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Abstract— As evidenced by measurement data, channel
fading and co-channel interference occur on the same
time scales, and it is therefore difficult to determine if
packet losses are due to interference change or channel
variation. The coupling between the timescales of fading
and interference at the MAC layer calls for a unified
PHY/MAC design. Using optimal stopping theory, we first
devise channel aware distributed scheduling to exploit
rich PHY/MAC diversities in single-hop ad-hoc networks,
for a variety of PHY-layer models. We show that the
optimal channel aware distributed scheduling algorithms
have threshold structures, and hence are amenable to easy
implementation. We then generalize the study to multi-hop
wireless networks, and discuss further open issues such as
the delay performance of distributed scheduling.

Index Terms— Threshold Policy, Distributed Schedul-
ing, Ad-Hoc Networks, Optimal Stopping.

I. INTRODUCTION

Wireless network design faces two unique challenges
in wireless communications, namely co-channel interfer-
ence and time varying channel fading, and the combi-
nation of the two may result in a higher order of packet
losses in wireless networks. Co-channel interference is
due to other concurrent transmissions in the neighbor-
hood. Channel fading is the time variation of the wireless
channel, consisting of two effects: large-scale path loss
and shadowing effects that cause the signal to attenuate
with distance; and multipath scattering effects that result
in delayed copies of the signal adding up constructively
or destructively at the receiver.

The traditional approach for wireless network design
intends to separate link losses caused by fading from
those by interference. That is, the PHY layer addresses
the issues of fading, while the MAC layer addresses
that of contention. This hope for separation of point-
to-point link reliability and multiple access functionality
between the PHY and MAC layers relies on the implicit
assumption that the PHY layer works perfectly and
hides fading from MAC. However, as shown in the
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measurement data [1] [2], channel fading and co-channel
interference occur on the same time scales, and it is
therefore difficult to determine if packet losses are due
to MAC-layer interference variation or channel variation.
The coupling between the timescales of fading and MAC
calls for a unified PHY/MAC design, and there is an
urgent need to develop a rigorous foundation of PHY-
aware scheduling.

Distributed scheduling has received much attention
over the past decade. In particular, since the seminal
work [3] on throughput maximization for constrained
queueing systems, there has recently been a surge of
interest in devising distributed scheduling for multi-hop
wireless networks. The complexity levels of distributed
wireless scheduling have a wide spectrum, ranging from
constant time complexity (e.g., decentralized pick-and-
compare algorithms) to exponential complexity (e.g.,
max-weight scheduling) (see [4] and the references
therein). Clearly, the overhead due to demanding mes-
sage passing, if not addressed carefully, can drive the
effective throughput to zero. Moreover, most existing
distributed scheduling algorithms are not channel-aware
in the sense that they do not exploit channel variations.
Furthermore, from a practical perspective, it is preferable
to develop simple-to-implement (particularly threshold-
based) scheduling.

Channel aware opportunistic scheduling was first de-
veloped for downlink transmissions in cellular wireless
networks (see, e.g., [5], [6], [7], [8], [9], [10], [11]),
assuming that the centralized scheduler has knowledge
of the instantaneous channel conditions for all links.
More recently, channel aware random access has been
investigated for the uplink transmissions in a many-to-
one network [12], [13], where the channel probing can
be realized by broadcasting pilot signals from the base
station.

In this paper, we explore the threshold structure
of channel aware distributed scheduling in wireless
ad-hoc networks. Most existing studies on channel-
aware scheduling require centralized scheduling, and
little work has been done on developing distributed
scheduling to exploit rich PHY/MAC diversities for ad

486



hoc networks. This is perhaps due to the challenge that
the distributed nature of ad hoc communications implies
that each link has little knowledge of other links’ channel
conditions.

