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Abstract— Bandwidth-sharing networks as considered by Mas-
soulié & Roberts provide a natural modeling framework for
describing the dynamic flow-level interaction among elastic data
transfers. Under mild assumptions, it has been established that
a wide family of so-called α-fair bandwidth-sharing strategies
achieve stability in such networks provided that no individual
link is overloaded.

In the present paper we focus on α-fair bandwidth-sharing
networks where the load on one or several of the links exceeds
the capacity. Evidently, a well-engineered network should not
experience overload, or even approach overload, in normal
operating conditions. Yet, even in an adequately provisioned
system with a low nominal load, the actual traffic volume may
significantly fluctuate over time and exhibit temporary surges.
Furthermore, gaining insight in the overload behavior is crucial
in analyzing the performance in terms of long delays or low
throughputs as caused by large queue build-ups. The way in
which such rare events tend to occur, commonly involves a
scenario where the system temporarily behaves as if it experiences
overload.

In order to characterize the overload behavior, we examine
the fluid limit, which emerges from a suitably scaled version of
the number of flows of the various classes. Focusing on linear
solutions to the fluid-limit equation, we derive a fixed-point
equation for the corresponding asymptotic growth rates. It is
proved that a fixed-point solution is also a solution to a related
strictly concave optimization problem, and hence exists and is
unique. The results are illustrated for linear topologies and star
networks as two important special cases.

I. INTRODUCTION

Over the past several years, the processor-sharing discipline
has emerged as a useful paradigm for evaluating the flow-level
performance of elastic data transfers competing for bandwidth
on a single bottleneck link. Bandwidth-sharing networks as
considered by Massoulié & Roberts [23], [26] provide a
natural extension for modeling the dynamic interaction among
competing elastic flows that traverse several links along their
source-destination paths.

Assuming exponential flow size distributions and Poisson
arrivals, De Veciana et al. [27], [28] proved that weighted max-
min and proportional fair bandwidth-sharing strategies achieve
stability in such networks (positive recurrence of the associated
Markov process) under the nominal condition that no indi-
vidual link is overloaded. Bonald & Massoulié [5] extended
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that result to a wide family of weighted α-fair bandwidth-
sharing strategies as introduced by Mo & Walrand [24].
Massoulié [22] established that the nominal stability condition
remains sufficient for the proportional fair strategy with an
additional ‘routing feature’, thus further generalizing the result
to phase-type flow size distributions. Bramson [9] showed
that the max-min fair strategy guarantees stability under the
nominal load condition for general flow size distributions and
renewal arrival processes. Under similar general distributional
assumptions and load conditions, Gromoll & Williams [15],
[16] studied the fluid limit for weighted α-fair strategies, and
established stability in some special cases, such as linear and
tree topologies. Interesting stability results for α-fair strategies
and general flow size distributions with bounded support were
obtained by Chiang et al. [10]. Hansen et al. [17] examined
the impact of rate allocation policies on the stability conditions
for exponential flow sizes from the perspective of entrainment.
The latter term is used by Kelly & Williams [20] to refer to
the phenomenon that the simultaneous resource requirements
may cause congested links to prevent other links from utilizing
their full capacities.

In the present paper we focus on α-fair bandwidth-sharing
networks where the load on one or several of the links
exceeds the capacity. Obviously, with adequate provisioning,
a network should not experience overload, or even approach
overload, in normal operating conditions. However, even in
a properly dimensioned system with a low typical load, the
actual traffic volume may substantially fluctuate over time
and exhibit transient surges, see also Bonald & Roberts [6].
Furthermore, an understanding of the overload behavior plays
a crucial role in analyzing the performance in terms of long
transfer delays or low flow throughputs as caused by large
queue build-ups. The likely way for such rare events to occur,
commonly entails a scenario where the system temporarily
appears to deviate from the normal stochastic laws and behaves
as if it experiences overload, see for instance Anantharam [2].

As alluded to above, an α-fair bandwidth-sharing net-
work bears strong resemblance with a single-server processor-
sharing system, since within each class the bandwidth is
fairly shared among all competing flows. The overload be-
havior of a single-server processor-sharing system was first
analyzed by Jean-Marie & Robert [19]. Their analysis was
extended by Altman et al. [1] to the discriminatory processor-
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sharing discipline, which corresponds to a single-node network
with a weighted α-fair strategy. Puha et al. [25] studied a
single-server overloaded processor-sharing system in terms of
measure-valued processes.

