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Abstract—We consider a single-user correlated MIMO channel
with block fading, where each block is divided into training
and data transmission phases. The receiver has a noisy CSI
that it obtains through a channel estimation process, whilethe
transmitter has partial CSI in the form of covariance feedback.
We optimize the achievable rate jointly over the parameters
of the training and data transmission phases. In particular,
we first choose the training signal to minimize the channel
estimation error, and then, develop an iterative algorithmto solve
for the optimum training duration, the optimum allocation o f
power between training and data transmission phases, and the
optimum allocation of power over the antennas during the data
transmission phase.

I. I NTRODUCTION

In wireless communication scenarios, the achievable rate of
a system depends crucially on the amount of channel state in-
formation (CSI) available at the receivers and the transmitters.
The CSI is observed only by the receiver, which can estimate
it and feed the estimated CSI back to the transmitter.

There have been several different assumptions in the lit-
erature on the availability of the CSI at the receiver and
the transmitter. With perfect CSI at the receiver and the
transmitter, the optimum adaptation scheme is water-filling [1],
[2]. However, in some cases, especially in multi-input multi-
output (MIMO) links, feeding the instantaneous CSI back
to the transmitter is not realistic. Therefore, some research
assumes that there is perfect CSI at the receiver, but only
partial CSI available at the transmitter [3]–[7].

Another line of research considers the actual estimation of
the channel at the receiver, which is noisy. The capacity and
the corresponding optimum signalling scheme for this case are
not known. However, lower and upper bounds for the capacity
can be obtained [8]–[10]. It is important to note that [8]–[10]
do not consider optimizing the channel estimation process,
because of the assumption of the existence of a separate
channel that does not consume system resources for channel
estimation. For a MIMO system with no CSI available at the
transmitter, [11] considers optimizing the achievable rate as a
function of both the training and the data transmission phases.
In this case, optimizing the achievable rate involves finding
the optimal power allocation between the training and data
transmission phases.
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In this paper, we consider a single-user correlated MIMO
channel. The CSI feedback that we consider lies somewhere
between perfect CSI [10] and no CSI [11], and it is similar
to [3]–[7]. We consider the fact that the training phase uses
communication resources, and we optimize the achievable rate
of the data transmission phase over the parameters of the
training and data transmission processes. Our model differs
from [11] in that we consider a correlated channel, which
requires a power allocation over the antennas, and we do not
have a constraint on the training signal duration, which might
result in shorter training signals.

Assuming that the receiver uses linear minimum mean
square error (MMSE) detection to estimate the channel during
the training phase, we first choose the training signal that min-
imizes the MMSE. This choice also increases the achievable
rate of the data transmission phase [11]. However, unlike [11],
our result does not necessarily allocate equal power over the
antennas, and might not estimate all of the available channel
variables. Then, we move to the data transmission phase,
and maximize the achievable rate of the data transmission
phase jointly over the rest of the training phase parameters,
and data transmission phase parameters, i.e., we find the
optimum partition of the given total transmitter power and the
block length between the training and the data transmission
phases, and we also find the optimum allocation of the data
transmission power over the antennas.

II. SYSTEM MODEL

We consider a single-user channel, withnR receive andnT

transmit antennas, that can be represented by a random matrix
H. The channel remains constant for a block (T symbols), and
changes to an i.i.d. realization at the end of the block. In order
to estimate the channel, the receiver performs a linear MMSE
estimation using training symbols overTt symbols. During the
remainingTd = T − Tt symbols, data transmission occurs.
While the receiver has a noisy estimate of the realization of
the channel, the transmitter knows only the statistics of the
channel. At timen, the transmitter sends a vectorxn, and the
received vector is

rn = Hxn + nn, n = 1, . . . , T (1)

wherenn is a zero-mean, identity-covariance complex Gaus-
sian vector, and the entries ofH are complex Gaussian random



variables. The transmitter has a power constraintP , averaged
over T symbols.

