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Abstract—We consider a single-user correlated MIMO channel In this paper, we consider a single-user correlated MIMO

with block fading, where each block is divided into training channel. The CSI feedback that we consider lies somewhere
and data transmission phases. The receiver has a noisy CSlpanveen perfect CSI [10] and no CSI [11], and it is similar
that it obtains through a channel estimation process, whilehe - T

transmitter has partial CSl in the form of covariance feedback. to [3]_[7]_' We consider the fact that t_he_ training p_hase uses
We optimize the achievable rate jointly over the parameters COmMMunication resources, and we optimize the achievatee ra
of the training and data transmission phases. In particular of the data transmission phase over the parameters of the
we first choose the training signal to minimize the channel training and data transmission processes. Our model sliffer
estimation error, and then, develop an iterative algorithmto solve from [11] in that we consider a correlated channel, which

for the optimum training duration, the optimum allocation o f . locati th ¢ d d t
power between training and data transmission phases, and ¢h requires a power aflocation over the antennas, and we do no

optimum allocation of power over the antennas during the daa have a constraint on the training signal duration, whichhig
transmission phase. result in shorter training signals.

Assuming that the receiver uses linear minimum mean
) o _ _ square error (MMSE) detection to estimate the channel durin

In wireless communlqanon scenarios, the achievable rfatet.ﬁe training phase, we first choose the training signal that m
a system depends crucially on the amount of channel stateiifijzes the MMSE. This choice also increases the achievable
formation. (CSlI) available at the receivgrs and_the trartens_i.t rate of the data transmission phase [11]. However, unliig [1
The CSl is observed only by the receiver, which can estimaig result does not necessarily allocate equal power oeer th
it and feed the estimated CSI back to the transmitter. antennas, and might not estimate all of the available cHanne

There have been several different assumptions in the iyiaples. Then, we move to the data transmission phase,
erature on the availability of the CSI at the receiver anghy maximize the achievable rate of the data transmission
the transmitter. With perfect CSI at the receiver and thrﬁ'lase jointly over the rest of the training phase parameters
transmitter, the optimum adaptation scheme is watergilll, ang data transmission phase parameters, i.e., we find the
[2]. However, in some cases, especially in multi-input mult 5 imum partition of the given total transmitter power ahd t
output (MIMO) links, feeding the instantaneous CSI backjock length between the training and the data transmission

to the transmitter is _not realistic. Therefore, some rmarphases, and we also find the optimum allocation of the data
assumes that there is perfect CSI at the receiver, but obl¥smission power over the antennas.

partial CSl available at the transmitter [3]-[7].
Another line of research considers the actual estimation of Il. SYSTEM MODEL

the channel at the receiver, which is noisy. The capacity andwe consider a single-user channel, with receive and

the corresponding optimum signalling scheme for this case aransmit antennas, that can be represented by a randonxmatri
not known. However, lower and upper bounds for the capacity. The channel remains constant for a bloéksymbols), and
can be obtained [8]-[10]. It is important to note that [8]1 changes to an i.i.d. realization at the end of the block. treor
do not consider optimizing the channel estimation procegs,estimate the channel, the receiver performs a linear MMSE
because of the assumption of the existence of a sepai@@mation using training symbols ov&r symbols. During the
channel that does not consume system resources for changgiaining7,; = 7' — 7, symbols, data transmission occurs.
estimation. For a MIMO system with no CSI available at thgyhile the receiver has a noisy estimate of the realization of
transmitter, [11] considers optimizing the achievable @ a the channel, the transmitter knows only the statistics ef th
function of both the training and the data transmission ehaschannel. At timen, the transmitter sends a vectoy, and the

In this case, optimizing the achievable rate involves figdinreceived vector is

the optimal power allocation between the training and data

transmission phases. r, =Hx, +n,, n=1..T 1)

I. INTRODUCTION
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variables. The transmitter has a power constr&ipnaveraged during the training phase in a matrix form as
overT' symbols.