There are two key distinctions that arise in a network
scenario: (i) the rate received by a class is no longer con-
stant, but depends on the number of flows of all classes in
some intricate fashion; and (ii) the network may show non-
work-conserving behavior due to the entrainment phenomenon
mentioned above. These two features not only render the flow-
level performance largely intractable, but also complicate the
analysis of the overload behavior. For example, even on links
with excess capacity, the workloads may grow because of the
non-work-conserving behavior mentioned above. In addition,
while the total number of flows must grow in overload con-
ditions, the exact nature of the growth patterns of the various
classes is far from clear, and may even potentially involve
oscillatory effects in certain cases as observed in Bramson [8]
and Lu & Kumar [21] for example.

In order to characterize the growth dynamics, we examine
the fluid limit, which emerges when the number of flows of
the various classes is scaled in both space and time. Focusing
on linear solutions to the fluid-limit equation, we obtain a
fixed-point equation for the coefficients, which represent the
corresponding asymptotic growth rates of the queue lengths.
It is proved that a fixed-point solution is also a solution to
a related strictly concave optimization problem, and therefore
exists and is unique.

The results are illustrated for linear topologies and star
networks as two important special cases. While admittedly
simple, linear networks provide a useful model for flows that
traverse several links and experience bandwidth competition
from independent cross-traffic. Star networks offer a conve-
nient abstraction for scenarios where the core is highly over-
provisioned and congestion predominantly occurs at the edge
with comparatively low-capacity access links, see also Fayolle
et al. [12].

The remainder of the paper is organized as follows. In
Section II we present a detailed model description and state
some preliminaries. In Section III we examine linear solutions
to the fluid-limit equation, derive a fixed-point equation for the
corresponding asymptotic growth rates, and establish existence
and uniqueness of the fixed point. We focus on the special case
of a network with a linear topology in Section IV. In Section V
we turn attention to the special case of a star network.

II. MODEL DESCRIPTION AND PRELIMINARIES

In this section we present a detailed model description and
state some preliminaries.

Flow-level model
We consider a bandwidth-sharing network as in [23], [26]

with a finite number of links labeled by j = 1, . . . , J . Denote
by C = (C1, . . . , CJ) the vector of link capacities. The
network is offered traffic from several classes indexed by
i = 1, . . . , I . Each class is characterized by a route, i.e., a

nonempty subset of {1, . . . , J}, which represents the links
traversed by the traffic from that class. Let A be a J × I
incidence matrix such that Aji = 1 if link j belongs to the
route of class i, and Aji = 0 otherwise. For now, we do not
make any specific assumptions on the topology of the network
or the structure of the route sets.

The traffic of the various classes consists of elastic file
transfers. Class-i flows arrive as a renewal process with rate λi,
i.e., the mean interarrival time is 1/λi, and have generally dis-
tributed sizes Bi with mean 1/µi. Denote by ρ = (ρ1, . . . , ρI)
with ρi := λi/µi the vector of traffic intensities.

Bandwidth-sharing strategy
Denote by Λ = (Λ1, . . . ,ΛI) the vector of rates allocated

to the various classes. Any rate allocation vector Λ must
satisfy the capacity constraints AΛ ≤ C. The bandwidth
arbitration among competing flows is governed by a weighted
α-fair strategy [24], which selects a rate allocation vector
Λ(z) = (Λ1(z), . . . ,ΛI(z)) based on the population z =
(z1, . . . , zI) of active flows and an optimization criterion as
specified below. Within each class, the rate is fairly shared
among all competing flows, i.e., if zi > 0, then each class-
i flow receives service at rate Λi(z)/zi. Thus, a class-i flow
that is continuously active throughout the time interval [s, t],
receives a cumulative amount of service

Si(s, t) =
∫ t

s

Λi(Z(u))
Zi(u)

du,

with Z(t) = (Z1(t), . . . , ZI(t)) representing the population of
active flows at time t.