The statistical model that we consider is the “partial CSI
with covariance feedback” model where the transmitter knows
the channel covariance information, in addition to the distribu-
tion of the channel. We will assume that the receiver does not
have any physical restrictions and therefore, there is sufficient
spacing between the antenna elements on the receiver such
that the signals received at different antenna elements are
uncorrelated. However, there exists correlation between the
signals transmitted by different antenna elements. The channel
is modeled as [12],

H = ZΣ1/2 (2)

where the entries ofZ are i.i.d., zero-mean, unit-variance
complex Gaussian random variables. From this point on, we
will refer to Σ as the channel covariance matrix. Similar
covariance feedback models have been used in [3]–[7].

III. JOINT OPTIMIZATION

In our model, a coherence interval, over which the channel
is fixed, is divided into two phases: training phase and data
transmission phase. The transmitter usesPt amount of power
during the training phase, andPd amount of power during the
data transmission phase. Due to the conservation of energy,
we havePT = PtTt + PdTd.

The optimization criterion that we consider is the achievable
rate of the data transmission phase. Unlike the case with
perfect channel estimation, the data rate here depends on
the estimation parameters: training signalS, training signal
powerPt, and training signal durationTt. Therefore, we need
to optimize the rate jointly over these channel estimation
parameters and the data transmission phase parameters. In-
tuitively, a longer training phase will result in a better channel
estimate and therefore a larger achievable rate during the data
transmission phase. However, we use channel resources such
as time and power during the channel estimation process,
which could otherwise be used for data transmission. A longer
training phase implies a shorter data transmission phase, as
the block length (coherence time) is fixed. A shorter data
transmission phase, in turn, implies a smaller achievable rate.
Similarly, the more the training power, the better the channel
estimate will be. However, since the total power is fixed, a
larger training power will imply a smaller data transmission
power, which will decrease the achievable rate. Here, we will
solve these trade-offs, and find the optimum training and data
transmission parameters.

A. Training and Channel Estimation Phase

In practical communication scenarios, the channel is esti-
mated at the receiver. One way of doing this is to use training
symbols before the data transmission starts. The receiver
estimates the channel using these training signals and the
output of the channel. Since the channel stays the same during
the entire block, we can write the input-output relationship

during the training phase in a matrix form as

Rt = HS + Nt (3)

whereS is an nT × Tt dimensional training signal that will
be chosen and known at both ends,Rt andNt arenR × Tt

dimensional received signal and noise matrices, respectively.
The nth column of the matrix equation in (3) represents the
input-output relationship at timen. The power constraint for
the training input signal is1

Tt
tr(SS†) ≤ Pt.

Due to our channel model in (2), the entries in a row ofH

are correlated, and the entries in a column ofH are uncorre-
lated, i.e., rowsi andj of the channel matrix are i.i.d. Let us
represent rowi of H ash

†
i , with E[hih

†
i ] = Σ, i = 1, . . . nR.

Since rows are i.i.d., the receiver can estimate each of them
independently using the same training signal. Now, theith row
of (3) can be written as

rti = S†hi + nti. (4)

The receiver will estimate theith row of the channel matrix
using the received signalrti, and the training signalS using
linear MMSE estimation. We solve the following optimization
problem with ĥi = Mrti as the estimate ofhi, and h̃i =
hi − ĥi as the channel estimation error,

min
M

E
[

h̃
†
i h̃i

]

= min
M

E
[

tr
(

h̃ih̃
†
i

)]

(5)

= min
M

E
[

tr
(

(hi − Mrti)(hi − Mrti)
†
)]

(6)

Solving the optimumM from (6) is equivalent to solvingM
from the orthogonality principle for vector random variables,
which is given as [13, page 91],

E
[

(hi − Mrti)r
†
ti

]

= 0 (7)

where0 is the nT × Tt zero matrix. We can solveM from
(7) as

M = E
[

hir
†
ti

] (

E
[

rtir
†
ti

])−1

. (8)

