
is introduced in Section II. Then Section III performs the
asymptotic analysis obtaining insights into system design, and
quantifies the spatial efficiency. Based on the asymptotic re-
sults, a practical scheme is developed in Section IV for systems
with finite many antennas and users. Finally, conclusions are
summarized in Section V.

II. SYSTEM MODEL

Consider a broadcast channel withL antennas at the base
station andm single-antenna users. Assume that the base
station employs zero forcing transmitter. Letγi ∈ R\R−

(1 ≤ i ≤ m) be the path loss coefficient for useri. Then
the signal model for useri is

Yi =
√
γih

†
i





m
∑

j=1

qjXj



+Wi,

whereYi ∈ C is the received signal for useri, hi ∈ CL×1 is
the channel state vector for user,qj ∈ CL×1 is the zero-forcing
beamforming vector for userj, Xj ∈ C is the source signal
for the userj and Wi ∈ C is the complex Gaussian noise
with zero mean and unit varianceCN (0, 1). Here, we assume
thatq†

jqj = 1 and the Rayleigh block fading channel model:
the entries ofhi are independent and identically distributed
(i.i.d.) CN (0, 1). Without loss of generality, we assume that
L ≤ m; if L > m, addingL−m users withγi = 0 yields an
equivalent system withL′ = m.

For the above broadcast system, it is natural to assume
a total power constraint

∑m
i=1 E

[

|Xi|2
]

≤ ρ. Further, for
implementation simplicity, we assume a power on/off strategy
with a constant number of on-users as follows.

A1) Power on/off strategy: a sourceXi is either turned
on with a constant powerPon or turned off. It is
motivated by the fact that this strategy is near optimal
for single user MIMO system [3].

A2) A constant number of on-users: we assume that the
number of on-userss (1 ≤ s ≤ m) is a constant
independent of the specific channel realizations. With
this assumption,Pon = ρ

s
. Here,s is a function of

ρ, γi and feedback rate. This assumption is different

from the one in [1], [2], wheres = L always (L ≤ m
is assumed there).

The finite rate feedback model is then described as follows.
Assume that both base station and useri knows γi

1 but
only useri knows the channel state realizationhi perfectly.
For given channel realizationsh1 · · ·hm, useri quantizes his
channelhi into Ri bits and then feeds the corresponding index
to the base station. Formally, letBi =

{

ĥ ∈ CL×1
}

with

|Bi| = 2Ri be a channel state codebook for useri. Then the
quantization function is given by

q : CL×1 → Bi

hi 7→ ĥi.

In Section III-A and III-B, we will show how to designq and
B respectively.

After receiving feedback information from users, the base
station decides whichs users should be turned on and forms
zero-forcing beamforming vectors for them. LetAon be the set
of s on-users. The zero-forcing beamforming vectorsqi’s i ∈
Aon is calculated as follows. LetP⊥

i be the plane generated by
{

ĥj : j ∈ Aon\ {i}
}

. Let Pi be the orthogonal complement

of P⊥
i andt be the dimensions ofPi. DefineTi ∈ C

L×t the
matrix whose columns are orthonormal and span the planeP .
Thenqi is theunitary projectionof ĥion Ti

qi :=
TiT

†
i ĥi

∥

∥

∥
TiT

†
i ĥi

∥

∥

∥

. (1)

Here, if s = 1 andAon = {i}, Ti is a L × L unitary matrix

andqi = ĥi/
∥

∥

∥ĥi

∥

∥

∥.

III. A SYMPTOTIC ANALYSIS

In order to obtain insights into system design, this section
performs asymptotic analysis by lettingL,m,Ri

′s → ∞
linearly. The quantization functionq and asymptotically op-
timal codebookBi are derived in Section III-A and III-B
respectively. Then Section III-C develops a realistic on/off
criterion to decide which users should be turned on. Finally
Section III-D computes the corresponding spatial efficiency.

