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Diversity-Multiplexing Tradeoff for the
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Abstract— In this paper the fading multiple antenna (MIMO)
wire-tap channel is investigated under short term power con-
straints. The secret diversity gain and the secret multiplexing
gain are defined. Using these definitions, thesecret diversity-
multiplexing tradeoff (DMT) is calculated analytically fo r no
transmitter side channel state information (CSI) and for full CSI.
When there is no CSI at the transmitter, under the assumptionof
Gaussian codebooks, it is shown that the eavesdroppersteals both
transmitter and receiver antennas, and the secret DMT depends
on the remaining degrees of freedom. When CSI is available at
the transmitter (CSIT), the eavesdroppersteals only transmitter
antennas. This dependence on the availability of CSI is unlike
the DMT results without secrecy constraints, where the DMT
remains the same for no CSI and full CSI at the transmitter
under short term power constraints. A zero-forcing type scheme
is shown to achieve the secret DMT when CSIT is available.

Keywords: Diversity-multiplexing tradeoff, MIMO, se-
crecy, wire-tap channel.

I. I NTRODUCTION

In wireless communications, communication medium is
shared. Any transmission can be overheard by nearby nodes.
If eavesdroppers are present in the environment, then all
confidential information such as user IDs, passwords, or credit
card numbers become vulnerable. In addition to voice, image,
video, and data transmissions, future applications envision
wireless transmission of sensitive information such as personal
and locality information. Therefore, wireless security isan
essential system requirement.

In current wireless systems, protection against eavesdrop-
ping is provided at higher layers of the Open Systems
Interconnection (OSI) reference model. Transport, network
or application layer protocols aim to prevent eavesdropping
using encryption. However, key exchange and renewal may
be difficult considering the wireless network dynamics. Thus,
developing new security protocols, which do not necessitate
keys or cannot be broken even with infinite computing power,
are of utmost importance for future development of wireless
applications.

Physical layer security techniques provide unconditional
secrecy through channel coding at the physical layer and com-
plement higher layer security methods. The wire-tap channel,
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which is one of the building blocks of information-theoretic
security, was introduced in [1], and later studied in [2] and
[3]. A long gap of about 30 years followed these initial
papers until the research community regained interest in secure
communication applications for wireless networks. Recently,
the ergodic secrecy capacity is calculated for fading wire-
tap channels in [4], [5]. The multiple access channel with
an external eavesdropper is studied in [6] and [7]. Secrecy
capacity for broadcast and interference channels is investigated
in [8], and for fading broadcast channels in [9]. Similarly,
the secrecy capacity for the relay channel with an external
eavesdropper is studied in [10] and [11].

In wireless channels, multiple antennas increase robustness
against fading, and also transmission rates. Multiple antennas
are considered in the context of wire-tap channels in [12], [13]-
[17]. In [13] the authors find the secrecy capacity of the Gaus-
sian multiple-input multiple-output (MIMO) wire-tap channel,
when the source and the destination have two antennas each
and the eavesdropper has only a single antenna. Concurrent
work in [14] and [15] establish the secrecy capacity for the
fading MIMO wire-tap channel under the full CSI assumption
for arbitrary antenna numbers. A closed-form expression for
the secrecy capacity is found in [18].

For fading channels under stringent delay constraints, the
outage formulation proves to be more useful than capacity.
For the wire-tap channel, outage approach is considered in
[12], [19] and [20]. Outage probability for a target secrecy
rate is also investigated in [5], when the source, the destination
and the eavesdropper have CSI, and optimal power allocation
policies that minimize the outage probability are calculated.
On the other hand, the notion ofsecure degrees of freedom
are investigated in [21], [22], [23], [24], [25], [26] and [27].

An important performance measure for MIMO fading chan-
nels that simultaneously considers probability of error and data
rates is the diversity-multiplexing tradeoff (DMT), established
in [28]. The DMT is a highSNR analysis and describes
the fundamental tradeoff between the diversity gain and the
multiplexing gain. The diversity gain is the decay rate of the
probability of error, and the multiplexing gain is the rate of
increase of the transmission rate in the limit of highSNR.
The DMT is strongly related to the probability of outage as
probability of error is generally dominated by the outage event
at highSNR.

In this paper we investigate the multiple-antenna wire-tap
channel from the DMT perspective. We define thesecretmul-
tiplexing gain, thesecretdiversity gain and thesecretDMT.
We argue that the eavesdropper can be thought of as “stealing”
degrees of freedom from the source-destination channel, and
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thesecretDMT depends on the remaining degrees of freedom,
when there is no CSIT. This behavior is also observed in [21]
for compound channels only for the maximum multiplexing
gain point. Our work can be thought of as a generalization
of [21], capturing the behavior for all diversity gains. We also
argue that the secret DMT depends on the available CSI at the
transmitter (CSIT). This is unlike the regular point-to-point
DMT without security constraints, which is not affected from
the transmitter CSI for constant-rate transmission. UnderCSIT
assumptions, we also suggest azero-forcing type scheme,
which achieves the secret DMT upper bounds.