II. CHANNEL-AWARE DISTRIBUTED SCHEDULING

FOR EXPLOITING PHY/MAC DIVERSITIES

Consider a single-hop ad-hoc network, where links
contend for the same channel using random access.
We assume that after a successful probing, the channel
condition of the successful link is measured. Due to
channel fading, the link condition corresponding to this
successful channel probing can be either good or poor.
In the latter case, data packets have to be transmitted at
low rates. A plausible alternative is to let this link give
up this opportunity, and allow all the links re-contend
for the channel, in the hope that some link with a better
channel condition can transmit after the re-contention.
Intuitively speaking, it is likely that after further probing,
the channel can be taken by a link with a better channel
condition, resulting in possible higher throughput. In
this way, the multiuser diversity across links and the
time diversity across slots can be exploited in a joint
opportunistic manner. Fig. 1 depicts a sample realization
with N rounds of channel probing, followed by one data
transmission.
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Fig. 1. A sample realization of channel probing and data transmis-
sion

Specifically, suppose there are M transmitter nodes,
each with possibly multiple intended receivers. We as-
sume that each transmitter node m contends for the
channel using random access with probability pm, m =
1, . . . , M . In this section, we assume a collision model
for channel contention, where a channel contention of
a node is said to be successful if no other nodes in the
same neighborhood transmit at the same time. Accord-
ingly, the overall successful contention probability ps is
given by

∑M
m=1 ps,m with ps,m = pm

∏
i 6=m(1−pi); and

the number of slots (denoted as K) needed to accomplish
a successful channel contention is a Geometric random
variable, i.e., K ∼ Geometric(ps). Let s(n) denote the

successful link in the n-th round of channel probing,
and Rn,s(n) denote the corresponding transmission rate.
We assume that Rn,s(n) remains constant for a duration
of T , where T is the data transmission duration and is
no greater than the channel coherence time. Let τ < T
denote the duration of mini-slot for channel contention.

It is clear that there is a fundamental tradeoff between
the throughput gain from better channel conditions and
the cost for further channel probing. The desired tradeoff
boils down to judiciously choosing the optimal stopping
rule for channel probing, in order to maximize the
throughput. In what follows, we obtain a systematic
characterization of this tradeoff by appealing to optimal
stopping theory [14], [15].

A. Threshold Structure for The Single-Receiver Model

First consider the model where each transmitter is
associated with one receiver only. We treat channel-
aware distributed scheduling, as a team game in which
all links collaborate to maximize the overall network
throughput. For convenience, let R(n) denote the rate
corresponding to the n-th round successful channel
probing, i.e., R(n) = Rn,s(n). Without loss of generality,
we assume that the second moment of R(n) exists.

Building on optimal stopping theory, we cast the
problem as maximizing the rate of return, where the rate
of return is the expected throughput [15], and a key step
here is to characterize the optimal stopping rule N∗ and
the optimal throughput x∗, i.e.,

N∗ , arg max
N∈Q

E[R(N)T ]
E[TN ]

, x∗ , sup
N∈Q

E[R(N)T ]
E[TN ]

. (1)

where TN is the total duration for probing and data
transmission, and

Q , {N : N ≥ 1, E[TN ] < ∞}. (2)

For the network model with homogenous links, i.e., all
links have the same channel statistics with the same dis-
tribution Fm(r). We have the following proposition [16].

Proposition 2.1: a) The optimal stopping rule N∗ for
channel-aware distributed scheduling exists, and is given
by

N∗ = min{n ≥ 1 : R(n) ≥ x∗}. (3)

b) The maximum throughput x∗ is an optimal thresh-
old, and is the unique solution to

E(R(n) − x)+ =
xτ

psT
. (4)

In practical scenarios, it is likely that different links
may have different channel statistics. As a result, if s(n+
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1) 6= s(n), Rn,s(n) and Rn+1,s(n+1) may follow different
distributions. The following proposition summarizes the
optimal threshold policy for this case.