A. Design of Quantization Function

Generally speaking, full information ofhi contains the
direction informationvi := hi/ ‖hi‖ and the magnitude
information ‖hi‖. In our Rayleigh fading channel model, it
is well known thatvi and ‖hi‖ are independent. Intuitively,
joint quantization ofvi and‖hi‖ is preferred.

Interestingly, Theorem 1 implies that there is no need to
quantize the channel magnitudes. Indeed, asL,m → ∞
linearly, all users’ channel magnitudes concentrate on a single
value with probability one.

Theorem 1:For∀ǫ > 0, asL,m → ∞ with m
L

→ m̄ ∈ R+,

Pr

(

max
1≤i≤m

1

L
‖hi‖2 ≥ 1 + ǫ

)

→ 0,

1There are many ways in which the base station obtainsγi. A simple
example could be that the base station measures the feedbacksignal strength.
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and

Pr

(

min
1≤i≤m

1

L
‖hi‖2 ≤ 1− ǫ

)

→ 0.

The proof of Theorem 1 is omitted due to the space
limitation. An important fact behind the proof is that whether
the users’ channel magnitudes concentrate or not depends on
the relationship betweenL andm: this concentration happens
in our asymptotic region whereL andm are of the same order.

To fully understand Theorem 1, it is important to realize
that the Law of Large Numbers does not imply that all users’
channel magnitudes will concentrate. According to the Law
of Large Numbers,1

L
‖hi‖ → 1 almost surely for anygiven

i. However, if m approaches infinity exponentially withL,
there are certain number of users whose channel magnitudes
are larger than others’, and therefore it may be still beneficial
to quantize and feedback channel magnitude information. This
phenomenon is illustrated by the following example.

Example 1:(A case where magnitude information is bene-
ficial) Consider a broadcast channel withγ1 = · · · = γm = 1.
As L,m → ∞ with log (m) /L → m̄′ ∈ R+, there exists an
ǫ > 0, δ1 > 0 andδ2 > 0 such that

1

L
log

∣

∣

∣

∣

{

i :
1

L
‖hi‖2 > 1 +

ǫ

2

}∣

∣

∣

∣

→ δ1,

and
1

L
log

∣

∣

∣

∣

{

i :
1

L
‖hi‖2 < 1− ǫ

2

}∣

∣

∣

∣

→ δ2

with probability one. Note that there are a set of users whose
channel magnitudes areǫ-larger than another set of users. It
may be worth to let the base station know which users have
stronger channels.

Theorem 1 implies that it is sufficient to quantize the chan-
nel direction information only and omit the channel magnitude
information. For this quantization, the codebook is given by
Bi =

{

p ∈ CL×1 : ‖p‖ = 1
}

with |Bi| = 2Ri . We use the
following quantization function

q : CL×1 → Bi

hi 7→ pi = arg max
p∈Bi

∣

∣

∣
v
†
ip

∣

∣

∣
, (2)

wherevi is the channel direction vector.

B. Asymptotically Optimal Codebooks

Given the quantization function (2), the distortion of a
given codebookBi is the average chordal distance between
the actual and quantized channel directions correspondingto
the codebookBi and defined as

D (Bi) := 1− Ehi

[

max
p∈Bi

∣

∣

∣v
†
ip

∣

∣

∣

2
]

.

The following lemma bounds the minimum achievable dis-
tortion for a given codebook rate (usually called the distortion
rate function).

Lemma 1:DefineD∗ (R) , inf
B: |B|≤2R

D (B). Then

L− 1

L
2−

R
L−1 (1 + o (1)) ≤ D∗ (R)

≤
Γ
(

1
L−1

)

L− 1
2−

R
L−1 (1 + o (1)) , (3)

and asL andR approach infinity withR
L
→ r̄ ∈ R+,

lim
(L,R)→∞

D∗ (R) = 2−r̄.

The following Lemma shows that a random codebook is
asymptotically optimal with probability one.

