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Abstract— In this paper, we revisit the problem of
determining the minimum-length schedule that satisfies
certain traffic demands in a wireless network. Traditional
approaches for the determination of minimum-length
schedules are based on a collision channel model, in which
neighboring transmissions cause destructive interference if
and only if they are within the “interference region” of the
receiving nodes. By contrast, here we adopt a more realistic
model for the physical layer by requiring that a threshold
be exceeded by the signal-to-interference-plus-noise ratio
(SINR) for a transmission to be successful. Further we
include aspects of the routing problem and utilize column
generation for carrying out the computations.

I. INTRODUCTION

Wireless channel interference has often been mod-
eled using fixed communication and interference ranges,
where nodes within the communication range can com-
municate with each other, while any transmission within
the interference range resulted in packet collisions. The
Protocol Interference Model[6] describes interference
constraints according to a conflict graph, where nodes
within a certain distance can communicate as long as the
receiver is separated by at least a distanced from any
other active transmitter. However, these models do not
take the cumulative effects of interference due to simul-
taneous transmissions into account. On the other hand,
the Physical Interference Modeldirectly considers the
signal-to-interference-plus-noise ratio (SINR) constraints
at the receivers by accounting for all the secondary trans-
missions as interference. While the physical interference
model is considered to be more accurate, it is also more
complicated.

As an alternative to contention-based mechanisms
such as Aloha, link scheduling, i.e., the problem of
identifying sets of links that can be simultaneously acti-
vated as well as the corresponding duration of activation,
has been studied extensively in the context of wireless
networks, as early as in [7] by Hajek and Sasaki. They
presented a strongly polynomial-time algorithm for the
problem of finding a minimum-length schedule in a
wireless network that satisfies a set of link traffic require-

ments. The network mapped into an undirected graph,
and the only constraints that the schedule had to satisfy
were the transmission constraints, i.e., two wireless links
could not be active simultaneously if they shared a node;
thereby ignoring the interference constraints among the
active links. Other models include the so-called “disk
model” and those that are based on graph coloring meth-
ods (e.g., [8], [10]) and conflict graphs [6]. Recently,
a more accurate model that considers the cumulative
interference in the form of SINR has recently gained
wider acceptance. Borbash and Ephremides showed in
[3] that the general problem of determining a minimum-
length schedule that satisfies given link demands in a
wireless network, and subject to SINR constraints is at
least as hard as the “MAX-SIR-MATCHING” problem.
Furthermore, they provided examples of a special case
where the traffic demand vector satisfied a “superincreas-
ing” property, to be tractable. Bjorklundet al., showed
in [2] that even the most basic planning problems in
wireless networks such as node and link assignment are
NP-hard. They formulated the so-called node and link
assignment optimization problems, which assign at least
one time slot to each node or link such the the number of
time slots is minimized using set-covering formulations,
and developed a column generation approach for solving
the resulting linear programming relaxations. However,
specific traffic demands on links were not taken into ac-
count. Furthermore, although heuristic algorithms were
developed in the past (e.g., [5]), it is important to
design efficient algorithms that can provide theoretical
guarantees of optimality.

Scheduling, as an access control method, avoids colli-
sions and retransmissions that are typical in contention-
based methods. Whereas scheduling methods, such as
time division multiple access (TDMA) schemes, can
guarantee such delay bounds, their efficiency can be fur-
ther improved both in terms of delay guarantees as well
as achieving higher capacities by allowing the TDMA
time-slots to be shared by simultaneous transmissions
that are geographically separated. This improvement is
appropriately termed Spatial-TDMA or STDMA [11]. In
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this paper, we attempt to determine the minimum-length
schedule that is required to satisfy a set of specified link
demands in a wireless network, such that a given SINR
is exceeded at the receivers of all simultaneously active
links. It should be understood that the minimum schedule
length is indicative of the ability of a wireless network
to carry a given amount of traffic.

The objective of the minimum-length scheduling prob-
lem that is presented in this paper is to compute the
shortest schedule that can satisfy the traffic demands for
a set of chosen links, under the SINR criterion. That
is, in addition to the standard transmission constraints
discussed earlier, we impose a constraint on SINR at
each receiving node. This set of schedulable links could
constitute valid paths between source-destination pairs,
in which case we can imagine that the paths are chosen
a priori. However, in wireless networks, prior selection
without explicit physical layer considerations is clearly
sub-optimal. Therefore, we extend our investigation of
resource allocation and STDMA-based link scheduling
optimization in multi-hop wireless networks, by jointly
determining routing between source-destination pairs
and the minimum-length schedule of link activation in
order to satisfy end-to-end traffic demands. We present a
cross-layer formulation of the problem that incorporates
multi-path routing at the network layer, while concur-
rently generating “matchings” to address the media-
access control problem. Each such matching consists of
a set of links that can simultaneously be active, without
violating the specified signal-to-interference-plus-noise
ratio (SINR) requirement. After considering a problem
formulation that is restricted to the use of the same
transmission power by all nodes, we further extend our
model to incorporate power control at the transmitters
with the goal of reducing interference and maximizing
spatial reuse.