The statistical model that we consider is the “partial CSI R; = HS +N; ()
with covariance feedback” model where the transmitter ks1owvhere S is anny x T, dimensional training signal that will
the channel covariance information, in addition to theritist be chosen and known at both ends, and N, areng x T,
tion of the channel. We will assume that the receiver does mdimensional received signal and noise matrices, respmygtiv
have any physical restrictions and therefore, there iscieiffi The n** column of the matrix equation in (3) represents the
spacing between the antenna elements on the receiver siaglut-output relationship at time. The power constraint for
that the signals received at different antenna elements gfe training input signal ispl—ttr(SST) < P,.
uncorrelated. However, there exists correlation betwéen t Due to our channel model in (2), the entries in a rowkbf
signals transmitted by different antenna elements. Tharla are correlated, and the entries in a columribfaire uncorre-
is modeled as [12], lated, i.e., rows andj of the channel matrix are i.i.d. Let us

H—7x!/2 @) represent row of H ash!, with E[h;h!] = =,i=1,...nz.

Since rows are i.i.d., the receiver can estimate each of them

where the entries o are i.i.d., zero-mean, unit-varianceindependently using the same training signal. Now,itheow

complex Gaussian random variables. From this point on, weé (3) can be written as

will refer to ¥ as the channel covariance matrix. Similar "

covariance feedback models have been used in [3]-[7]. rei = Sthi +ny;. )
The receiver will estimate thé” row of the channel matrix

l1l. JOINT OPTIMIZATION using the received signal;, and the training signa$ using

In our model, a coherence interval, over which the chanriilear MMSE estimation. We solve the following optimizatio

is fixed, is divided into two phases: training phase and ddtgeblem withh; = Mr;; as the estimate oh;, andh; =
transmission phase. The transmitter uSesmount of power i — hi as the channel estimation error,

during the trgin_ing phase, ang, amount of power _during the .. g [fljfll} — min E {tr (fllflj)} (5)
data transmission phase. Due to the conservation of energy, M
we havePT = P,T; + PyT,. =min £ [tr ((h; — Mry;)(h; — Mr;)")] (6)

The optimization criterion that we consider is the achiégab ) ) ) ) )
rate of the data transmission phase. Unlike the case wiR!Ving the optimumM from (6) is equivalent to solvingvi

perfect channel estimation, the data rate here depends@n the orthogonality principle for vector random varieg)

the estimation parameters: training sigial training signal Which is given as [13, page 91],

power_Pt,_ and training _si_gnal duration;. Therefore, we need_ E {(hi _ Mrti)ru —0 @)

to optimize the rate jointly over these channel estimation

parameters and the data transmission phase parameterswhiere0 is the ny x 7, zero matrix. We can solv®1 from

tuitively, a longer training phase will result in a betteradmel (7) as

estimate and therefore a larger achievable rate duringdtee d 1

transmission phase. However, we use channel resources such M=F [hirL} (E {rtirLD . 8

as time and power during the channel estimation process, ;

which could otherwise be used for data transmission. A long8Y Using (4), we calculatéZ[h;r;] = £S, and E[r,r],] =

training phase implies a shorter data transmission phase,S4=S+1L. Then, the optimuriM becomedVl = $S(STXS+

the block length (coherence time) is fixed. A shorter dafd™ ' Using this, and the matrix inversion lemma [14, page

transmission phase, in turn, implies a smaller achievadtke r 19], the mean square error in (6) becomes,