Lemma 2:Let Brand be a random codebook where the
vectorsp ∈ Brand’s are independently generated from the
isotropic distribution. LetR = log |Brand|. As L,R → ∞
with R

L
→ r̄ ∈ R+, for ∀ǫ > 0,

lim
(L,R)→∞

Pr
{

Brand : D (Brand) > 2−r̄ + ǫ
}

= 0.

The proofs of Lemma 1 and 2 are given in our paper [4].
Due to the asymptotic optimality of random codebooks, we

assume that the codebooksBi’s i = 1, · · · ,m are independent
and randomly constructed throughout this paper.

C. On/off Criterion

After receiving feedback from users, the base station should
decide whichs users should be turned on.

Ideally, for given channel realizationsh1, · · · ,hm, the
optimal set of on usersA∗

on should be chosen to maximize
the instantaneous mutual information. Note that the base
station only knows the quantized version of channel states
p1, · · · ,pm. It can only estimate the instantaneous mutual
information throughpi’s. The setA∗

on is given by

A∗
on = arg max

Aon: |Aon|=s

∑

i∈Aon

log (1+

γi
ρ
s

∣

∣

∣p
†
iqi

∣

∣

∣

2

1 + γi
ρ
s

∑

j∈Aon\{i}

∣

∣

∣
p
†
iqj

∣

∣

∣

2






. (4)

However, findingA∗
on requires exhaustive search, whose com-

plexity exponentially increases withm.
The random orthonormal beams construction method in [1]

does not work for our asymptotically large system either. In
[1], the base station randomly constructsL orthonormal beams
b1, · · · ,bL, finds the users with highest signal-to-noise-plus-
interference ratios (SINRs) through feedback from users, and
then transmits to these selected users. There, the SINR cal-
culation for useri is related to the quantitymax

1≤k≤L

∣

∣

∣h
†
ibk

∣

∣

∣.

However, Theorem 2 below shows that in the asymptotic
region whereL and m are of the same order, all users’
channels are near orthogonal to all of theL orthonormal beams
bi’s. Therefore, all users’ maximum SINRs (maximum over
L given orthonormal beams) approach zero uniformly with
probability one. The method in [1] fails in our asymptotically
large system.

Theorem 2:Given ∀ǫ > 0 and anyL orthonormal beams
bk ∈ CL×1 1 ≤ k ≤ L, asL,m → ∞ linearly with m

L
→

m̄ ∈ R+,

lim
(L,m)→∞

Pr

(

max
1≤i≤m, 1≤k≤L

1

L

∣

∣

∣h
†
ibk

∣

∣

∣ > ǫ

)

= 0.

The proof is omitted due to the space limitation.
In this paper, we take another approach where the on/off

decision is independent of channel directions. We start with
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the throughput analysis for a specific on-useri ∈ Aon. Note
that

Yi =
√
γih

†
iqiXi +





√
γih

†
i

∑

j∈Aon\{i}

qjXj +W



 .

The signal power and interference power for useri are given
by

Psig,i =
ρ

s
γi

∣

∣

∣
h
†
iqi

∣

∣

∣

2

(5)

and
Pint,i =

ρ

s
γi

∑

j∈Aon\{i}

∣

∣

∣
h
†
iqj

∣

∣

∣

2

(6)

respectively. Note that the influence of the users inAon\ {i} on
useri only occurs through their directionsqj ’s j ∈ Aon\ {i}.
If the choice of on-usersAon is independent of their channel
directions, thenhi andqj ’s are independent. In this case,Psig,i

andPint,i can be quantified asL,m, s,Ri
′s → ∞. The result

is given in the following proposition.
Proposition 1: Let |Aon| = s andL,m, s,Ri

′s → ∞ with
m
L

→ m̄, s
L
→ s̄ and Ri

L
→ r̄i. Assume thatvi’s i ∈ Aon are

independent. Then for∀i ∈ Aon,

Psig,i →
ρ

s̄
γi
(

1− 2−r̄i
)