Next, we introduce the system model in Section II and then
state the secret DMT for no CSIT in Section III. Section IV
covers the secret DMT when there is CSIT. We conclude in
Section V.

II. SYSTEM MODEL AND PRELIMINARIES

We consider a multiple-antenna wire-tap channel, in which
the source, the destination and the eavesdropper havem, n
and k antennas respectively. Both the destination and the
eavesdropper have CSI about their incoming channels. In
Section III we assume the source node does not have any
transmit CSI. We will consider the case when the source has
transmitter CSI in Section IV.

For each channel use the channel is represented as follows:

YD = HDX+ ZD (1)

YE = HEX+ ZE . (2)

In the above equationsX is anm× 1 vector, which denotes
the transmitted source signal.YD andYE aren×1 andk×1
vectors, and represent the received signals at the destination
and the eavesdropper respectively. Similarly,ZD andZE are
n×1, andk×1 vectors that indicate the independent additive
noise at the destination and the eavesdropper. BothZD andZE

have independent and identically distributed (i.i.d.) complex
Gaussian entries with zero mean and unit variance. The
matricesHD andHE , consisting of i.i.d. complex Gaussian
entries with zero mean and unit variance, are of sizen×m, and
k×m. They respectively denote the channel gains between the
source and the destination and the source and the eavesdropper.
As the fading is assumed to be slow,HD andHE are fixed
for the whole duration of the communication.

When there is no secrecy constraint, the source fixes its
transmission rate atR(T )(SNR) and aims to transmit the
messageW , W ∈ W = {1, 2, ..., 2NR(T)

}, in N channel uses.
The destination declares an error if its decisionŴ 6= W , Ŵ ∈
W . This error probability,Pe(SNR), is shown to be dominated
by the outage event, orPe(SNR)=̇P (R < R(T )(SNR))1,
whereR = I(X;YD) is the instantaneous mutual information
corresponding to the chosen transmission scheme [28].

The diversity-multiplexing tradeoff,d(r), establishes a re-
lation between the target transmission rateR(T )(SNR) and
probability of errorPe(SNR) [28], wherer is the multiplexing
gain. It is shown to be the piecewise linear function joining

1The expression f1(SNR)=̇f2(SNR) is defined as limSNR→∞

log f1(SNR)/ log SNR = limSNR→∞ log f2(SNR)/ log SNR. In the rest
of the paper, inequalities are also defined similarly.

the pointsdm,n(l) = (m− l)(n− l), l = 0, 1, ...,min{m,n}
[28]. The degrees of freedom in this system ismin{m,n},
and the multiplexing gainr can increase up to this value.
Similarly, the maximum diversity gain ismn, and the diversity
gain decreases as the multiplexing gain increases.

Under secrecy constraints, the source not only aims to
send the messageW reliably but also securely to the des-
tination. The secrecy rate,Rs is achieved if the secrecy
constraint is satisfied; i.e.Rs = limN→∞

1
N
H(W ) =

limN→∞
1
N
H(W |Y N

E ), and the probability of decoding error
at the destination approaches zero asN approaches infinity
[1]. The term limN→∞

1
N
H(W |Y N

E ) is also known as the
equivocation rate.

The papers [1], [2], [3] prove that the secrecy rate

Rs = [I(X;YD)− I(X;YE)]
+ (3)

is achievable for any input distributionp(X), where x+

denotesmax{0, x}. A brief overview of the achievability is
as follows: DefineA = 2NR(s)

, B = 2NR(d)

and the sets
A = {1, ..., A} and B = {1, ..., B}. The source generates
A × B channel codewordsXN

1 i.i.d. with p(X). In order to
send a secret messagea ∈ A, the source choosesb uniformly
from the setB, formsW = (a, b) and mapsW into the channel
codewordXn

1 . Note thatB is the number of dummy code-
words used to confuse the eavesdropper for eacha ∈ A. In [1],
[2], [3], with full CSI at the transmitter and the receivers,R(s)

is set toRs defined in (3), andR(d) = I(X;YE). Under this
setup, the total number of codewords in the source codebook is
A×B = 2NI(X;YD), and the destination can reliably decode
W and hencea. However, the eavesdropper can only decode
the indexb and has no information about the secret message
a. Thus secrecy is achieved.

In this work, we investigate the highSNR behavior of the
probability of error (including the probability that secrecy is
not achieved) with a target secrecy rate equal toR

(T )
s (SNR).

We assume the system is delay-limited and requires constant
secrecy rate transmission. There is also short-term average
power constraintmSNR that the transmitter has to satisfy for
each codeword transmitted. We define thesecretmultiplexing
gain as

lim
SNR→∞

R
(T )
s (SNR)

log SNR
, rs.