In Section II, we discuss the network and commu-
nication model that is used in the formulation of the
minimum-length scheduling problem, which is presented
in Section III. We then propose a column-generation
based solution procedure in Section IV and we present
various extensions to the fixed transmit power model in
Section V. We extend the minimum-length scheduling
problem to include routing in Section VI, and in Sec-
tion VII, we provide final conclusions.

II. N ETWORK AND COMMUNICATION MODEL

We model a multi-hop wireless network as a set
of stationary nodesN . A set of (directed) linksE
constitutes the network topology, and link{i, j} ∈ E

exists if nodei can communicate directly with node
j, i.e., the corresponding signal-to-noise ratio (SNR) in
the absence of any other interference source exceeds a
specific threshold. Therefore, the graph representation of
the wireless network is based on whether a node can
reach another node when transmitting in isolation for a
given power, noise level and channel gain.

Let Pi be the transmission power for nodei, Gij the
gain of the radio channel between nodesi andj, andηj

the thermal noise at receiverj. The SINR at receiverj
due to transmission from nodei in the presence of other
transmissions is given by:

SINRij =
PiGij

ηj +
∑

k 6=i,j PkGkj

. (1)

Here, the channel gain is calculated by the widely used
free-space model (without fading)Gij = d−α

ij , wheredij

is the distance between nodesi andj, andα is the path
loss index, but in fact any arbitrary propagation model
can be subtituted.

The capacity of the wireless channel associated with
a link (i, j) is a complicated and unknown quantity. We
assume that data is coded separately for each link and
the receivers consider unintended receptions as noise. In
that case, a simplified view of each link(i, j) consists
of a single-user Gaussian channel, the Shannon capacity
of which, over a frequency bandW , is given by:

cij = W log2(1 + SINRij). (2)

In practice however, it is understood that most commu-
nication schemes will achieve lower rates. That depends
on target bit error-rate, modulation and coding schemes.
We are not concerned here with the capacity issue and
use Equation (2) only selectively for bounding purpose.

Given a set of linksM , all links in M can be activated
concurrently if such simultaneous activation does not
violate the minimum SINR required for communication,
i.e., the SINR thresholdγ is satisfied at the receivers of
all links in M , as shown in (3).

SINRij ≥ γ. (3)

A set M satisfying this condition is called a “feasible
matching”, or simply, amatching. Therefore, the com-
munication model that is used in this paper, directly con-
siders the SINR constraints at the receivers by accounting
for all the secondary transmissions as interference.

A schedule is defined as a finite indexed collection
S = (M s, λs, s ∈ Z+), where the continuous quantity
λs ≥ 0 is the duration associated with the matchingM s
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for eachs. Therefore, the lengthτ of the scheduleS is
defined as

τ =
∑

s

λs. (4)

Each link {i, j} ∈ E has a certain non-negative traffic
demand that needs to be satisfied by the schedule, and
a link may be active in one or several time slots based
on how many matchings contain this link. The goal is
to minimize τ , given the location of the nodes and the
link traffic demands.

III. T HE M INIMUM -LENGTH SCHEDULING PROBLEM

Each link {i, j} ∈ E has a specific traffic demand of
fij bits per frame that need to be transmitted across the
link, where the frame length is not specifieda priori.
The entire information transfer across all the links can
be completed in a time interval of lengthτ as follows.
Each matchingM s indexed bys ∈ Z+, is active for a
duration ofλs, and each link{i, j} that is part of the
matchingM s transmits at a rate ofcs

ij bits/sec, which is
computed based on the SINR at receiverj, as described
in Equation (2), or via other appropriate formulas. Thus
a link {i, j} is active during all the slots for which
{i, j} ∈ M s, and the overall data that is transmitted
in the duration for which the link{i, j} is active, must
be at leastfij.

The minimum-length scheduling problem, therefore,
involves computing the scheduleS = (M s, λs, s ∈ Z+)
that minimizes the schedule lengthτ =

∑

s λs, such that
the traffic demandsfij of all the wireless links{i, j} ∈ E
are satisfied. Note that the traffic demand can also be
expressed in terms of bit rate rather than bit volume with
minor adjustments to the model.