Similarly, the more the training power, the better the ctednn . o 1 o\ —1

estimate will be. However, since the total power is fixed, a HR/IIHE {hzhl} = ((E * SS‘) ) ©)

larger training power will imply a smaller data transmissionote that the mean square error of the channel estimation

power, which will decrease the achievable rate. Here, we WHrocess can be further decreased by choosing the training

solve tr_les_e trade-offs, and find the optimum training and d%tignal S to minimize (9). In addition, it is stated in [11]

transmission parameters. that the training signa® primarily affects the achievable rate

through the so calledffective signal-to-noise ratio, which

is shown to be inversely proportional to the MMSE [11].
In practical communication scenarios, the channel is esfiherefore, choosing§ to further minimize the MMSE, we also

mated at the receiver. One way of doing this is to use trainifigcrease the achievable rate of the data transmission phlase

symbols before the data transmission starts. The receif@lfowing theorem finds the optimal training signal for a giv

estimates the channel using these training signals and ttaning power and training duration.

output of the channel. Since the channel stays the samegdurinTheorem 1. For given¥ = UZAEUTE, P, Ty, and the

the entire block, we can write the input-output relatiopshipower constraint tSS™) < P, T}, the optimum training input

A. Training and Channel Estimation Phase



that minimizes the power of the channel estimation errotarec estimation process is the same as the realization of thenehan

is S = Uy AL/* with itself.
n Next, we will calculate the eigenvalues of the covariance of
A= (i _ L) i=1,...,min(ny,T,) (10) the channel estimate. Using the orthogonality propertyhef t
' ps A) Y 7 MMSE estimationh; andh; are uncorrelated [13, page 91].

where /2 is the Lagrange multiplier that satisfies the powefhe covariance matrix of the channel estimale- £ {hih”

constraint withugs = 1’@%’ andJ is the largest index becomes
t i=1 % “ ~
that has non-zera?. ¥ = UsAsUL - UgAs UL (12)
A proof of Theorem 1 can be found in [15]. — Us (A2 _ AE) UL 2 Ug Ay UL (13)

It is important to note that for any give®;, and 73 >
nr, the effect of training length is completely eliminatedrfro Which has the same eigenvectors as the covariance matrix of
the channel estimation problem, i.e., increaslideyondn; the actual channel, however, their eigenvalues are diftere
does not result in better channel estimates. However,ldtge We can write each eigenvalue of the covariance matrix of
will result in smaller data transmission length, and deseeathe estimated channel a§" = min (0, A — s). Along the
the achievable rate of the data transmission phase. Therefélirections that we do not send training signals, the value of
it is sufficient to consider onl§; < n, which we will assume the channel estimate itself is zero. Therefore, as expetited
through the rest of this paper. power of the estimated channel is zero as well, along those

. i P

Theorem 1 tells us that the columns $fare the weighted Channels withys > A7, _ _ .
columns of a unitary matrix, and they are orthogonal. Since !N the next section, we will plug n these values into the
each column ofS is transmitted at a channel use during théate_fo_rmqla and develop an algorlthm_ th_at solves _the rate
training phase, vectors that are transmitted at each chasae maximization pr_o*?'em_"f the data transmission phase y)l_ntl
during the training phase are orthogonal to each other. THEMS Of the training signal powet,, training signal duration
means that, at each channel use, it is optimal to train ondy of» @nd the covariance of the data carrying input sig@al
dimension of the channel along one eigenvector. Moreoker, {When the Jo_mt opt|m|_zat|on prob_lem IS SO_IV_Ed’ the resgitin
optimum power allocation policy for the training power is tof+ andT; will determine the optimum training sequene
water-fill over the eigenvalues of the channel covariancgima through Theorem 1.

using (10). Depending on the power constraint and the trginiB. Data Transmission Phase

signal duration, some of the eigenvalues of the trainingaig \When the CSI at the receiver is noisy, the optimum input
might turn out to be zero. This means that some of the channg@na”ng that achieves the capacity is not known. Follgwin
along the directions corresponding to zero eigenvaluesef 18]-[11], we derive a lower bound (i.e., an achievable rate)
training signal, are not even trained. on the capacity for our model, and find the training and data
The value of7; determines the total number of availableransmission parameters that result in the largest sudewach
parallel channels in the channel estimation problem, aed thble rate. Using the channel estimation eriidr= H — H,
value of P, determines the number of channels that will b&e can write (1) as
estimated. The parametric values Bf and 7, will appear A .
in the achievable rate formula in the data transmission@has r=Hx+Hx+n (14)
After the rate maximization is performed, the optim#tnand  wherex is the information carrying inputy is a zero-mean,
Tt will be found, and these in turn, will giVe us the Optimumdentity_covariance Comp|ex Gaussian Vector_mi: E[XXT]