A weighted α-fair strategy is parameterized by a fairness co-
efficient α ∈ (0,∞) and a weight vector w = (w1, . . . , wI) ∈
R+

I . For a given population z = (z1, . . . , zI) 6= (0, . . . , 0)
of active flows, the weighted α-fair rate allocation Λ(z) is
determined by the solution to the optimization problem:

maximize Gz(Λ)
(P )

subject to AΛ ≤ C, Λ ≥ 0,

where the objective function Gz(·) : RI
+ → [−∞,∞] is

defined by

Gz(Λ) =


∑I

i=1 wi zα
i

Λ1−α
i

1−α , α ∈ (0,∞)/{1},∑I
i=1 wi zi log Λi, α = 1,

(1)
with the convention that Gz(Λ) = −∞ if α ≥ 1 and Λi = 0,
zi > 0. With the additional convention that Λi(z) = 0 when
zi = 0, the rate allocation is uniquely determined since the
above optimization problem is strictly concave.

The family of α-fair bandwidth-sharing strategies includes
several common fairness concepts as special cases. In par-
ticular, the case α = 1 and the limiting cases α → 0 and
α → ∞ correspond to a rate allocation that is proportional
fair, achieves maximum throughput, and is max-min fair,
respectively.
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Load conditions
Under Markovian assumptions, [5] established that α-fair

strategies achieve stability provided no individual link is
overloaded, i.e., Aρ < C. In the present paper we focus on an
overload scenario where the above condition is violated for at
least one of the links.

III. MAIN RESULTS

In this section we present our main results, which character-
ize the growth rates of the number of flows in an overloaded
α-fair bandwidth-sharing network. Specifically, this section
examines the fluid limit emerging from a suitably scaled
version of the number of flows of the various classes, namely,
the sequence of processes (Z(rt)/r, t ≥ 0) with r → ∞.
Gromoll & Williams [15] established that the sequence of
these scaled processes is tight.

In preparation for the statement of the main result, we first
introduce a slightly modified version of the rate allocation
functions which may be interpreted as the service rates at
the fluid scale. The service rate Ri(z) received by class i is
defined as follows: Ri(z) ≡ Λi(z) if zi > 0, where Λi(·) is
the solution of the optimization problem (P), and Ri(z) ≡ ρi

if zi = 0. The above distinction reflects the fact that on the
fluid scale, zi = 0 requires that class i receives service at
rate ρi, rather than 0.

We now proceed to postulate a fluid-model solution
(z(t), t ≥ 0). This definition is slightly different from the
one in [15]: a nonnegative continuous function (z(t), t ≥ 0)
is said to be a fluid-model solution if it satisfies

zi(t) = λi

∫ t

0

P(Bi > Si(s, t))ds, (2)

where Si(s, t) =
∫ t

s
Ri(z(u))

zi(u) du is the cumulative amount of
service received by a class-i flow during the time interval [s, t].
As a matter of fact, we expect our definition to be equivalent
to the one in [15] (extending the arguments in the proof of
Lemma 4.3 in Gromoll et al. [14] from the single-server case
to a network scenario).

The next proposition presents the main result of the paper.
Proposition 3.1: The fluid-limit Equation (2) admits a lin-

ear solution z(t) ≡ mt, where the vector m = (m1, . . . ,mI)
forms the unique solution to the fixed-point equation

Ri(m) = ρiE
[
e−

mi
Ri(m) B∗

i

]
, i = 1, . . . , I, (3)

and B∗
i represents a residual flow size (i.e. a random variable

with density P(Bi > x)/E[Bi] and LST E
[
e−xB∗

i

]
= µi(1−

E
[
e−xBi

]
)/x).

The above proposition holds for arbitrary network topolo-
gies and arbitrary flow size distributions. In a single-link
scenario, i.e., J = 1, it reduces to known results for single-
server processor-sharing type systems. In particular, in the
single-class case, i.e., I = 1, we have, dropping the class
index, R(m) = 1, and Equation (3) specializes to

1 = ρE[e−mB∗
],

which corresponds to the result in [19]. In the multi-class
case, we have Ri(m) = wimi/

∑I
k=1 wkmk, and Equation (3)

takes the form
wimi∑I

k=1 wkmk

= ρi E
[
e−w−1

i

PI
k=1 wkmkB∗

i

]
, i = 1, . . . , I,

which agrees with the result in [1] for overloaded discrim-
inatory processor-sharing queues. We will give additional
examples for specific network topologies in Sections IV and V.