Proposition 2.2: The optimal stopping rule N∗ for
channel-aware distributed scheduling exists, and the
maximum throughput x∗ in the heterogeneous case is
an optimal threshold, and is the unique solution to the
following equation:

x =
∑M

m=1 ps,m

∫∞
x rdFm(r)

δ +
∑M

m=1 ps,m (1− Fm(x))
. (5)

Remarks: 1) Proposition 2.1 reveals that the optimal
stopping rule N∗ for channel-aware distributed schedul-
ing is a pure threshold policy, and the stopping de-
cision can be made based on the current rate only.
(For the discrete rate case, we treat the thresholds in
between two adjacent quantization levels “effectively”
the same). Accordingly, the optimal channel probing
and scheduling strategy takes the following simple form:
If the successful link discovers that the current rate
R(n) is higher than the threshold x∗, it transmits the
data with rate R(n); otherwise, it skips this transmission
opportunity, and then the links re-contend.

2) For the heterogeneous case, a priori, it is not clear
that different links would have different thresholds or
not since their channel statistics are different. However,
Proposition 2.2 indicates that in the optimal strategy the
threshold is the same for all the links . Our intuition is
as follows: When all the links have the same threshold,
links with better channel conditions would have a higher
likelihood to transmit accordingly.

B. Threshold Structure for The Multi-Receiver Model

Consider now each transmitter is associated with mul-
tiple intended receivers. Different from the model where
each transmitter is associated with one single receiver
only, the probing in the multi-receivers case takes place
in two phases: 1) In phase I, all transmitters contend for
the channel using random access to reserve the channel,
and the probing in this phase to accomplish a successful
channel contention takes a random duration of Kτ ;
and 2) In phase II, subsequent probings are carried out
to estimate the channel conditions from the successful
transmitter in phase I to its intended receivers, according
to specific probing mechanisms, and for each receiver
the probing for channel condition incurs a constant
duration of τ .

There are many possible probing mechanisms, and
here we consider the sequential probing without recall
(SPWOR) mechanism only. In SPWOR, after a suc-
cessful contention, the transmitter probes its receivers

sequentially, and stops the probing process once it
probes a “good” channel, followed by data transmission
to the most recently probed receiver. (See [17] for
a detailed study of the random selection (RS) mech-
anism, the exhaustive sequential probing with recall
(ESPWR) mechanism, and the sequential probing with
recall (SPWR) mechanism).

Let Rn,t(n),j denote the rate of receiver j in the nth
round of channel probing. We have the following result
[17].

Proposition 2.3: (Multi-Receiver model) a) Sup-
pose that sequential probing without recall (SPWOR)
is used for channel probing. Then the optimal stopping
rule for distributed scheduling is given as follows:

N∗
SPWOR = min{κ ≥ 1 : Rn,t(n),j ≥ θ∗j ,

where n = dκ

L
e, j = mod (κ− 1, L)}, (6)

and the thresholds {θ∗j} are determined by

θ∗j = x∗SPWOR + v∗j+1, ∀ j = 0, 1, . . . , L− 1, (7)

b) The maximum network throughput x∗SPWOR is the
unique solution to the following fixed point equation:

E[max(R− x, v∗1(x))]− xδ

ps
= 0, (8)

where R is a random variable with distribution FR(r),
and {v∗j (x)} are defined (in a backward order) as fol-
lows:

v∗L(x) , 0, (9)

v∗j (x) , E[max(R− x, v∗j+1(x))]− xδ,

∀ j = L− 1, L− 2, . . . , 1. (10)

c) v∗j , v∗j (x
∗
SPWOR),∀ j = 1, 2, . . . , L.

Remarks: Proposition 2.3 reveals that the optimal
scheduling policy corresponding to SPWOR probing
exhibits a multi-stage threshold structure. Furthermore,
observe that the optimal thresholds given by (7) only
depends on the number of receivers that the transmitter
has probed, indicating that the optimal stopping rule in
(6) is amenable to easy distributed implementation.