By using (4), we calculateE[hir
†
ti] = ΣS, andE[rtir

†
ti] =

S†ΣS+I. Then, the optimumM becomesM = ΣS(S†ΣS+
I)−1. Using this, and the matrix inversion lemma [14, page
19], the mean square error in (6) becomes,

min
M

E
[

h̃
†
i h̃i

]

= tr
(

(

Σ−1 + SS†
)−1

)

(9)

Note that the mean square error of the channel estimation
process can be further decreased by choosing the training
signal S to minimize (9). In addition, it is stated in [11]
that the training signalS primarily affects the achievable rate
through the so calledeffective signal-to-noise ratio, which
is shown to be inversely proportional to the MMSE [11].
Therefore, choosingS to further minimize the MMSE, we also
increase the achievable rate of the data transmission phase. The
following theorem finds the optimal training signal for a given
training power and training duration.

Theorem 1: For given Σ = UΣΛΣU
†
Σ, Pt, Tt, and the

power constraint tr(SS†) ≤ PtTt, the optimum training input



that minimizes the power of the channel estimation error vector
is S = UΣΛ

1/2
S with

λS
i =

(

1

µS
−

1

λΣ
i

)+

, i = 1, . . . , min(nT , Tt) (10)

whereµ2
S is the Lagrange multiplier that satisfies the power

constraint withµS = J
Pt+

P

J
i=1

1

λΣ
i

, andJ is the largest index

that has non-zeroλS
i .

A proof of Theorem 1 can be found in [15].
It is important to note that for any givenPt, and Tt >

nT , the effect of training length is completely eliminated from
the channel estimation problem, i.e., increasingTt beyondnT

does not result in better channel estimates. However, larger Tt

will result in smaller data transmission length, and decrease
the achievable rate of the data transmission phase. Therefore,
it is sufficient to consider onlyTt ≤ nT , which we will assume
through the rest of this paper.

Theorem 1 tells us that the columns ofS are the weighted
columns of a unitary matrix, and they are orthogonal. Since
each column ofS is transmitted at a channel use during the
training phase, vectors that are transmitted at each channel use
during the training phase are orthogonal to each other. This
means that, at each channel use, it is optimal to train only one
dimension of the channel along one eigenvector. Moreover, the
optimum power allocation policy for the training power is to
water-fill over the eigenvalues of the channel covariance matrix
using (10). Depending on the power constraint and the training
signal duration, some of the eigenvalues of the training signal
might turn out to be zero. This means that some of the channels
along the directions corresponding to zero eigenvalues of the
training signal, are not even trained.

The value ofTt determines the total number of available
parallel channels in the channel estimation problem, and the
value of Pt determines the number of channels that will be
estimated. The parametric values ofPt and Tt will appear
in the achievable rate formula in the data transmission phase.
After the rate maximization is performed, the optimumPt and
Tt will be found, and these in turn, will give us the optimum
S through Theorem 1.

PluggingS into the covariance of the channel estimation
error matrix,Σ̃ = E

[

h̃ih̃
†
i

]

=
(

Σ−1 + SS†
)−1

, we findΣ̃ =

UΣ

(

Λ−1
Σ + ΛS

)−1
U

†
Σ, where the eigenvalues can be found

using (10) as

λ̃Σ
i =

{

µS , µS < λΣ
i ;

λΣ
i , µS > λΣ

i
= min

(

λΣ
i , µS

)

. (11)

Note that along the directions that we send training signals,
i.e., when the corresponding eigenvalues of the training signal
are non-zero (µS < λΣ

i ), the variance of the channel estimation
error is the same for all directions. Along the directions
that we do not send training signals, the variance of the
channel estimation error is equal to the variance of the channel
along that direction. This is expected, since the channel is
not estimated along that direction, the error in the channel

estimation process is the same as the realization of the channel
itself.