The secret multiplexing gainrs shows how fast the target
secrecy rate scales with increasingSNR. The secretdiversity
gain,ds, is equal to

lim
SNR→∞

logPe(SNR)

log SNR
, −ds,

wherePe(SNR) denotes the probability of error under secrecy
constraints. In this paper, we establish the tradeoff between
secret diversity gainds and the secret multiplexing gainrs,
ds(rs).

In a system with secrecy constraints, the probability of error,
Pe(SNR), is due to two events: Either the destination does not
receive the secret message reliably, or secrecy is not achieved
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[29]. Then

Pe(SNR) = P (secrecy not achieved

or main channel decoding error)(4)

≤ P (secrecy not achieved)

+ : P (main channel decoding error), (5)

where

P (secrecy not achieved)

, P

(

lim
N→∞

1

N
H(W |Y N

E ) < R(T )
s (SNR)

)

. (6)

For the achievability scheme described above, setting
B = 2NR(d)(SNR) and A × B = 2NR(T )(SNR) =
2NR(T )

s (SNR)+NR(d)(SNR), P (secrecy not achieved) defined in
(6) can be calculated as [1]

P (secrecy not achieved)

= P (R(T )(SNR)− I(X;YE) < R(T )
s (SNR))

= P
(

I(X;YE) > R(d)(SNR)
)

. (7)

Finally, as the main channel outage event dominates the main
channel decoding error when the channel block length-N is
long enough and good codes are used [28],

P (main channel decoding error)

=̇ P (main channel outage)

= P (I(X;YD) < R(T )(SNR)). (8)

Note that in (7) and (8), the termsI(X;YD) andI(X;YE)
are evaluated for the chosen transmission scheme determined
by the codebook distributionp(X). On the other hand,
Pe(SNR) in (4) can be lower bounded by

Pe(SNR) ≥ P (secrecy not achieved)

≥ P ([I(X;YD)− I(X;YE)]
+ < R(T )

s (SNR))

≥ P (I(X;YD)− I(X;YE) < R(T )
s (SNR))

, P (secrecy rate outage), (9)

for the chosen achievable scheme withp(X).

In the following we will calculate both (7) and (8) to obtain
the upper bound in (5), and (9) to establish a lower bound on
Pe(SNR). Comparing the bounds, we will establish the secret
DMT. In Section III, we assumep(X) is an isotropic Gaussian
input, whereas in Section IV-A, we calculate the bounds for
the bestp(X) which attains the secrecy capacity [14].

In this paper, we assume a single transmission block of
N channel uses under short-term power constraint. This is
unlike the scenario in [20]. In [20] there are many blocks
to communicate and there is long-term power constraint. The
first communication block is merely used to generate a secret
key, and in the next block this key is used to enhance secrecy,
while another key is generated to be used in the following
block. In other words, the key generation process [20] is delay-
insensitive, and keys generated this way are used to protectthe
delay-sensitive secret messages. In our system, communication
session lasts a single code block, during which secrecy has to
be maintained. The transmitter and the receiver have to start

secure communication immediately at the beginning of the
transmission block and there is not enough time to generate a
secret key.

III. N O CHANNEL STATE INFORMATION AT THE SOURCE

When the source node does not have CSI either about its
link to the destination or to the eavesdropper in the MIMO
wire-tap channel, the secrecy capacity is not known. However,
motivated by the fact that when all nodes in the system
have complete CSI, Gaussian codebooks are optimum, [14],
[15], we assume Gaussian codebooks. We also conjecture that
sending independent signals at equal power at each antenna
is optimal at highSNR, as all the entries ofHD and HE

respectively are identically distributed. Without CSIT, the
source has no preference over onedirectionover the other for
its transmission. Thus, we assume the input covariance matrix
Q is a diagonal matrixQ = SNRIm, whereIm indicates an
identity matrix of sizem. Then, the achievable secrecy rate in
(3) becomes

Rs =
[

log
∣

∣

∣
In +HDQH

†
D

∣

∣

∣
− log

∣

∣

∣
Ik +HEQH

†
E

∣

∣

∣

]+

=

[

log

∏L

i=1 (1 + λiSNR)
∏k

i=1 (1 + µiSNR)

]+

, (10)

whereL = min{m,n}, 0 ≤ λ1 ≤ ... ≤ λL are the ordered
eigenvalues of the matrixHDH

†
D, 0 ≤ µ1 ≤ ... ≤ µk are the

ordered eigenvalues of the matrixHEH
†
E , and† denotes the

conjugate transpose.
Theorem 1:For the multiple-antenna wire-tap channel de-

fined in (1) and (2), with full CSI at the destination and
the eavesdropper about their incoming channel gains and no
CSI at the source, ifk < min{m,n}, the secret diversity-
multiplexing tradeoff achieved by isotropic Gaussian codebook
is a piecewise linear function joining the points(l, ds(l)),
wherel = 0, 1, ...,min{m,n} − k and

ds(l) = (m− k − l)(n− k − l).