S through Theorem 1. be the transmit covariance matrix, which has an averagepowe
Plugging S into the covariance of the channel estimatiogonstraint of P;, tr(Q) < P,. Although the optimum input
error matrix,> = F {flifl” = (="' + SST)fl, we find> = distribution is not known, we achieve the following rate hwit
Us (A" + AS)_l UL, where the eigenvalues can be foungaussiam for a MIMO channel [10],
using (10) as Cp=I(r;x[H) = E [log ‘I n Rﬁ;nﬂqfﬂu (15)
< , < A\F; . i - - - - -
/\iE = { /;? Zi S — min ()\iE,Ms) . (11) vyhereRHx+n is the covariance matrix of the effective noise,

Hx + n, which is equal to

Note that along the directions that we send training signals - . L

i.e., when the corresponding eigenvalues of the trainiggagi Riwin=F {HXXTHT} +1=FE {HQHT} +1  (16)
are non-zerois < A\¥), the variance of the channel estimation ) - - ) Cun
error is the same for all directions. Along the direction§Y denoting each row off ash;, we can write the(i, j)
that we do not send training signals, the variance of tigtry of £ [HQHT} as,
channel estimation error is equal to the variance of the mélan o
along that direction. This is expected, since the channel is g [fﬂ'Qﬁj} :{ r(Q%),  when i=j (17)
not estimated along that direction, the error in the channel ‘ 0, when i 7 j



which results inE [ﬁQflTl = tr(Qf])I. Since our goal is  For a single-user MIMO system with perfect CSI at the
to find the largest such achievable rate, the rate maxiroizatireceiver and partial CSI at the transmitter in the form of
problem over the entire block becomes covariance feedback, an algorithm that finds the optimum
power allocation policy is proposed in [6]. In this sectiovg

R—  max T — TtE log |T + HQHT~ (18) extend the algorithm in [6] to the case when there is channel
(3(352}55 1+tr(QX) estimation error at the receiver, or in other words, when we
>Fra

have the training signal power and the training signal domat

where S — i(Qthth)‘tr(Q)Td‘i‘PtTt - pT}, and the in the sum-rate expression. The algorithm in [6] cannot be
coefficient T}  reflects the amount of time spent durin trivially generalized to the model in this paper, since ehee

the training phase. The maximization is over the trainirﬁg‘a\/.e.the training power?, and the training duratioff; as
o dditional parameters.
parametersP’;, and 7;, and the data transmission parameter

ing A OF i Q
Q, which can be decomposed into its eigenvectors, i.e., the3Y Plugging AP and A7 into (19), and noting thad”, for

transmit directions, and eigenvalues, i.e., powers aldreg t = 7/ + 1,-..,nr does not contribute to the numerator, we
transmit directions. have

While solving this optimization problem, we wil first find T-T, S M OAF = ps)is]
the optimum transmit directions of the data transmissicasph R :(/\Qf,?f%)ep E |log I+ 1+ usPy

which are given by the eigenvectors@f We will then focus

on the joint optimization of the rate over the eigenvalues

(i.e., power distribution over the transmit directions) @Qf From Theorem 1, we know that < 7;. We further claim

the transmit power and the duration of the training phase. that while optimizing the rate, it is sufficient to search ove
1) Transmit Directions: Unlike the case with no-CSlI at thethose(P;, T;) pairs that result i/ = T; [15]. This creates an

transmitters [11], t_he o_ptimum_transmit_ covariance maisix additional constrainP, > Zfil L _ 1) that guarantees

not equal to the identity matrix. In this case, the problem =\ A N

becomes that of choosing the eigenvectors, i.e., the tianstiat, using the pai(F;,T;), all T; channels are filled, i.e.,

directions, and the eigenvalues, i.e., the powers alldcaté = Tt

to the transmit directions, of the transmit covariance iratr Note that the parameters that we want to optimize (20) over