Next, we will calculate the eigenvalues of the covariance of
the channel estimate. Using the orthogonality property of the
MMSE estimation,̂hi and h̃i are uncorrelated [13, page 91].
The covariance matrix of the channel estimateΣ̂ = E

[

ĥiĥ
†
i

]

becomes

Σ̂ = UΣΛΣU
†
Σ − UΣΛ̃ΣU

†
Σ (12)

= UΣ

(

ΛΣ − Λ̃Σ

)

U
†
Σ , UΣΛ̂ΣU

†
Σ (13)

which has the same eigenvectors as the covariance matrix of
the actual channel, however, their eigenvalues are different.
We can write each eigenvalue of the covariance matrix of
the estimated channel aŝλΣ

i = min
(

0, λΣ
i − µS

)

. Along the
directions that we do not send training signals, the value of
the channel estimate itself is zero. Therefore, as expected, the
power of the estimated channel is zero as well, along those
channels withµS > λΣ

i .
In the next section, we will plug in these values into the

rate formula and develop an algorithm that solves the rate
maximization problem of the data transmission phase jointly in
terms of the training signal powerPt, training signal duration
Tt, and the covariance of the data carrying input signalQ.
When the joint optimization problem is solved, the resulting
Pt and Tt will determine the optimum training sequenceS
through Theorem 1.

B. Data Transmission Phase

When the CSI at the receiver is noisy, the optimum input
signaling that achieves the capacity is not known. Following
[8]–[11], we derive a lower bound (i.e., an achievable rate)
on the capacity for our model, and find the training and data
transmission parameters that result in the largest such achiev-
able rate. Using the channel estimation error,H̃ = H − Ĥ,
we can write (1) as

r = Ĥx + H̃x + n. (14)

wherex is the information carrying input,n is a zero-mean,
identity-covariance complex Gaussian vector. LetQ = E[xx†]
be the transmit covariance matrix, which has an average power
constraint ofPd, tr(Q) ≤ Pd. Although the optimum input
distribution is not known, we achieve the following rate with
Gaussianx for a MIMO channel [10],

Clb = I(r;x|Ĥ) = E
[

log
∣

∣

∣
I + R−1

H̃x+n
ĤQĤ†

∣

∣

∣

]

(15)

whereRH̃x+n is the covariance matrix of the effective noise,
H̃x + n, which is equal to

RH̃x+n = E
[

H̃xx†H̃†
]

+ I = E
[

H̃QH̃†
]

+ I. (16)

By denoting each row of̃H as h̃
†
i , we can write the(i, j)th

entry of E
[

H̃QH̃†
]

as,

E
[

h̃
†
iQh̃j

]

=

{

tr(QΣ̃), when i = j

0, when i 6= j
(17)



which results inE
[

H̃QH̃†
]

= tr(QΣ̃)I. Since our goal is
to find the largest such achievable rate, the rate maximization
problem over the entire block becomes

R = max
(Q,Pt,Tt)∈S

tr(Q)≤Pd

T − Tt

T
E

[

log

∣

∣

∣

∣

∣

I +
ĤQĤ†

1 + tr(QΣ̃)

∣

∣

∣

∣

∣

]

(18)

where S =
{

(Q, Pt, Tt)
∣

∣

∣
tr(Q)Td + PtTt = PT

}

, and the

coefficient T−Tt

T reflects the amount of time spent during
the training phase. The maximization is over the training
parametersPt, and Tt, and the data transmission parameter
Q, which can be decomposed into its eigenvectors, i.e., the
transmit directions, and eigenvalues, i.e., powers along the
transmit directions.

While solving this optimization problem, we will first find
the optimum transmit directions of the data transmission phase,
which are given by the eigenvectors ofQ. We will then focus
on the joint optimization of the rate over the eigenvalues
(i.e., power distribution over the transmit directions) ofQ,
the transmit power and the duration of the training phase.