If k ≥ min{m,n}, then the secret diversity-multiplexing
tradeoff reduces to the single point(0, 0).

Proof: We first find an upper bound on secret DMT. To
do this, we calculate the probability of the secrecy rate outage
of (9) for R(T )

s = rs log SNR, and show that at highSNR, this
probability is on the order ofSNR−dm−k,n−k(rs). The details
of the computation are presented in Appendix I.

To show that the above secret DMT upper bound is achiev-
able, we setR(T ) = R

(T )
s + min{m, k} log SNR = (rs +

min{m, k}) log SNR bits/channel use, where the target secret
communication rate isR(T )

s bits/channel use with multiplexing
gain rs, and R(d)(SNR) = min{m, k} log SNR. Then the
main channel is in outage when the destination cannot decode
rateR(T ), which has the probability

P (main channel outage)

= P
(

I(X;YD) < R(T )
)

= P (I(X;YD) < (rs +min{m, k}) log SNR)
(a)

=̇ SNR−dm,n(rs+min{m,k})
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=

{

SNR−dm−k,n−k(rs) if k < m
1 if k ≥ m

,

where the mutual information is evaluated for isotropic Gaus-
sian inputs and(a) is due to [28]. On the other hand, (7)
becomes

P (secrecy not achieved)

= P (I(X;YE) > R(d)(SNR)) (11)

=̇ P (min{m, k} log SNR < I(X;YE))

=̇ 0,

since the maximum degrees of freedom in the source-
eavesdropper channel is equal tomin{m, k}, [28]. Overall,
if k < m the upper bound on the probability of error (5)
becomes

Pe(SNR) =̇ 0 + SNR−dm−k,n−k(rs)

=̇ SNR−dm−k,n−k(rs).

As the lower bound on probability of error (9) is the same,
we conclude that the secret DMT is equal todm−k,n−k(rs) if
k < m. If k ≥ m, the secret DMT is the single point(0, 0).

Theorem 1 states that the eavesdropper costs the system
min{m, k} degrees of freedom, which affects the whole secret
DMT curve. When the degrees of freedom in the source-
eavesdropper channel,min{m, k}, is equal tok, then the
secret system becomes equivalent to an(m − k) × (n − k)
system. However, ifmin{m, k} = m, then no degrees of
freedom are left for the main channel, asm ≥ min{m,n},
and the secret DMT reduces to the single point(0, 0).

IV. CHANNEL STATE INFORMATION AT THE SOURCE

In the previous section secret DMT is established for MIMO
wire-tap channels without CSIT. In this section we assume
that transmitter has perfect CSI about the channel between
itself and the eavesdropper, as well as its channel to the
destination. While it may be possible for the source to obtain
eavesdropper CSI if both the destination and the eavesdropper
are part of the same network, the full CSIT assumption may be
harder to justify if the eavesdropper is merely an illegitimate
listener. Nevertheless, this assumption will help us understand
the limitations and properties of secret DMT. Note that secret
DMT is still a meaningful metric as we consider constant
secret rate applications that operate under short-term power
constraints, which can suffer from outage despite the available
CSIT.

In the next subsection we establish the secret DMT with
CSIT and in Section IV-B we investigate different schemes
that achieve the best secret DMT with CSIT.

A. Secret DMT with CSIT

The secrecy capacity for the non-fading MIMO wire-tap
channel with channel knowledge at all the terminals is found
in [14], [15] as

Cs = max
Q � 0,

Tr(Q) ≤ mSNR

log

∣

∣

∣In +HDQH
†
D

∣

∣

∣

∣

∣

∣
Ik +HEQH

†
E

∣

∣

∣

. (12)

To establish the secret DMT with CSIT, we first need the
following lemma.

Lemma 1: If k < min{m,n}, then p =
dim{Null(HD)

⊥ ∩ Null(HE)} > 0, where Null(HD)⊥

is the orthogonal complement of the null space ofHD and
Null(HE) is the null space ofHE . If n ≤ k < m or k ≥ m,
thenp = 0.

Proof: The subspacesNull(HE) and Null(HD)⊥ are
defined in the vector spaceℜm. If k < min{m,n}, then
Null(HE) andNull(HD)⊥ respectively have dimensionsm−
k and q = min{m,n}, and have the basis setsU =
{u1,u2, ...,um−k} and W = {w1,w2, ...,wq}. In other
words, the setsU andW are both linearly independent sets.
However, asm−k+q > m, U ∪W is linearly dependent. The
intersection of the hyper-planesU span andW span, includes
at least one non-zero vector. Thusp > 0.