Minimization of frame length is useful because it
permits a larger number of frames per unit time (and
hence higher overall data rate, if the amount of data that
must be transmitted per frame is fixed). Alternatively,
if the data rate of the specified traffic that is to be
scheduled is fixed, minimization of the time required
to transmit all of a frame’s data permits more of the
network’s resourced to be used for other traffic.

Given the set of all possible feasible matchings de-
noted byM, (i.e., anyM s ∈ M), the Minimum-Length
Scheduling Problem [MLSP] is formulated as follows.
[MLSP] :

Minimize : τ =
∑

1≤s≤|M|

λs (5)

subject to:

∑

1≤s≤|M|

cs
ijλ

s ≥ fij, ∀{i, j} ∈ E (6)

λs ≥ 0, ∀s = 1, ..., |M|.

Note that even though [MLSP] is a linear program-
ming (LP) problem having a very simple constraint
structure, the complexity of the problem lies in the
computation of the set of all feasible matchingsM.
The total number of matchings that would have to be
enumerated in order to compute an optimum may be
as large as2|E|. Therefore, a straightforward solution
of [MLSP] is not computationally efficient. However,
this complexity can be reduced by eliminating those
matchings from the problem formulation that are either
infeasible or inefficient (and thus unlikely to be used in
the optimal schedule). For example, nodes could be lim-
ited to either send or receive in a matching but not both
at the same time, due to high self interference, and nodes
could be restricted from transmitting simultaneously to
multiple nodes and/or receiving from multiple nodes in
a matching. Such observations could significantly reduce
the number of feasible matchings, thereby reducing the
problem complexity. Other heuristic approaches, (see
[4]), could also be used to generate valid matchings that
have a very high chance of being used in the optimal
solution.

Alternatively, [MLSP] can be solved in such a way that
the matchings, which constitute columns in the linear
program, are not explicitly enumerated, but are computed
in an iterative manner, such that, the newer columns
thus generated have a potential to improve the objective
function. In the next section, we show how [MLSP]
can be solved by selectively enumerating only those
matchings that contribute towards an optimum, using a
column generation approach.

IV. COLUMN GENERATION BASEDSOLUTION

PROCEDURE

A. Column Generation

Column generation is an iterative approach for solving
huge linear or integer programming problems, where the
number of variables are too large to be considered ex-
plicitly. In the column generation approach, the original
problem is decomposed into a master problem and a
subproblem. The master problem and subproblem could
be either linear or integer programs depending on the
problem formulation. The strategy of this decomposition
procedure is to operate iteratively on two separate, but
easier-to-solve, problems. During each iteration, the al-
gorithm tries to determine whether any variables exist
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that have anegative reduced cost(in the case of a
minimization problem) and adds the variable with the
“most negative reduced cost” to the master problem.
The key idea of the solution approach is to sequentially
improve the current solution by solving the subproblem
that identifies a single new variable (a column) during
every iteration, and adding it to the master problem,
until the algorithm terminates at or close to the optimal
solution.

B. Master Problem

The master problem [MP] is a restriction of the
original problem [MLSP], which uses only a subset of
columns (matchings) indexed bys ∈ {1, ..., |M|}. Recall
that the formulation of [MLSP] includes the entire set
of feasible matchingsM, even though, we know that
most of the matchings will not be a part of the optimal
solution, and will have durationλs = 0. Therefore,
[MP] is first initialized with any feasible scheduleS
that satisfies the link demands of all the links inE .
Section IV-C.2 discusses different ways of initializing
the scheduleS. The master problem [MP] can now be
formulated as follows.
[MP(S)]:

Minimize : τ =
∑

s∈S

λs (7)

subject to:
∑

s∈S

cs
ijλ

s ≥ fij, ∀{i, j} ∈ E (8)

λs ≥ 0, ∀s ∈ S.

Since this formulation optimizes over a subsetS of
all feasible matchings, it is a restriction of the original
problem [MLSP]. Hence, an optimal solution to [MP]
provides an upper boundUB for the [MLSP].