1) Transmit Directions: Unlike the case with no-CSI at the
transmitters [11], the optimum transmit covariance matrixis
not equal to the identity matrix. In this case, the problem
becomes that of choosing the eigenvectors, i.e., the transmit
directions, and the eigenvalues, i.e., the powers allocated
to the transmit directions, of the transmit covariance matrix
Q = UQΛQU

†
Q, to maximize (18).

When the CSI at the receiver is perfect, [4] showed that
the eigenvectors of the transmit covariance and the channel
covariance matrices must be equal, i.e.,UQ = UΣ. In the
next theorem, we show that this is also true when there is
channel estimation error at the receiver.

Theorem 2: Let Σ = UΣΛΣU
†
Σ be the spectral decom-

position of the covariance feedback matrix of the channel.
Then, the optimum transmit covariance matrixQ has the form
Q = UΣΛQU

†
Σ.

A proof of Theorem 2 can be found in [15]. Using Theorem
2, we can write the optimization problem in (18) as,

R = max
(λQ,Pt,Tt)∈P

T − Tt

T
E

[

log

∣

∣

∣

∣

∣

I +

∑nT

i=1 λ
Q
i λ̂Σ

i ẑiẑ
†
i

1 +
∑nT

i=1 λ
Q
i λ̃Σ

i

∣

∣

∣

∣

∣

]

(19)

where P =
{

(

λ
Q, Pt, Tt

)

∣

∣

∣

(

∑nT

i=1 λ
Q
i

)

Td + PtTt = PT
}

,

λ
Q = [λQ

1 , . . . , λQ
nT

], andẑi, which is annR × 1 dimensional
i.i.d., zero-mean, identity-covariance Gaussian random vector,
is the ith column of Ẑ.

2) Power Allocation Policy: In a MIMO system, a transmit
strategy is a combination of a transmit direction strategy,and a
transmit power allocation strategy, which is the set of optimum
eigenvalues of the transmit covariance matrix,λ

Q, that solves
(19). Although Theorem 2 gives us a very simple closed form
solution for the optimum transmit directions, solving (19)for
λ

Q in a closed form does not seem to be feasible due to the
expectation operation in the objective function. Therefore, we
will develop an iterative algorithm that finds the optimumλQ.

For a single-user MIMO system with perfect CSI at the
receiver and partial CSI at the transmitter in the form of
covariance feedback, an algorithm that finds the optimum
power allocation policy is proposed in [6]. In this section,we
extend the algorithm in [6] to the case when there is channel
estimation error at the receiver, or in other words, when we
have the training signal power and the training signal duration
in the sum-rate expression. The algorithm in [6] cannot be
trivially generalized to the model in this paper, since, here we
have the training powerPt, and the training durationTt as
additional parameters.

By plugging λ̂Σ
i and λ̃Σ

i into (19), and noting thatλQ
i , for

i = J + 1, . . . , nT does not contribute to the numerator, we
have

R = max
(λQ,Pt,Tt)∈P

T − Tt

T
E

[

log

∣

∣

∣

∣

∣

I +

∑J
i=1 λ

Q
i (λΣ

i − µS)ẑiẑ
†
i

1 + µSPd

∣

∣

∣

∣

∣

]

(20)

From Theorem 1, we know thatJ ≤ Tt. We further claim
that while optimizing the rate, it is sufficient to search over
those(Pt, Tt) pairs that result inJ = Tt [15]. This creates an

additional constraintPt >
∑Tt

i=1

(

1
λΣ

Tt

− 1
λΣ

i

)

that guarantees

that, using the pair(Pt, Tt), all Tt channels are filled, i.e.,
J = Tt.