If n ≤ k < m, then the basis setsU and W are same
as above withq = n. However, in this caseU ∪ W is a
linearly independent set, asm − k + q = m − k + n ≤ m.
The intersection of the hyper-planesU span andW span only
include{0} and thusp = 0.

If k ≥ m, then Null(HE) consists of only{0}. Then
Null(HD)⊥ ∩ Null(HE) = {0}, and thusp = 0.

Theorem 2:For the multiple-antenna wire-tap channel de-
fined in (1) and (2), with full CSI at all the terminals, if
k < m, the secret diversity-multiplexing tradeoff,̂ds(rs) is
a piecewise linear function joining the points(l, d̂s(l)), where
l = 0, 1, ...,m− k and

d̂s(l) = (m− k − l)(n− l).

If k ≥ m, then the secret diversity-multiplexing tradeoff
reduces to the single point(0, 0).

Proof: When the secrecy capacity is expressed as in
(12), it is hard to calculate the secret DMT. We make use
of the highSNR secrecy capacity approximations provided in
[14] to find the secret DMT. We investigate the three cases
k < min{m,n}, n ≤ k < m, andk ≥ m separately. First we
find an upper bound on secret DMT using (9).

For the first casek < min{m,n}, p > 0 by Lemma 1 and
HE is not full column rank; i.e.k < m, then the secrecy
capacity at highSNR is given by [14]

C̃s(SNR) =
∑

j:σj≥1

log σ2
j + log

∣

∣

∣

∣

In +
mSNR

p
HDH

⊥
EH

†
D

∣

∣

∣

∣

+ o(1), (13)

whereo(1) → 0 whenSNR → ∞, H⊥
E ∈ Cm×m is the pro-

jection matrix ontoNull(HE), andσj , j = 1, ...,min{m,n}−
p, are the generalized singular values of matricesHD andHE .
To find the secret DMT we investigate the secrecy rate outage
probability

P (secrecy rate outage) (14)

= P





∑

j:σj≥1

log σ2
j + log

∣

∣

∣

∣

In +
mSNR

p
HDH

⊥
EH

†
D

∣

∣

∣

∣

+o(1) < rs log SNR) (15)
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=̇ P

(

log

∣

∣

∣

∣

In +
mSNR

p
HDH

⊥
EH

†
D

∣

∣

∣

∣

< rs log SNR

)

(16)

=

∫

...

∫

P

(

log

∣

∣

∣

∣

In +
mSNR

p
HDH

⊥
EH

†
D

∣

∣

∣

∣

< rs log SNR

|H
(11)
E = H

(11)
E , ...,H

(km)
E = H

(km)
E

)

·

k
∏

i=1

m
∏

j=1

f
H

(ij)
E

(H
(ij)
E )dH

(ij)
E (17)

For a fixedHE = HE , i.e. when allH(ij)
E = H

(ij)
E , i =

1, ..., k,j = 1, ...,m, the projection matrixH⊥
E can be written

as H⊥
E = AA†. The matrixA is of sizem × (m − k). We

can write A = [a1, ..., am−k], where the length-m column
vectors aj form an orthonormal basis forNull(HE). Let
HD = [r†1, ..., r

†
n]

† be written in terms of length-m row vectors
ri, i = 1, ..., n. Then each entry of(HDA)(ij) = 〈ri, aj〉,
i = 1, ..., n, j = 1, ..., (m− k). The mean value of each entry
is equal toE{〈ri, aj〉} = 0. We observe that the covariance
E{〈a†j , r

†
i 〉〈rs, at〉} = a†jE{r†irs}at. The valueE{r†irs} = 1,

if i = s, and it is zero if i 6= s. In addition to these, as
the vectors are orthonormal,a†jE{r†irs}at = 0, if j 6= t
for any i and s. Therefore, if i = s and j = t, then
E{〈a†j , r

†
i 〉〈rs, at〉} = 1; otherwise, it is equal to zero. Thus,

HDA is a matrix, whose entries are i.i.d. Gaussian with zero
mean and unit variance. Then we can write the probability in
(17) as

P

(

log

∣

∣

∣

∣

In +
mSNR

p
HDH

⊥
EH

†
D

∣

∣

∣

∣

< rs log SNR

|H
(11)
E = H

(11)
E , ...,H

(km)
E = H

(km)
E

)

= P

(

log

∣

∣

∣

∣

In +
mSNR

p
HDAA†

H
†
D

∣

∣

∣

∣

< rs log SNR

)

=̇ SNR−d(m−k),n(rs).

In other words, this system is equivalent to an(m − k) × n
MIMO with a well known DMT d(m−k),n(rs) [28]. Substitut-
ing this value in (17), we observe that

P (secrecy rate outage)

=̇

∫

...