(1− s̄) ,

Pint,i → ργi2
−r̄i,

and therefore

Ii := log

(

1 +
Psig,i

1 + Pint,i

)

→ log

(

1 + ηi
1− s̄

s̄

)

,

with probability one, where

ηi :=
ργi (1− 2−r̄i)

1 + ργi2−r̄i
. (7)

Remark 1:This proposition may not be true ifvj ’s (j ∈
Aon\ {i}) are not independent ofvi. Indeed, for example, if
other users are chosen such that their channel directions are
as orthogonal to useri as possible, the interference to useri is
less than that achieved by our choice where channel directions
are not taken into consideration. This claim is verified by the
fact that∃ǫ > 0 such that

min
Aon\{i}

∑

j∈Aon\{i}

∣

∣

∣h
†
iqj

∣

∣

∣

2

<
∑

j∈Aon,rand\{i}

∣

∣

∣h
†
iqj

∣

∣

∣

2

− ǫ

with probability one asL,m, s → ∞ linearly, where
Aon,rand\ {i} denotes a random choice ofAon\ {i}.

Remark 2:Proposition 1 shows that the useri’s asymptotic
throughput is a constant independent of the specific channel
realizationhi with probability one.

Based on Proposition 1, we select the set ofs on-usersAon

such that|Aon| = s and

Aon = {i : ηi ≥ ηj for ∀j /∈ Aon} ; (8)

if there are multiple candidates, we randomly choose one
of them. It is the asymptotically optimal on/off selection if
the on/off decision is independent of the channel direction

information. The difference between the throughput achieved
by optimal on/off criterion in (8) and the proposed one in (4)
remains unknown.

D. The Spatial Efficiency

We define the spatial efficiency (bits/sec/Hz/antenna) as

Ī (s̄) := lim
(L,m,s,Ri

′s)→∞
Ī(L),

whereL,m, s,Ri
′s → ∞ in the same way as before,Ī(L) is

the average throughput per antenna given by

Ī(L) := EBi
′s,hi

′s

[

1

L

∑

i∈Aon

log

(

1 +
Psig,i

1 + Pint,i

)

]

,

and Aon, Psig,i and Pint,i are defined in (8), (5) and (6)
respectively.

We shall quantifyĪ (s̄) for a givens̄. Define the empirical
distribution ofηi as

µ(m)
η (η ≤ x) :=

1

m
|{ηi : ηi ≤ x}| ,

and assume thatµη := limµ
(m)
η exists weakly as

L,m,Ri
′s → ∞. In order to cope withµη ’s with mass points,

define
∫ ∞

x+

f (η) dµη := lim
∆x↓0

∫ ∞

x+∆x

f (η) dµη

for ∀x ∈ R, wheref is a integrable function with respect to
µη. Then Ī (s̄) is computed in the following theorem.

Theorem 3:Let L,m, s,Ri
′s → ∞ with m

L
→ m̄, s

L
→ s̄

and Ri

L
→ r̄i. Define

ηs̄ := sup

{

η : m̄

∫ ∞

η

dµη > s̄

}

.

Then ass̄ /∈ (0, 1), Ī (s̄) = 0. If s̄ ∈ (0, 1),

Ī (s̄) = m̄

∫ ∞

η
+
s̄

log

(

1 + η
1− s̄

s̄

)

dµη

+

(

s̄− m̄

∫ ∞

η
+
s̄

dµη

)

log

(

1 + ηs̄
1− s̄

s̄

)

. (9)

We are also interested in finding the optimals̄ to maximize
Ī (s̄). Unfortunately, Ī (s̄) is not a concave function of̄s
in general. Furthermore, the measureµη may contain mass
points. The optimization of̄I (s̄) is therefore a non-convex
and non-smooth optimization problem. The following theorem
provides a criterion to find the optimal̄I (s̄).