Note that the parameters that we want to optimize (20) over
are discrete valuedTt, and continuous valuedPt, and λ

Q.
SinceTt is discrete, and1 ≤ Tt ≤ nT , we can perform an
exhaustive search overTt and solvenT reduced optimization
problems with fixedTt at each one. Then, we take the solution
that results in the maximum rate, i.e.,

R = max
1≤Tt≤nT

RTt
(21)

whereRTt
is found by fixing the value of the free parameter

Tt in (20). While solvingRTt
, we definefi(Pt) =

λΣ
i −µS

1+µSPd
,

for i = 1, . . . , Tt. In this case, the inner optimization problem
becomes

RTt
= max
(λQ,Pt)∈RTt

T − Tt

T
E

[

log

∣

∣

∣

∣

∣

I +

Tt
∑

i=1

λ
Q
i fi(Pt)ẑiẑ

†
i

∣

∣

∣

∣

∣

]

(22)

Note that, for the inner optimization problem, in addition
to Tt, if Pt was fixed,fi(Pt) would also be fixed. In this
case, the problem in (22) would become exactly the same
as the corresponding problem with perfect CSI assumption
at the receiver [6], where here,fi(Pt) replacesλΣ

i in [6,
equation (8)]. In the optimization problem in (22), we have
Tt + 1 optimization variables,λQ

1 , . . . , λ
Q
Tt

, andPt. The KKT
conditions can be written as

Td

T
fi(Pt)E

[

z
†
iA

−1zi

]

≤ µTd, i = 1, . . . , Tt (23)

Td

T

Tt
∑

i=1

λ
Q
i E

[

z
†
iA

−1zi

] ∂fi(Pt)

∂Pt
= µTt (24)

where A = I +
∑Tt

i=1 λ
Q
i fi(Pt)ẑiẑ

†
i , and the equality of



the last equation follows from the complementary slackness

condition, which saysPt >
∑Tt

i=1

(

1
λΣ

Tt

− 1
λΣ

i

)

.

Note that when the optimumλQ
i is non-zero, the corre-

sponding inequality in (23) will be satisfied with equality
due to its corresponding complementary slackness condition.
Therefore, we pull the expectation terms from (23) for those
equations with non-zeroλQ

i ’s, and insert them into (24). Since
those indices withλQ

i = 0 do not contribute to (24), we have

Tt
∑

i=1

λ
Q
i

f ′
i(Pt)

fi(Pt)
=

Tt

Td
(25)

where we canceledµ’s out on both sides. Now, we have a
fixed-point equation which does not include any expectation
terms. We can use this to solvePt in terms ofλQ

i ’s. Also note
that the structure of (23) is the same as the KKT conditions in
[6]. Therefore, we propose to updateλ

Q
i in the same way as

in [6], and between the iterations solve (25) to updatePt. At
any given iteration, our algorithm first solvesPt(n + 1) from

Tt
∑

i=1

λ
Q
i (n)

f ′
i(Pt(n + 1))

fi(Pt(n + 1))
=

Tt

Td
(26)

and then, updatesλQ
i (n + 1) using

λ
Q
i (n+1) =

λ
Q
i (n)fi(Pt(n+1))E

[

z
†
iA

−1zi

]

∑

j λ
Q
j (n)fj(Pt(n+1))E

[

z
†
jA

−1zj

]Pd(n+1)

(27)

wherePd(n + 1) = PT−Pt(n+1)Tt

Td
. This algorithm finds the

solution for the training powerPt, and the eigenvalues of the
transmit covariance matrixλQ

1 , . . . , λ
Q
Tt

, for a fixed Tt, for
1 ≤ Tt ≤ nT . We runnT such algorithms, and the solution
of (20) is found by taking the one that results in the largest
rate, which gives us the optimumTt.

As a result, we solved the joint channel estimation and
resource allocation problem that we considered in this paper.
Through the optimumTt and Pt, we find the optimum
allocation of available time and power over the training and
data transmission phases, since total block length and power
is fixed. Through Theorem 2, we find the optimum transmit
directions, and throughλQ

1 , . . . , λ
Q
Tt

, we find the optimum
allocation of data transmission power over these transmit
directions. Finally, the optimum training signalS is determined
by the optimumTt andPt through Theorem 1.