∫

1

SNRd(m−k),n(rs)

k
∏

i=1

m
∏

j=1

f
H

(ij)
E

(H
(ij)
E )dH

(ij)
E

= SNR−d(m−k),n(rs)

or ds(rs) ≤ d(m−k),n(rs).

To attain secrecy we assume the source uses i.i.d. complex
Gaussian codewords with covariance matrixQ and transmits
at rateR(T ) = R

(T )
s + R(d) bits/channel use, whereQ is

the covariance matrix that attains the maximum in (12). Here
the target secret communication rate isR

(T )
s bits/channel use.

Unlike the no CSIT case, the number of dummy codewords
used for each secret message,B = 2NR(d)

is variable and
equal to 2N log|Ik+HEQH

†
E|. Then the main channel outage

probability is equal to

P (main channel outage)

= P
(

log
∣

∣

∣
In +HDQH

†
D

∣

∣

∣
< R(T )

)

= P



log

∣

∣

∣In +HDQH
†
D

∣

∣

∣

∣

∣

∣Ik +HEQH
†
E

∣

∣

∣

< rs log SNR





= P (secrecy rate outage)

=̇ SNR−dm−k,n(rs).

On the other hand, the probability of secrecy not achieved is

P (secrecy not achieved)

=̇ P (I(X;YE) > R(d)(SNR))

= P (log
∣

∣

∣Ik +HEQH
†
E

∣

∣

∣ < I(X;YE)) =̇ 0.

Combining the upper and lower bounds (5) and (9) we
conclude that the secret DMT is equal todm−k,n(rs) if k < m.

Note that it is possible to obtain the same DMT
by setting R(T )(SNR) = log

∣

∣

∣In +HDQH
†
D

∣

∣

∣,

and the dummy information rateR(d)(SNR) =
[

log
∣

∣

∣
In +HDQH

†
D

∣

∣

∣
−R

(T )
s (SNR)

]+

. This guarantees

a desired constant secrecy rateR(T )
s (SNR) and ensures that

the main channel is never in outage. However, unlike the
previous scheme,P (secrecy not achieved) is not on the order
of 0.

For the second casen ≤ k < m, p = 0 by Lemma 1
and the highSNR secrecy capacity expression of [14] cannot
be used directly. However, the converse and achievability
in [14] can be extended to cover forp = 0, by deleting
certain rows and columns in the generalized singular value
decomposition [30]. Then the same secrecy capacity expres-
sion as in (13) holds withp replaced byp′ = min{m −
k, n}. We can follow the same steps in the previous case to
calculateP ( secrecy not achieved), P (main channel outage),
and P (secrecy rate outage), and find the secret DMT to be
d(m−k),n(rs) for n ≤ k < m.

Finally for the last case,k ≥ m, the secrecy capacity at
high SNR is given by [14]

lim
SNR→∞

C̃s(SNR) =
∑

j:σj≥1

log σ2
j . (18)

As the capacity expression does not grow with increasing
SNR, it is easy to see that the secret DMT is a single point
(0, 0).

Note that, in the proof of Theorem 2 in the first achiev-
able scheme, the number of dummy codewords,B =

2N log|Ik+HEQH
†
E|, is adapted to the source-eavesdropper

channel. Thus, secrecy is always attained. Available CSIT
improves the secret DMT with respect to secret DMT without
CSIT and can also be used to guarantee no information is
leaked to the eavesdropper when the destination receives the
information correctly. Hence, main channel outage and secrecy
rate outage events are the same. This is unlike the second
proposed strategy where the main channel is never in outage,
but information may be leaked to the eavesdropper or desired
secrecy rate may not be attained.

In Fig. 1 secret DMT with CSIT is shown form = 3,
n = 4 and k = 2 in comparison to the secret DMT without
CSIT and the DMT without secrecy constraints. The DMT
without secrecy constraints, the secret DMT with CSIT and the
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secret DMT without CSIT are shown to be respectively equal
to d3,4(r), d1,4(rs), and d1,2(rs). In this example secrecy
constraints impose both multiplexing gain and diversity gain
losses whether CSIT exists or not.

On the other hand, if CSIT is available, secrecy constraints
do not always result in multiplexing gain loss with respect
to the DMT without secrecy constraints. This is illustrated
in Fig. 2 for which the source, the destination and the
eavesdropper respectively have4, 2 and 1 antennas each. In
this case, the secret DMT with full CSIT is equal tod3,2(rs),
rs ∈ [0, 2], whereas the secret DMT with no CSIT is equal to
d3,1(rs), rs ∈ [0, 1]. Note that the secret DMT with no CSIT
always experiences a degrees of freedom loss, whereas secret
DMT with full CSIT only experiences secret diversity gain
loss but not secret multiplexing gain loss, ifm− k ≥ n.