Theorem 4:Ī (s̄) is maximized at a uniquēs∗ ∈ (0, 1) such
that

0 ∈
[

lim inf
∆s̄→0

Ī (s̄∗)− Ī (s̄∗ −∆s̄)

∆s̄
,

lim sup
∆s̄→0

Ī (s̄∗)− Ī (s̄∗ −∆s̄)

∆s̄

]

. (10)

The proof is omitted due to the space limitation. TheĪ (s̄∗)
is the maximum achievable spatial efficiency for the proposed
power on/off strategy.
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IV. F INITE DIMENSIONAL SYSTEM DESIGN

Based on the asymptotic results in Theorem 3-4, we now
propose a scheme for systems with finiteL andm.

A. Throughput Estimation for Finite Dimensional Systems

While asymptotic analysis provide many insights, we do
not apply asymptotic results directly for a finite dimensional
system. The reason is that in asymptotic analysis1

L
→ 0

while 1
L

cannot be ignored for a system with smallL. In
the following, we first calculate the main order term of the
throughput for useri ∈ Aon and then explain the difference
between asymptotic analysis and finite dimensional system
analysis explicitly.

To obtain the main order term, proceed as follows. Note
that the throughput for useri ∈ Aon (|Aon| = s) is

Ii = E

[

log

(

1 +
Psig,i

1 + Pint,i

)]

= log

(

1 +
E [Psig,i]

1 + E [Pint,i]

)

+ E

[

log

(

1 + Psig,i + Pint,i

1 + E [Psig,i] + E [Pint,i]

)]

− E

[

log

(

1 + Pint,i

1 + E [Pint,i]

)]

,

wherePsig,i and Pint,i are defined in (5) and (6). The fol-
lowing theorem calculatesE [Psig,i] and E [Pint,i] for finite
dimensional systems.

Theorem 5:Let Bi’s be randomly constructed andDi =
EBi

[D (Bi)] for all 1 ≤ i ≤ m. For randomly chosenAon

and i ∈ Aon, if 1 ≤ s ≤ L

E [Psig,i] = γiρ
L

s

[

(1−Di)

(

1− s− 1

L

)

+Di

s− 1

L (L− 1)

]

,

(11)
and

E [Pint,i] = γiρ
L

s

s− 1

L− 1
Di; (12)

if s > L, E [Psig,i] = 0.
The calculation ofE [Psig,i] andE [Pint,i] relies on quantifi-

cation ofDi. In general, it is difficult to computeDi precisely.
Note that the upper bound in (3) is derived by evaluating
the average performance of random codebooks (see [4] for
details). We use its main order term to estimateDi:

Di ≈
Γ
(

1
L−1

)

L− 1
2−

Ri
L−1 .

Define

Imain,i := log

(

1 +
E [Psig,i]

1 + E [Pint,i]

)

. (13)

It can be verified from Proposition 1 thatIi = Imain,i+ o (1)
and thereforeImain,i is the main order term ofIi.

Then the difference between asymptotic analysis and finite
dimensional systems analysis is clear. In the limit,s−1

L
→ s̄

and Ri

L−1 → r̄i. However, for finite dimensional systems,
simply substituting these asymptotic values into (11-13) di-
rectly introduces unpleasant error, especially whenL is small.

Therefore, to estimateIi (∀i ∈ Aon) for finite dimensional
systems, we have to rely on (11-13).

B. A Scheme for Finite Dimensional Systems

Given system parametersL, m, γi’s andRi’s, a practical
scheme needs to calculate the appropriates and Aon. This
process is described in the following.

For a givens, the set ofAon is decided as follows: we
first calculateImain,1, · · · , Imain,m according to (13) and then
choose thes users with the largestImain,i’s to turn on; if
there exists any ambiguity, random selection is employed to
resolve it. For example, ifImain,1 > Imain,2 > · · · > Imain,m,
the user1, 2, · · · , s are turned on. IfImain,1 = Imain,2 =
· · · = Imain,m, the s on-users are randomly selected from all
the m users. Note again,Aon is independent of the channel
realization.