As expected, the optimal thresholds at earlier-probed
receivers are larger than that at later-probed receivers,
i.e., θ∗i ≥ θ∗j , ∀ i ≤ j. Intuitively speaking, at receiver
i, more receivers (i.e., L − i − 1 remaining receivers)
are available for further probing (and can be possibly
utilized), compared to at receiver j. Indeed, it can be
shown that the thresholds {θ∗j , ∀ j = 0, 1, . . . , L− 1} in
(7) monotonically decrease, i.e., θ∗0 ≥ θ∗1 ≥ · · · ≥ θ∗L−1.
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III. CHANNEL-AWARE DISTRIBUTED SCHEDULING

WITH PHYSICAL INTERFERENCE MODEL

Observe that a key assumption in the above studies
is the collision model, which assumes that a channel
contention of a link is successful if no other links
transmit at the same time. However, with the advent
of new signal processing techniques, such as multiuser
detection, spread spectrum, and space-time processing,
it is possible to simultaneously decode multiple packets
even when “collision” happens. These new techniques
at the PHY layer offer the capability of Multipacket
reception (MPR), and we call the scheduling in this
context “PHY-aware distributed scheduling”.

Devising PHY-aware distributed scheduling with
MPR is in general difficult. One unique challenge in
exploiting MPR is that at each transmission, multiple
links can transmit successfully through one common
channel, and furthermore, each link has to make the
decision to transmit or not based on local information
only, because links involved in the transmission have
no knowledge of the instantaneous information of other
links. Furthermore, the number of transmitting links is
random, and heavily depends on the contention proba-
bility of each link. Roughly speaking, a large contention
probability would increase the number of probing links
and thus incur strong cochannel interference. On the
other hand, a small contention probability would restrict
the number of links participate in the transmission. In
summary, PHY-aware distributed scheduling with MPR
requires that each link makes decision to transmit or
not individually under the existence of multiple random
factors, namely the SINR condition, the number of
contending links, and the number of mini-slots required
for channel probing, and hence is challenging.

Let S denote the set consisting of contending links.
Under the MPR model, when one or more data packets
are transmitted, each of them has certain probability of
being received successfully, depending on the channel
condition and the strength of the cochannel interference.
Particularly, let si = 1 indicate that link i transmits a
data packet, while si = 0 indicates no data transmission
from link i. Let ri = 1 indicate a successful reception
of the data packet for link i, and ri = 0 otherwise. Let
K be a set of links such that K ⊆ S. The conditional
probability of successful reception qS,K is defined as

qS,K = Pr(ri∈K = 1, ri/∈K = 0|si∈S = 1, si/∈S = 0). (11)

Let P denote the transmission power, Gij denote the
channel gain from the ith transmitter to the jth receiver.

The signal-to-interference-plus-noise ratio (SINR) for
link i is given by SINRi = GiiP/

∑
j∈S/i GjiP + ηi,

where ηi is the power spectrum density of thermal noise.
It is clear that the transmission rate is an increasing
function of SINR. In practical systems, the rates are
often quantized to discrete values. In this section, we let
{Rl, l = 1, 2, · · · , L} denote the set of possible discrete
rates.

Under the MPR model, multiple links can transmit
successfully simultaneously, and the total rate would be
the sum of the rates of all successful links that participate
in the transmission. We have the following result on the
optimal PHY-aware scheduling policy that maximizes
the average throughput.

Proposition 3.1: (Physical interference model) The
optimal stopping rule N∗ for PHY-aware distributed
scheduling exists, and is given by

N∗ = min
{

n ≥ 1 : max
i
{Ri,n} ≥ α∗ − E[Yn]

}
.