Q= UQAQUZ?, to maximize (18). are discrete valued}, and continuous valued;, and A\@.
When the CSI at the receiver is perfect, [4] showed th&inceT; is discrete, and < T; < ng, we can perform an

the eigenvectors of the transmit covariance and the chan@shaustive search ovél, and solvens reduced optimization

covariance matrices must be equal, i¥g, = Us. In the problems with fixedl’; at each one. Then, we take the solution

next theorem, we show that this is also true when there tRat results in the maximum rate, i.e.,

channel estimation error at the receiver. R— max R (21)
Theorem 2: Let & = UsAxUL be the spectral decom- 1<T Sny

position of the covariance feedback matrix of the channginere R, is found by fixing the value of the free parameter
p
Then, the optimum transmit covariance mai@xhas the form T, in (20). While solvingRy,, we definef;(P;) = AP —pus

(20)

_ T T+psPy?
Q=UsAqUs. ) ) fori=1,...,T;. In this case, the inner optimization lf)sro%lem
A proof of Theorem 2 can be found in [15]. Using Theore"&ecomes
2, we can write the optimization problem in (18) as, "
. T-T; ~ 0 5 ot
T—T nr AQ\Eg. 50 ., = max E |log|I+ Y X fi(P)zz] 22
R= max L log |1 4 2= A A BB | gy BT B s ; fiFy) 2)
ae@.pryep T L+ 30T AT -

Note that, for the inner optimization problem, in addition
where P = { (A%, P, 1) | (15, A%) Tu+ PTy = PT}, o T,, if Py was fixed, fi(P;) would also be fixed. In this

| case, the problem in (22) would become exactly the same
as the corresponding problem with perfect CSI assumption
at the receiver [6], where heref;(P;) replaces)\’ in [6,
equation (8)]. In the optimization problem in (22), we have
T, + 1 optimization variables)?, ..., A%, and ;. The KKT

AQ = [\¢,...,)AQ ], andz;, which is annp x 1 dimensiona
i.i.d., zero-mean, identity-covariance Gaussian randeotor,
is thei*" column of Z.
2) Power Allocation Policy: In a MIMO system, a transmit
strategy is a combination of a transmit direction strategyl a " .
) i o .~ conditions can be written as
transmit power allocation strategy, which is the set ofropiin
eigenvalues of the transmit povariance matp_ik?,, that solves &fi(Pt)E [ZIAflzl} <uTy i=1,....T; (23)
(19). Although Theorem 2 gives us a very simple closed form . T
solution for the optimum transmit directions, solving (I8) Ty Z’ \QE [zTA_lz} ofi(Py)
7 7 ?

¥ in a closed form does not seem to be feasible due to tie: oP; = pT (24)

i=1

expectation operation in the objective function. Therefave
will develop an iterative algorithm that finds the optim®R. where A = I + 221 /\?fi(Pt)iiizT, and the equality of



nT=2,P=10dB,T=4

the last equation follows from the complementary slackne

14

=
ATt

condition, which says, > ", (L =55 |- R e
v R, _, = 2.85 bits/symbol

Note that when the optimum® is non-zero, the corre- ‘

sponding inequality in (23) will be satisfied with equality

due to its corresponding complementary slackness conditit

Therefore, we pull the expectation terms from (23) for thos

equations with non- zerm 's, and insert them into (24). Since

those indices Wlth\ = 0 do not contribute to (24), we have

--0---0--0--0--0--0--0--0---0--0---0--

power values

RT 5= 1.86 bits/symbol
: —
Z Qf _ T (25) 2 RN
Q
1=1 Z Pt Td " " " - . n " -
. 2 4 6 8 10 12 14 16 18
where we cancele@’s out on both sides. Now, we have & fleraon index