A. Heuristic interpretation

The fixed-point Equation (3) may be heuristically derived
in a similar way as explained by Jean-Marie [18]; we are not
aware of an article where this derivation has been published.

Suppose that Z(r)
r → m a.s. as r →∞ for some vector m =

(m1, . . . ,mI). Then, for large t, a class-i flow will receive
service at a rate of approximately Ri(mt)

mit
. Let an

i be the arrival
epoch of the n-th class-i flow. Then the size Bi of that flow
and its sojourn time Ti may be related as:

Bi =
∫ an

i +Ti

an
i

Ri(mu)
miu

du.

Since Ri(mu) = Ri(m) (see [20]), it follows that

mi

Ri(m)
Bi =

∫ an
i +Ti

an
i

1
u

du = log(an
i + Ti)− log an

i .

Taking the exponent on both sides, we obtain

Ti = an
i

(
e

mi
Ri(m) Bi − 1

)
.

The number of active class-i flows at time t may then be
expressed as Zi(t) = #{n : an

i + Tn
i ≥ t, an

i ≤ t} = #{n :
t ≥ an

i ≥ te−
mi

Ri(m) Bi}. Because an
i ≈ n/λi for large n, we

have

Zi(t) = #{n : t ≥ n

λi
≥ te−

mi
Ri(m) Bi} ≈ λit

(
E

[
1− e−

mi
Ri(m) Bi

])
.

Dividing both sides by t and letting t tend to infinity, we
deduce

mi = λi

(
1−E

[
e−

mi
Ri(m) Bi

])
, (4)

which is equivalent to Equation (3).
Remark 3.1: In the case of exponential flow sizes, Equa-

tion (3) specializes to

mi = λi − µiRi(m), i = 1, . . . , I, (5)

which makes sense, since µiRi(m) is indeed the departure rate
of class-i flows. This is also consistent with the convention
Ri(m) = ρi when mi = 0.

Remark 3.2: Note that we have not established convergence
of (Z(rt)/r, t ≥ 0) to (z(t), t ≥ 0). In order to prove
convergence, one would need to show that (i) any convergent
subsequence of (Z(rt)/r, t ≥ 0) is a fluid-model solution in
our sense; and (ii) that our fluid-model solution is unique.
In [11] a proof is sketched of (i). To establish (ii), it remains
to be shown that any solution to the fluid-limit equation is
linear. While we strongly conjecture that to be the case for
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any finite initial state Z(0), a rigorous proof appears quite
challenging in general. In the special case of exponential flow
sizes, any differentiable fluid-limit solution satisfies z′i(t) =
λi − µiRi(z(t)). Using a similar proof technique as in [5], it
may then be shown that in case of the proportional fair policy
the function F (y(t)), with F (u) :=

∑I
i=1 wiu

2
i /µiRi(m)

and y(t) = z(t) − mt, is non-increasing as function of t.
In case z(0) = 0, so that F (y(0)) = 0, it then follows that
F (y(t)) = 0 for all t ≥ 0, i.e., z(t) = mt for all t ≥ 0. Thus,
any differentiable fluid-limit solution is linear.

B. Proof of Proposition 3.1

The proof of Proposition 3.1 follows from the next two
lemmas.

Lemma 3.1: At time t, for any class i, a solution of Equa-
tion (2) is given by

zi(t) = mit,

where mi is a solution of Equation (4).
Proof Suppose zi(t) = mit, where mi is some constant.

Substituting this into Equation (2), we obtain that

zi(t) = mit = λi

∫ t

0

P
(

Bi >

∫ t

s

Ri(miu)
miu

du

)
ds

= λi

∫ t

0

P
(

Bi >

∫ t

s

Ri(m)
miu

du

)
ds

= λi

∫ t

0

P
(
−Bi

mi

Ri(m)
< log

s

t

)
ds

= λit

∫ 1

0

P
(
e−Bi

mi
Ri(m) < u

)
du = λit(1−E

[
e−Bi

mi
Ri(m)

]
),

which yields that mi is a solution of Equation (4). �
Lemma 3.2: Equation (3) has a unique solution m =

(m1, . . . ,mI).
Proof We will establish uniqueness of R(m). The mono-

tonicity of the LST’s βi(·) then implies uniqueness of m =
(m1, . . . ,mI).