(12)
where Yn =

∑
i∈Kn

Ri,n − maxi{Ri,n}, and α∗ is the
unique solution to

E(
∑

i∈Kn

Ri,n − α)+ =
ατ

T
. (13)

Remarks: Proposition 3.1 reveals that the optimal
stopping rule for PHY-aware distributed scheduling un-
der the MPR model is a pure threshold policy, and differ-
ent links have different rate thresholds in general. This
is in stark contrast to the scheduling for the collision
model, where the optimal thresholds are the same across
different links even they have different channel statistics.

IV. CHANNEL-AWARE DISTRIBUTED SCHEDULING

WITH IMPERFECT PROBING

In the above, we assume that the channel state
information (CSI) is perfectly known at the re-
ceiver/transmitter after channel probing. In practical
scenarios, channel conditions are often estimated using
noisy observations. Therefore, it is of great interest to
study channel-aware scheduling under noisy channel
estimation.

A. Threshold Structure with Imperfect Channel Estima-
tion

In this section, we establish the optimal scheduling
for the noisy channel estimation case. It is clear that the
actual SNR λn is no greater than the estimated SNR
ρeff λ̂n. As a result, if the packet is transmitted at the
estimated rate log(1 + ρeff λ̂n), a channel outage will
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occur. Therefore, the transmission rate has to back off
from the estimated rate. Equivalently, we can back off
the estimated SNR ρeff λ̂ to a “nominated” SNR λc(λ̂),
where λc(·) is a backoff rate function satisfying the
following inequality: 0 ≤ λc(λ̂n) ≤ λn.

Accordingly, the instantaneous rate with backoff,
R(BK)

n , is given by

R(BK)
n = log

(
1 + λc(λ̂n)

)
I
(
λc(λ̂n) ≤ λn

)
. (14)

We note that there are two major differences between
the perfect and noisy channel estimation cases. First, the
stopping rule N in the noisy channel estimation case
is defined over the filtration {F ′n} (instead of {Fn}),
generated by {(ρ|ĥj |2, Kj), j = 1, 2, . . . , n}. Second,
the instantaneous rate with backoff, R(BK)

n , defined in
(14), is now a r.v., and is not perfectly known at time
n. However, it can be easily shown that the structure of
the optimal scheduling strategy remains the same, except
that the random “reward” R(BK)

n is replaced with its con-
ditional expectation, R̄(BK)

n , E
[
R(BK)

n |F ′n
]

[15][18].
More specifically, we define

Q′ , {N ≥ 1 : {N = n} ∈ F ′n, E[TN ] < ∞}, (15)

Q′′ , {N ≥ 1 : {N = n} ∈ F ′′n , E[TN ] < ∞}, (16)

where F ′′n is the σ-field generated by {(R̄(BK)
j ,Kj), j =

1, 2, . . . , n}. We have the following proposition[19].
Proposition 4.1: (Noisy Probing model)

sup
N∈Q′

E[R(BK)
N T ]

E[TN ]
= sup

N∈Q′′

E[R̄(BK)
N T ]

E[TN ]
. (17)

Proposition 4.1 indicates that the optimal scheduling
can be based solely on R̄(BK)

n , the conditional expectation
of R(BK)

n given F ′n. In summary, we can conclude
that the optimal scheduling policy under noisy channel
estimation is still a pure threshold policy.

B. Threshold Structure with Two-Levels of Imperfect
Channel Estimation

Consider further the case with imperfect channel
information. Since the channel information is noisy, a
natural question is whether it is worthwhile carrying
our further channel probing to improve the quality of
channel estimation. This is of particular interest in the
wideband regime where the SNR is very small (i.e., ρ =
Θ(1/W )) and the rate is of Θ(1). Specifically, after the
n-th successful channel probing, the corresponding user
obtains first level information ĥn of channel condition
hn. Then, it has one of the following options:

1) Accept the current estimate of the channel state
and transmit at rate R̄n.

2) Gives up the current opportunity and let all the
nodes re-contend.