IV. N UMERICAL ANALYSIS

Analytical proof of the convergence of this algorithm seems
to be more complicated than the proof in the case when there
is no channel estimation error [6], and seems to be intractable
for now. However, in our extensive simulations, we observed
that the algorithm always converges.

We first consider a system havingnT = nR = 2 with 10
dB total average power and block lengthT = 4. In Figure 1,
we plot the eigenvalues of the data transmit matrix and the
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Fig. 1. The convergence of the single-user algorithm withnT = nR = 2,
10 dB total average power andT = 4. The dashed curves correspond to one
symbol long training,Tt = 1, and solid curves correspond to two symbols
long training,Tt = 2.
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Fig. 2. The convergence of the single-user algorithm withnT = nR = 2,
10 dB total average power andT = 20. The dashed curves correspond to one
symbol long training,Tt = 1, and solid curves correspond to two symbols
long training,Tt = 2.

training power as a function of the iteration index for both
possible values of the training signal duration. We observethat
when the training duration is one symbol period, we achieve a
higher rate. Therefore, for this set of given system parameters,
estimating only one dimension of the channel is optimum.

Next, we investigate the effect of the block length, in
Figure 2, we consider 10 dB total average power, and block
length T = 20. We observe that having two symbols long
training phase is optimum. We repeat this experiment with
different numbers of antennas, and channel eigenvalues for
long block lengths, and we see that moderate block lengths
are sufficient in order to use more than one symbol of training.
Therefore, we conclude that for very fast changing channels
where the coherence interval and therefore the block lengthis
short, estimating only one dimension of the channel resultsin
higher achievable rates. In this case, we cannot take advantage
of the multiple dimensions that the MIMO channel provides,
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Fig. 3. The convergence of the single-user algorithm withnT = nR = 2, 10 dB total average power, and channel eigenvaluesλΣ = [1, 1], where dashed
curves correspond to one symbol long training,Tt = 1, and solid curves correspond to two symbols long training,Tt = 2: (a) T = 4; (b) T = 20.

because the amount of time required to estimate those channels
cancels the data rate advantage brought by having multiple
channels.

We next analyze the effects of different channel covariance
matrices. In Figure 3, we consider 10 dB average power,
and a channel covariance matrix that has both eigenvalues
equal. Note that this case is exactly the case considered [11].
However, in this paper, we do not assume the restriction that
Tt ≥ nT as it was assumed in [11] by reasoning that one
needs at leastTt ≥ nT measurements in order to estimate
nT variables. Although this reasoning is valid, we relax this
restriction by pointing out that in some cases, we might not
want to estimatenT variables. If the resources are limited,
estimating some of the variables and saving the resources
for data transmission is more useful. As a result, in this
paper, we find that the duration of the training signal is equal
to the number of variables to be estimated rather than the
total number of variables. Figure 3 supports our findings, by
showing that, for a short block lengthT = 4 with 10 dB
total power, not estimating one of the dimensions results ina
higher data transmission rate. This advantage disappears when
the block length is long enough.

V. CONCLUSIONS

We analyzed the joint optimization of the channel estimation
and data transmission parameters of a single-user MIMO
block-fading channel where the receiver has a noisy estimate
of the channel and the transmitter has the partial CSI in the
form of covariance feedback. We first found the optimum
training signal to minimize the MMSE, and then, we for-
mulated the joint optimization problem over the eigenvalues
of the transmit covariance matrix and the channel estimation
parameters. We solved this problem by introducing a number
of reduced optimization problems, each of which can be solved
efficiently using the proposed iterative algorithm. Through
simulations, we observed that the proposed iterative algorithm
converges and it converges to the same point regardless of the

initial point of the iterations.

REFERENCES

[1] A. J. Goldsmith and P. P. Varaiya. Capacity of fading channels with
channel side information.IEEE Transactions on Information Theory,
43(6):1986–1992, November 1997.
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