A crucial role is played by a related optimization problem.
To formulate this optimization problem, we rewrite the fixed-
point Equation (3) in the equivalent form

mi

Ri(m)
= β−1

i

(
Ri(m)

ρi

)
, i = 1, . . . , I, (6)

where β−1
i (·) is the inverse of the Laplace-Stieltjes Transform

(LST) βi(y) = E
[
e−yB∗

i

]
, β−1

i (βi(y)) = y. Observe that
the right-hand side only depends on m through Ri(m). This
motivates us to introduce the function Hi(x), which has
derivative H ′

i(x) =
(
β−1

i

(
x
ρi

))α

. Since βi(x) is strictly
decreasing in x, its inverse is strictly decreasing in x as well.
Consequently, Hi(x) is strictly concave in x.

Now, consider the optimization problem

maximize H(R) =
∑I

i=1 wiHi(Ri)
(Q)

subject to AR ≤ C, R ≥ 0.

This optimization problem is strictly concave, and hence has
a unique solution R = (R1, . . . , RI) (see for instance [7]).

By using the fact that Ri(m) ≡ Λi(m) when mi > 0
and Ri(m) ≡ ρi when mi = 0 and observing that the rate
allocation vector Λ(z) satisfies the necessary Karush-Kuhn-
Tucker (KKT) conditions [3] for problem (P), it may be
shown that the vector R(m) satisfying Equation (6) obeys
the sufficient KKT conditions for problem (Q), and hence is
a global optimum. We refer to [11] for details. �

Besides proving uniqueness, the above equivalence also
provides a way for actually computing the asymptotic growth
rates mi by solving the concave programming problem (Q).

IV. LINEAR NETWORKS

In this section we focus on the special case of linear
networks The network consists of links 1, . . . , L, each of unit
capacity, and is offered traffic from classes 0, 1, . . . , L. Class-
j flows require service from link j only, j = 1, . . . , L, while
class-0 flows demand capacity on all links simultaneously. As
mentioned earlier, linear networks provide a useful model for
traffic that traverses several links and experiences bandwidth
competition from independent cross-traffic. We assume that
the load on at least one of the links exceeds the capacity, i.e.,
maxj=1,...,L ρj > 1 − ρ0. The bandwidth arbitration is gov-
erned by the proportional fair policy with unit class weights,
i.e., the objective function Gz(Λ) is given by

∑L
i=0 zi log(Λi).

The capacity constraints take the form Λ0 + Λj ≤ 1 for all
j = 1, . . . , L.

We are interested in determining the asymptotic growth
rates mi of the various classes. According to Proposition 3.1,
there exist nonnegative coefficients (Lagrange multipliers) pj

associated with the various links so that the mi and the
corresponding rate allocations Ri together with the pj form
a solution to the system of equations

m0 = R0

∑L
j=1 pj ,

mj = Rjpj , j = 1, . . . , L,

pj(R0 + Rj − 1) = 0, j = 1, . . . , L,

(7)

in conjunction with the set of fixed-point Equations (6). The
latter equations in fact allow us to express the mj’s in terms
of the Rj’s, yielding

β−1
0

(
R0
ρ0

)
=

∑L
j=1 pj ,

β−1
j

(
Rj

ρj

)
= pj , j = 1, . . . , L,

pj(R0 + Rj − 1) = 0, j = 1, . . . , L.

(8)

In total the above system provides 2L+1 equations for 2L+1
unknown variables Ri, i = 0, . . . , L, and pj , j = 1, . . . , L.

In order to solve the above system of equations, we consider
the nonempty subset J+ := {j : pj > 0} of links with
strictly positive Lagrange multipliers. (The subset J+ cannot
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be empty, since that would imply ρ0 + ρj ≤ 1 for all j =
1, . . . , J , and contradict the overload assumption.) Observe
that pj = 0 means mj = 0, and the growth rates of classes 0
and j ∈ J+ thus correspond to those in a scenario with classes
j 6∈ J+ as well as links j 6∈ J+ removed. In particular,
when J+ = {j+}, the growth rates of classes 0 and j+ are
identical to those in a single-node processor-sharing system
with classes 0 and j+.