In Fig. 3 we compare secrecy outage probability for a 2-
antenna source, a 2-antenna destination, and a single antenna
eavesdropper,m = 2, n = 2 and k = 1 using the secrecy
capacity achieving scheme in (12). The secret multiplexing
gain is assumed to be equal to 0.75; thus the secret diversity
levels are equal to0.25, if there is no CSIT, and0.5 if CSIT
is available. Fig. 3 confirms these results, from which we can
observe the secret diversity to be approximately equal to the
predicted values.

B. The Zero-forcing Scheme

In this section we propose a simplezero-forcingmethod
that achieves the full CSIT secret DMT as an alternative to
the capacity achieving strategy studied in Theorem 2.

As k ≥ m results in a trivial secret DMT, we assumek <
m; i.e.HE is not full column rank. In the zero-forcing protocol
we transmit the secret information inU, which is a length-
(m− k) column vector, and sendX = AU at the transmitter,
whereH

⊥
E = AA

†. The received signals at the destination
and the eavesdropper respectively become

YD = HDAU+ ZD,

YE = HEAU + ZE = ZE .

Stated differently, the destination observes an equivalent chan-
nel of HDA, whereas the eavesdropper only observes noise
because the secret message is transmitted in its null space.In
this scheme, we only send secret messages at a fixed trans-
mission rateR(T )

s (SNR) in the null space of the eavesdropper
and the dummy information rate is set to zero.

As the receiver knows the transmit strategy, it is also
informed aboutA and thus about the equivalent channel.
Then for every realization ofA, the equivalent channel gain
matrix still has i.i.d. complex Gaussian entries with zero
mean and unit variance. Assuming the covariance matrix of
U is mSNRIm−k/(m − k), the achievable secrecy rate (12)
becomes

I(X;YD) = I(U;YD) = log

∣

∣

∣

∣

In +HDH
⊥
EH

†
D

m

m− k
SNR

∣

∣

∣

∣

asI(X;YE) = 0. In other words, secrecy is always attained,
and the probability (7) is always zero. On the other hand, the
main channel outage probability is equal toP (I(X;YD) <

R
(T )
s (SNR)), for which the DMT can easily be shown to be

dm−k,n(rs) as in (14)-(17). This extends the results in [24]
and [25] to secret DMT, which prove that the zero-forcing
method is optimal in terms of secure degrees of freedom.

Note that for MIMO channels the source node can do
beamforming in the direction of the destination, if CSI is
available at the transmitter. Whether a secrecy constraint
exists or not, beamforming in the direction of the destination
only adds power gain to the achievable mutual information
I(X;YD) or log

∣

∣

∣In +HDQH
†
D

∣

∣

∣ term in (12) and does not
change the DMT [28] or the secret DMT. However, when
there are secrecy constraints, the transmitter CSI can be used
to control the beam directionof the transmitted message.
With this information, when the message is transmitted in
the null space of the eavesdropper, the secret DMT changes
significantly as illustrated in the zero-forcing protocol.In the
zero-forcing scheme, as the secret messages are transmitted in
the null space ofHE , secrecy is always achieved.

C. Artificial Noise

In [31] the authors suggest an artificial noise scheme to
increase achievable secrecy rates. In the artificial noise scheme
the source node sends its messages in the range space ofHD

and sends extra noise inHD ’s null space. LetT be anm×
(m−n) matrix, whose columns form an orthonormal basis for
Null(HD), V is a length-(m − n) column vector with i.i.d.
complex Gaussian entries with zero mean, andS be a length-
m column vector that carries source messages. Then source
sends

X = S+TV.

AsV is received in the null space ofHD, the destination is not
affected from this extra noiseV, but the eavesdropper is. Then
the received signals at the destination and the eavesdropper are

YD = HDS+ ZD

YE = HES+HETV + ZE .

We assume the vectorsS andV are independent and respec-
tively have the covariance matricesE{SS†} = SNRIm/2 and
E{VV

†} = mSNRIm−n/[2(m − n)]. Note that this choice
satisfies the total power constraint as:

Tr(E{X†
X}) = Tr(E{S†

S}) +Tr(E{V†
T

†
TV})

= Tr(E{S†
S}) +Tr(E{V†

V})

= Tr(E{SS†}) +Tr(E{VV
†})

= mSNR/2 +mSNR/2.

Then the achievable secrecy (3) becomes

Rs = log

∣

∣

∣

∣

In +
SNR

2
HDH

†
D

∣

∣

∣

∣

− log

∣

∣

∣K+ SNR
2 HEH

†
E

∣

∣

∣

|K|
,

whereK = Ik + SNR
2(m−n)HETT

†
H

†
E.