The appropriates is chosen as follows. Let

Imain (s) = max
Aon: |Aon|=s

∑

i∈Aon

Imain,i.

Here, note thatImain,i is a function ofs. For a given broadcast
system, we choose the number of on-users to be

s∗main = arg max
1≤s≤L

Imain (s) .

Although the above procedure involves exhaustive search,
the corresponding complexity is actually low. First, the calcu-
lations are independent of instantaneous channel realizations.
Only system parametersL, m, γi’s and Ri’s are needed.
Provided thatγi’s change slowly, the base station does not
need to recalculates∗main andAon frequently. Second,Ri =
Rj in most systems. For such systems and a givens, the s
on-users are just simply the users with the largestγi’s.

After calculatings∗main andAon, the base station broadcast
Aon to all the users. For each fading block, the system works
as follows.

• At the beginning of each fading block, the base station
broadcasts a single channel training sequence to help all
the users estimate their channel stateshi’s.

• After estimating theirhi’s, the on-users quantizehi’s into
pi’s according to (2) and feed the corresponding indices
to the base station.

• The base station then calculates the transmit beamforming
vectorsqi’s according to (1), and then transmitsqiXi’s.

Remark 3 (Fairness Scheduling):For systems withγi 6=
γj or Ri 6= Rj , there may be some users always turned
off according to the above scheme. Fairness scheduling is
therefore needed to ensure fairness of the system. There are
many ways to perform fairness scheduling. Since fairness is
not the primary concern of this paper, we only give an example
as follows. Givenm users, the base station calculates the
correspondings∗main andAon, and then turns on the users in
Aon for the first fading block. At the second fading block, the
base station considers the users who have not been turned on
{1, · · · ,m} \Aon. It calculates the correspondings∗main and
Aon, and then turns on the users in the newAon. Proceed this
process until all users have been turned on once. Then start a
new scheduling cycle.
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Fig. 1. Total Throughput for Zero Forcing Beamforming

C. Simulation Results

Fig. 1 gives the simulation results for the proposed scheme
using zero-forcing. In the simulations,L = m = 4. For
simplicity, we assume thatγ1 = γ2 = · · · = γm = 1 and
R1 = R2 = · · · = Rm = Rfb. With these assumptions,
the s on-users can be randomly chosen from all them users.
Without loss of generality, we assume thatAon ≡ {1, · · · , s}.
Let I (s) =

∑

i∈Aon
Ii. In Fig. 1, the solid lines are the simu-

lations ofI (s∗main) while the dashed lines are the theoretical
calculation ofImain (s

∗
main). The simulation results show that

the optimals is a function ofρ andRfb. For example,s = 1
is optimal whenρ ∈ [15, 20]dB andRfb = 6 bits, whiles = 3
is optimal for the same SNR region asRfb increases to 12
bits. The reason behind it is that the interference introduced
by finite rate quantization is larger whenRfb is smaller: when
Rfb is small, the base station needs to turn off some users to
avoid strong interference as SNR gets very large.

We also compare our scheme with the schemes where the
number of on-users is a presumed constant (independent of

ρ and Rfb). The throughput of schemes with presumeds
is presented in dotted lines. From the simulation results, the
throughput achieved by choosing appropriates is always better
than or equals to that with presumeds. Specifically, compared
to the scheme in [2] wheres = L = 4 always, our scheme
achieves a significant gain at high SNR by turning off some
users.

V. CONCLUSION

This paper considers heterogeneous broadcast systems with
a relatively small number of users. Asymptotic analysis where
L,m, s,Ri → ∞ linearly is employed to get insight into
system design. Based on the asymptotic analysis, we derive the
asymptotically optimal feedback strategy, propose a realistic
on/off criterion, and quantify the spacial efficiency. The key
observation is that the number of on-users should be appro-
priately chosen as a function of system parameters. Finally, a
practical scheme is developed for finite dimensional systems.
Simulations show that this scheme achieves a significant gain
compared with previously studied schemes with presumed
number of on-users.
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