For compactness, denote n =
∑

j∈J+
pj . Then the solution

to the system of Equations (7) may be represented as

R0 =
m0

n
; Rj ≡ SJ+ = 1−m0

n
if j ∈ J+; Rj = ρj if j 6∈ J+;

pj =
mj

Rj
, j = 1, . . . , J. (9)

Summing the last equality in Equation (9) over j ∈ J+, it
follows that n = m0 +

∑
j∈J+

mj .
What remains is to determine the subset J+ in terms of the

system parameters. Note that j ∈ J+ implies R0+Rj = 1, and
thus necessitates ρ0 +ρj ≥ 1. However, the latter inequality is
not sufficient for j ∈ J+, since it is possible that mj = 0 when
other classes at other links sufficiently throttle the service rate
of class 0. In order to characterize the subset J+, observe that
ρj ≤ SJ+ for all j 6∈ J+ and ρj > SJ+ for all j ∈ J+. In
view of the inherent symmetry, we may assume without loss of
generality that the links are indexed such that ρ1 ≤ ρ2 ≤ · · · ≤
ρL. Denote by σj the common service rate obtained by classes
j, . . . , L in a system with links j, . . . , L and classes 0 and
j, . . . , L only, σj = 1−Λ0(mj , . . . ,mL) = 1− m0

m0+
PL

k=j mk
.

Then the subset J+ is of the form {j+, . . . , L}, with j+ :=
max{j : ρj−1 ≤ σj}. In case B0 ≡ BL, it is easily verified
that σL = λL/(λ0 + λL).

The above characterization of the subset J+ may be in-
terpreted as follows. If ρj−1 ≤ σj , then competition from
classes j, . . . , L alone against class 0 is sufficient to throttle
the rate of class 0 to an extent that what remains available
for classes 1, . . . , j − 1 exceeds their respective loads, and
hence m1 = · · · = mj−1 = 0. This scenario occurs when the
loads of classes 1, . . . , j−1 are relatively low and the loads of
classes j, . . . , L are sufficiently high. Note that this may occur
even when ρ0 + ρi > 1 for some classes i = 1, . . . , j − 1.
Although these classes rely on service from overloaded links,
they remain stable thanks to the much stronger competition
at other higher-loaded links. In contrast, if ρj−1 > σj , then
competition from classes j, . . . , L alone is not sufficient to
provide stability to class j − 1, and hence mj−1 > 0.

Exponential flow sizes
In order to determine the growth rates explicitly, we need

to specify the flow size distributions of the various classes
that occur in the set of fixed-point Equations (6). In the case
of exponential flow sizes, substituting (6) into (9), the growth
rates of the various classes may be represented in terms of the
single variable n as

m0 = λ0 − µ0
m0

n
=

λ0n

µ0 + n
, (10)

mj = λj−µj
n−m0

n
= λj−µj

(
1− λ0

µ0 + n

)
, j ∈ J+.

(11)
Summing the above equations yields the quadratic equation
n2 + νn + κ = 0, with

ν := µ0 +
∑

j∈J+

µj − λ0 −
∑

j∈J+

λj ,

κ :=
∑

j∈J+

µj(µ0 − λ0)− µ0

∑
j∈J+

λj .

Substituting the positive solution in Equations (10)–(11)
gives expressions for the asymptotic growth rates. To see
that there is indeed a unique positive solution, recall that a
quadratic equation has a unique positive solution when the
zero-order constant is nonpositive, which may be written as

ρ0 +
∑

j∈J+

ρj
µj∑

j∈J+
µj

≥ 1. (12)

Noting that∑
j∈J+

ρj
µj∑

j∈J+
µj

≥
∑

j∈J+

min
k∈J+

ρk
µj∑

j∈J+
µj

= min
k∈J+

ρk,

the inequality (12) is seen to hold by virtue of the fact that
ρ0 + ρj ≥ 1, j ∈ J+.