C. Generating Feasible Matchings

During every iteration, when the master problem [MP]
is solved, we need to either conclude that the current
solution is optimal, or else identify anewmatching that
can improve the current solution, i.e., we need to identify
a new column to enter into the basis. Recall that each
matching constitutes one column in [MP]. Based on the
theory of linear programming and the revised simplex
algorithm [1], this can be achieved by examining whether
any new column (that is not currently in [MP]), has
a negative reduced cost. Denoting the dual variables
corresponding to (8) by(ω̄ij), the reduced cost̄zk for
any columnk in [MP] can be expressed as:

z̄k = 1 −
∑

{i,j}∈E

ω̄ijc
k
ij . (9)

Therefore, in order to find a new column having the most
negative reduced cost, we solve the subproblem defined
as

Minimize
k∈M\S

z̄k,

or equivalently,

Maximize
k∈M\S

∑

{i,j}∈E

ω̄ijc
k
ij . (10)

Here, the termM\S refers to the set of all columns that
are inM and are not a part ofS. This subproblem can
be referred to as the scheduling subproblem, because it
aids in identifying a new matching that could be a part
of the optimal schedule. Based on the optimal solution
to the scheduling subproblem, a non-negative reduced
cost implies that current solution to [MP] is indeed
the optimal solution to [MLSP]. Otherwise, the new
matching that is identified by the subproblem is included
in the current scheduleS, and [MP] is re-optimized. We
first consider the case of no power control.

1) Fixed Transmit Power:In this scheme, the source
nodes of all active links in the matching use their max-
imum RF transmission powerPmax, with the condition
that the SINR of all the active links in the matching
exceeds afixed SINR thresholdγ. The SINR threshold
γ is a an increasing function of ratecij over link {i, j}.
In turn cij is a function of factors such as modulation
scheme, coding scheme, and the specified bit error rate
requirement.

Given a set of dual variables(ωij) (obtained from the
master problem), a new matching can be generated by
solving the corresponding subproblem shown below. The
formulation of the subproblem is explained in greater
detail in [9].

Maximize:
∑

{i,j}∈E

ωijcijxij

subject to:

(ηj +
∑

k 6=i,j

GkjPmax − γ−1GijPmax)xij

+
∑

k,m6=i,j

GkjPmaxxkm ≤
∑

k 6=i,j

GkjPmax, ∀{i, j} ∈ E

∑

j:{i,j}∈E

xij +
∑

j:{j,i}∈E

xji ≤ 1, ∀i ∈ N

xij ∈ {0, 1}, ∀{i, j} ∈ E .
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2) Generating the Initial Feasible Solution:In order
to pass down a set of cost coefficients from the master
problem [MP] to the subproblem, the initial set of
matchings inS must provide a feasible solution to the
original problem [MLSP]. For this purpose, one can
initialize S with a set of matchings, where each matching
contains exactly one single link. This corresponds to
the traditional TDMA scheduling. Other heuristic and
greedy approaches can also be applied with the aim of
generating a variety of possible matchings.

V. EXTENSIONS TO THEFIXED TRANSMIT POWER

MODEL

A. Transmit Power Control

It is possible to relax the assumption of fixed trans-
mission power. In this case, the source nodes of all active
links in the matching can transmitup to their maximum
power Pmax while satisfying the SINR constraints i.e.,
the SINR of all the active links exceeds afixedthreshold
γ. As in the fixed power case, the formulation for the
case of variable transmit power is explained in greater
detail in [9]. The resulting subproblem is as follows:

Maximize:
∑

{i,j}∈E

ωijcijxij

subject to:

γ(ηj +
∑

k 6=i,j

GkjPmax)xij + γ
∑

k 6=i,j

GkjPk − GijPi ≤

γ
∑

k 6=i,j

GkjPmax, ∀{i, j} ∈ E

∑

j:{i,j}∈E

xij +
∑

j:{j,i}∈E

xji ≤ 1, ∀i ∈ N

xij ∈ {0, 1}, ∀{i, j} ∈ E

0 ≤ Pi ≤ Pmax, ∀i ∈ N .

B. Variable Transmission Rate

We can extend the previous scheme so that nodes can
choose the best transmission rate for communication,
from a finite set of rates{c(1), .., c(t), .., c(T )}, depending
on the SINR that can be achieved at the receivers.
Associated with the transmit ratec(t) is an SINR thresh-
old γ(t).

Defining a new binary variablex(t)
ij for each link

{i, j} ∈ E , where

x
(t)
ij =

{

1, if link {i, j} transmits at ratec(t)

0, otherwise,

and rewriting the constraints of the subproblem, we have,

Maximize:
∑

{i,j}∈E

ωij

∑

t

c(t)x
(t)
ij

subject to:

γ(t)(ηj +
∑

k 6=i,j

GkjPmax)x
(t)
ij + γ(t)

∑

k 6=i,j

GkjPk

− GijPi ≤ γ(t)
∑

k 6=i,j

GkjPmax, ∀{i, j} ∈ E

∑

t

x
(t)
ij ≤ 1, ∀{i, j} ∈ E

∑

t

∑

j:{i,j}∈E

x
(t)
ij +

∑

t

∑

j:{j,i}∈E

x
(t)
ji ≤ 1, ∀i ∈ N

x
(t)
ij ∈ {0, 1}, ∀t,∀{i, j} ∈ E

0 ≤ Pi ≤ Pmax, ∀i ∈ N .