fixed-point equation which does not include any expectation

terms. We can use this to sol¥& in terms of/\Q’s Also note Flgdé Tre convergence Ofnéhe Zlnglﬁ userhalgorlthm with = n g E 2,
total average power al e dashed curves correspond to one

that the structure of (23) is the same as the KKT Condltlonsia bol long training,7; = 1, and solid curves correspond to two symbols

[6]. Therefore, we propose to updaikg in the same way as long training, 7, = 2.

in [6], and between the iterations solve (25) to updateAt

any given iteration, our algorithm first solvé%(n + 1) from n =2P=10d8,T=20

40 ~
Fa

Q Pt TL+1)) Tt sk
ZA e (29

w
=}
T

and then, updates® (n + 1) using

N
a
T

AP () fi(Py(n+1) E[sz 1 }

5 AP () f5(P(n+1)E |2/ A1z,

power values
n
o

A2 (n+1) = < Pa(n+1)

i
o
T

[
k=)

(27)

&l
T

where Py(n + 1) = w This algorithm finds the

solution for the training powePt, and the eigenvalues of the . .
transmit covariance matm%\1 e )\T, for a fixed T}, for iteration index
1 < Ty <np. We runng such algorlthms and the solution

of (20) is found by taking the one that results in the largeBty. 2. The convergence of the single-user algorithm with = np = 2,
rate, which gives us the optimuiﬁ 10 dB total average power affd = 20. The dashed curves correspond to one

symbol long training,7; = 1, and solid curves correspond to two symbols
As a result, we solved the joint channel estimation an g training, T; = 2.

resource allocation problem that we considered in this pape
Through the optimumT; and P;, we find the optimum

allocation of available time and power over the training angaining power as a function of the iteration index for both
data transmission phases, since total block length and powgssible values of the training signal duration. We obstrae
is fixed. Through Theorem 2, we find the optimum transmiyhen the training duration is one symbol period, we achieve a
directions, and through\?, ..., A7, we find the optimum higher rate. Therefore, for this set of given system pararset
allocation of data transm|SS|on power over these transraiétimating only one dimension of the channel is optimum.
directions. Finally, the optimum training sigrfais determined  Next, we investigate the effect of the block length, in
by the optimum(; and P through Theorem 1. Figure 2, we consider 10 dB total average power, and block
length 7" = 20. We observe that having two symbols long
training phase is optimum. We repeat this experiment with
Analytical proof of the convergence of this algorithm seentifferent numbers of antennas, and channel eigenvalues for
to be more complicated than the proof in the case when théosag block lengths, and we see that moderate block lengths
is no channel estimation error [6], and seems to be intréetalare sufficient in order to use more than one symbol of training
for now. However, in our extensive simulations, we observétherefore, we conclude that for very fast changing channels
that the algorithm always converges. where the coherence interval and therefore the block leisgth
We first consider a system having- = nz = 2 with 10 short, estimating only one dimension of the channel results
dB total average power and block length= 4. In Figure 1, higher achievable rates. In this case, we cannot take aalyant
we plot the eigenvalues of the data transmit matrix and tloé the multiple dimensions that the MIMO channel provides,

IV. NUMERICAL ANALYSIS



n,=2,P=10dB,T=4,\"=[11] n =2,P=10dB, T=20,A=[11]

power values
power values

RT = 1.48 bits/symbol
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iteration index iteration index
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Fig. 3. The convergence of the single-user algorithm wih= nr = 2, 10 dB total average power, and channel eigenval€s= [1, 1], where dashed
curves correspond to one symbol long trainifiyg,= 1, and solid curves correspond to two symbols long trainifig= 2: (a) 7" = 4; (b) 7" = 20.
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