V. STAR NETWORKS

We now turn attention to the special case of a star network.
As mentioned earlier, star networks offer a convenient abstrac-
tion for scenarios where the core is highly over-provisioned
and congestion predominantly occurs at the edge with com-
paratively low-capacity access links. The network is composed
of L links, each of unit capacity, and is offered traffic from
L(L − 1)/2 classes labelled as {i, j}, i, j = 1, . . . , L, i 6= j.
The route of class {i, j} simply consists of the two links i
and j. We assume that the load on at least one of the
links exceeds the capacity, i.e., maxj=1,...,L σj > 1, with
σj :=

∑
k 6=j ρ{j,k}. The bandwidth arbitration is governed

by the proportional fair policy with unit class weights, i.e., the
objective function Gz(Λ) is given by

∑
j 6=k z{j,k} log(Λ{j,k}).

The capacity constraints take the form
∑

k 6=j Λ{j,k} ≤ 1 for
all j = 1, . . . , L.

For star networks, Proposition 3.1 and Equation (6) imply
that the Lagrange multipliers pj associated with the links in the
network and the corresponding rate allocations R{j,k} satisfy
the following system of equations

β−1
{j,k}

(
R{j,k}
ρ{j,k}

)
= R{j,k}(pj + pk), j 6= k,

pj(
∑

k 6=j R{j,k} − 1) = 0, j = 1, . . . , L.

(13)

In total the above system provides L(L + 1)/2 equations for
L(L + 1)/2 unknown variables R{j,k}, j 6= k, and pj , j =
1, . . . , L. In the case of exponential flow sizes, the set of fixed-
point equations takes the explicit form in Equation (5). The
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above system of equations then simplifies to
λ{j,k} − µ{j,k}R{j,k} = R{j,k}(pj + pk), j 6= k,

pj(
∑

k 6=j R{j,k} − 1) = 0, j = 1, . . . , L.
(14)

As before, we need to consider the subset of links with strictly
positive Lagrange multipliers in order to solve the above
system of equations.

Three-link network
As an illustrative example, we now focus on the case of a

triangular network with three links and three classes. In that
case we need to distinguish three scenarios, (I), (II) and (III),
depending on whether one, two or all three of the Lagrange
multipliers are strictly positive, respectively. It cannot occur
that all three Lagrange multipliers are zero, since that would
imply

∑
k 6=j ρ{j,k} < 1, j = 1, 2, 3, and contradict the

overload assumption.
With minor abuse of notation, we define mi := m{1,2,3}\{i},

Ri := R{1,2,3}\{i}, and ρi := ρ{1,2,3}\{i}. The above system
of Equations (13) may then be rewritten as mi = Ri(pj + pk), {i, j, k} = {1, 2, 3},

pj(Ri + Rk − 1) = 0, {i, j, k} = {1, 2, 3}.
(15)

For compactness, denote m := m1 + m2 + m3, and n =
mi + mj . The solutions in the above three scenarios may be
then represented as

(I) (Ri, Rj , Rk) =
(

mi

n ,
mj

n , ρk

)
,

pi = pj = 0, pk = n,

(II) (Ri, Rj , Rk) =
(

mi

m ,
mj+mk

m ,
mj+mk

m

)
,

pi = 0, pj = mj

mj+mk
m, pk = mk

mj+mk
m,

(III) R1 = R2 = R3 = 1
2 ,

pi =
∑

j 6=i mj −mi > 0, i = 1, 2, 3.

The above results reveal an interesting trichotomy in the
behavior of the triangular network. In case (I) the network be-
haves as a single-node processor-sharing system with classes i
and j only. The conditions for case (I) to occur in terms of the
system parameters also coincide with the corresponding ones
in the linear network with |J+| = 1. Case (II) corresponds to
the case of the linear network with |J+| = 2. The conditions
for this case to arise subsume the corresponding ones in the
linear network, but include an additional condition that the
loads of the three classes should be slightly unbalanced. If
the latter condition is violated, i.e., the loads of the three
classes are nearly equal, then case (III) arises, which has no
counterpart in the linear network. In this case, each of the three
classes behaves as in an isolated processor-sharing system with
capacity 1

2 .
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