VI. JOINT ROUTING AND L INK SCHEDULING

In this section, we extend our investigation of link
scheduling optimization by jointly determining rout-
ing between source-destination pairs and the minimum-
length schedule of link activation in order to satisfy end-
to-end traffic demands.

ConsiderL concurrent sessions, each of which cor-
responds to a source-destination pair in the network.
The traffic demand for each sessionl, 1 ≤ l ≤ L, is
given byRl which is to be transmitted from the source
nodesl to destination nodedl, along a set of links that
constitute paths for each sessionl. As in Section III, the
traffic demandRl is expressed in terms of bits per frame.
In order to relay this traffic demand for each session,
we take advantage of the availability of multiple paths
between source-destination pairs, and allow the source
to split the data into multiple sub-flows if necessary.
Extending the definition offij as described in Section III
to include different sessions flowing through the link, we
now denote the data rate associated with thel-th session
on link (i, j) by f l

ij. The flow balancing equations for
each session can now be expressed as follows.

If a nodei is the source node of sessionl (i.e., i = sl),
the following condition holds:

∑

j∈N (i)

f l
ij = Rl, (11)

whereN (i) denotes the set of all nodes having links that
originate at nodei, i.e., one-hop neighbors of nodei.

If node i is an intermediate relay node for thel-th
session (meaning,i 6= sl and i 6= dl), then, the flow
balance equations can be written as follows:
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∑

j∈N (i)

f l
ij −

∑

j:i∈N (j)

f l
ji = 0. (12)

Finally, if node i is the destination node,i = dl, we
have

−
∑

j:i∈N (j)

f l
ji = −Rl. (13)

Constraints (11)-(13) for alll, 1 ≤ l ≤ L can be
concisely written as follows:

Af = R, (14)

whereA ∈ Z |N |L×|E|L is an integer matrix whose entries
are either1, −1 or 0, andR is the rate vector with zero-
valued entries for intermediate relay nodes. The vectorf
represent the set of data rate variables{f l

ij}.

A. Minimum-Length Scheduling Problem with Routing

As defined earlier in Section II, a scheduleS =
(M s, λs, s ∈ S) is a collection of matchingsM s and
corresponding non-negative valuesλs, such that each of
the matchings is feasible, and the end-to-end demands of
all sessions are satisfied. Our objective is to minimize the
schedule lengthτ =

∑

s λs. A source-destination pair
associated with a sessionl has Rl bits of information
to be transferred from source to destination in each
STDMA frame. This information can be split and sent
across multiple routes, and the traffic demand on link
{i, j} resulting from all such sessions1 ≤ l ≤ L is
given by fij =

∑

1≤l≤L f l
ij, which is the amount of

information that needs to be transmitted in every frame,
for each link{i, j}.

Given the setM of all possible feasible matchings
for a network, whereM s ∈ M, the Minimum-Length
Scheduling Problem with Routing[MLSPR] can be for-
mulated as follows:
[MLSPR] :

Minimize : τ =
∑

1≤s≤|M|

λs (15)

subject to:

Ar = R (16)
∑

1≤s≤|M|

cs
ijλ

s ≥
∑

1≤l≤L

f l
ij, ∀{i, j} ∈ E (17)

f l
ij ≥ 0, ∀{i, j} ∈ E , 1 ≤ l ≤ L

λs ≥ 0, ∀s = 1, ..., |M|.

[MSLPR] is a linear programming problem with a
constraint structure that is similar to [MLSP], and there-
fore, it can be solved in a similar fashion using column

generation. In the case of [MLSPR], the master problem
would also be a restriction of the original problem that
uses only a subset of matchings. It should be noted that
because of the similarities in the problem formulation,
the subproblems associated with [MLSPR] are identical
to those of [MLSP] discussed in Sections IV-C.1 and V.
Also, the functionality of the subproblem, which is the
generation of feasible matchings, is the same in both
cases as well.

VII. C ONCLUSION

In this paper, we reviewed the problem of minimum-
length scheduling in wireless networks in the presence of
SINR constraints. We formulated the problem as a cross-
layer optimization problem with consideration of link
layer and physical layer parameters, and incorporated
dynamic power and rate control, in order to generate fea-
sible matchings. We proposed a solution procedure based
on column generation, and showed that this method
actually converges to an optimal solution.
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