3) Given the current channel information, carry out
further (2nd-level) channel estimation, via sending
another pilot packet, and acquire finer estimate ĥ′n
of the channel condition. It can then decide to
transmit or to defer based on R̄′

n.
Let r0 denoted the expected throughput. Based on

[20], we can show that the optimal strategy has a two-
threshold structure.

Proposition 4.2: (Two-level noisy probing model)
After each successful channel contention, one of the
following two statements holds:

1) There exist two positive constants R̄l ≤ R̄u, such
that it is optimal i) to transmit immediately after
the first level of channel estimation if R̄n > R̄u;
ii) or to give up the transmission and let all the
nodes re-contend if R̄n < R̄l; or iii) to engage in
the 2nd-level probing if R̄n ∈

[
R̄l, R̄u

]
, and then

to transmit at the rate R̄′
n if R̄′

n > r0 and to give
up the transmission if R̄′

n < r0.
2) It is never optimal to use 2nd-level channel es-

timation. It is optimal to transmit at a rate R̄n

immediately after the first level probing if R̄n > r0

and to defer transmission and re-contend if R̄n <
r0.

V. CHANNEL-AWARE DISTRIBUTED SCHEDULING IN

MULTI-HOP WIRELESS NETWORKS: THRESHOLD

POLICIES AND DELAY PERFORMANCE

So far, our studies have focused on single-hop ad-hoc
networks. Needless to say, the development of channel-
aware distributed scheduling is much more challenging
in multi-hop wireless networks. Note that many dis-
tributed scheduling algorithms have been devised for
multi-hop networks since the seminal work [3], includ-
ing max-weight scheduling, pick-and-compare schedul-
ing, and maximal/greedy scheduling – to name a few.
The complexity level of these wireless scheduling al-
gorithms ranges from constant-time to exponential, and
therefore requires a lot of message passing between
communication links/nodes, hindering them from being
implemented. It is highly desirable to develop threshold-
based distributed scheduling in multi-hop wireless net-
works.

Suppose that all nodes in the network have infinite
buffers, and can store a sequence of (possibly infi-
nite many) pre-defined thresholds, which be determined
offline based the the channel statistics and queueing
lengths. Motivated by the max-weight scheduling, one
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can carry out quantization of the product of the queue
length and the channel rate, µQ, over its full range,
and form a sequence of thresholds {xk, k = 1, 2, . . .}.
(This is in analogous to universal quantization.) We
have the following approximation algorithm for max-
weight scheduling: For each link l, whenever its local
weight µQ crosses (either up or down) a threshold
xk, it notifies its neighboring links; and the “latest”
max-scheduling is re-computed. One main difference
between this algorithm and max-weight scheduling is
that the search for max-weight matching is triggered
only when the thresholds are crossed and the scheduling
is updated less frequently, indicating that the complexity
is much lower. It is not difficult to show that this
algorithm is asymptotically throughput-optimal as long
as the maximum difference between two thresholds is
bounded. it remains open, however, to characterize the
optimal quantization of µQ.

We note that most studies on distributed scheduling
are concerned with throughput. By and large, the delay
performance corresponding to wireless scheduling is an
under-explored area, partially due to the fact that it is
very challenging. In particular, the service rates depend
on the queue sizes, which in turn depend on the arrival
rates and channel conditions; and it is this coupling,
between arrival rate and service rate, that complicates the
characterization of delay performance. Needless to say,
precise modeling of large-scale networks is prohibitive,
and a sensible simplification is the key to obtain a con-
ceptually clear understanding of the delay performance.

It is clear that standard queueing analysis does not
work well for large-scale distributed networks, because it
is impossible to characterize the service distribution due
to the coupling between the queue size and the schedul-
ing. Among other tools for delay analysis, Lyapunov
function theory can provide bounds only in general,
and the large-deviation approach is often limited by the
dimensionality of the problem. In light of this, we are
currently developing heavy traffic theory to analyze the
delay performance.
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