Simulations suggest that the artificial noise scheme also
achieves the secret DMTd(m−k),n(rs) for m = 2, n =
k = 1. A comparison between zero-forcing and artificial noise
protocols is shown in Fig. 4 when the source has 2 antennas
and the destination and the eavesdropper respectively havea
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single antenna each. The figure confirms that both schemes
achieve a secret diversity 0.25, when the secret multiplexing
gain is 0.75. The artificial noise scheme only necessitates
the main channel CSIT to determine the codebook structure,
whereas to do zero-forcing the instantaneous channel gain
matrix of the eavesdropper is also required. However, the latter
has a superior outage probability performance with respect
to artificial noise. In zero-forcing the source concentrates its
power in the null space ofHE and it is guaranteed that the
eavesdropper does not get any information. Thus, an advantage
of zero forcing is that the source does not have to employ a
secret codebook or send dummy information.

V. CONCLUSION

In this paper we study the MIMO wire-tap channel when
there are stringent delay constraints and short-term power
constraint. We define and find thesecretDMT for arbitrary
number of antennas at the source, the destination and the
eavesdropper. First, we study no CSIT case with isotropic
Gaussian codebook. Our results show that the eavesdropper de-
creases the degrees of freedom in the direct link,min{m,n},
by the degrees of freedom in the source-eavesdropper chan-
nel, min{m, k}. The secret DMT depends on the remaining
degrees of freedom. Therefore, ifk ≥ m, then no degrees
of freedom is left for secure communication. Otherwise, the
secret DMT is equivalent to that of a(m − k) × (n − k)
MIMO without secrecy constraints. Then we study the effect
of transmitter CSI on secret DMT. We observe that unlike the
DMT without secrecy constraints, the transmitter CSI changes
the secret DMT and it becomes equivalent to the DMT of
a (m − k) × n MIMO if k < m; otherwise no tradeoff
exists between secret multiplexing and secret diversity. We
also suggest a zero-forcing scheme, which achieves the secret
DMT bound when CSIT is available, and compare it to the
artificial noise scheme.

In this paper when there is CSIT, we assumed the source
knows both the main channel CSI and the eavesdropper
channel CSI to find the fundamental limits. When there is
only main channel CSI the secure degrees of freedom is
recently established in [27], but investigating the secretDMT
remains to be an interesting open problem. Other possible
future directions include finding the secret DMT for imperfect
or partial CSI and finding an analytical expression for the
artificial noise DMT.

APPENDIX I
SECRECY RATE OUTAGE PROBABILITY, NO CSIT

In Theorem 1 we need the probability of secrecy rate
outage to calculate a lower bound on the probability of
error. Thus, a lower bound on the probability of secrecy rate
outage is sufficient. However, in this appendix we find both a
lower bound and an upper bound on the secrecy rate outage
probability to show that the bounds are tight. We first do
the computations fork < min{m,n}. We will discuss the
casek ≥ min{m,n} at the end of the proof. As for the
no CSIT case of Section III we assume Gaussian codebooks
and the input covariance matrixQ = SNRIm, it is sufficient

that we findP (secrecy rate outage) under the same set of
assumptions.

Secrecy Rate Outage Lower Bound:Define El =
{µi > a, i = 1, ..., k}, wherea is a positive real constant and
Ec
l denotes the complement ofEl. Without loss of generality

a > 1. Then we can write probability of secrecy rate outage
as

P (secrecy rate outage)

= P (secrecy rate outage|El)P (El)

+ P (secrecy rate outage|Ec
l )P (Ec

l ) (19)

≥ P (secrecy rate outage|El)P (El). (20)

As a is a constant, we findP (El) is also equal to a constant.
At high SNR

P (secrecy rate outage|El)

= P

(

∏L

i=1 (1 + λiSNR)
∏k

i=1 (1 + µiSNR)
< SNRrs |El

)

(21)

(a)

≥ P

(

∏L

i=1 (1 + λiSNR)

(1 + aSNR)k
< SNRrs

)

(b)

≥ P

(

L
∏

i=1

(1 + λiSNR) < SNRrs+k

)

(c)

=̇ SNR−dm,n(rs+k)

(d)

=̇ SNR−dm−k,n−k(rs),

where using the definition ofEl we substituted the mini-
mum value for all µi in (21) to obtain (a). (b) follows
because(1 + aSNR)

k
≥ SNRk. Using the DMT results

without secrecy constraints [28],(c) and (d) follow. As
P (secrecy rate outage)=̇SNR−ds(rs), we conclude thatds(rs)
is upper bounded with the DMT of an(m−k)×(n−k) MIMO
system.

Secrecy Rate Outage Upper Bound:To argue that the
secrecy rate outage lower bound is tight, we need a piecewise
analysis, which depends on the secret multiplexing gain. We
defineci as

ci = −(m+ n− 2k− 2i− 1)rs + (m− k)(n− k)− i(i+1),

for i = 0, 1, ...,min{m,n} − k − 1. We also define the event
Eu,i = {µk > ci log SNR}, and Ec

u,i as the complement of
Eu,i.

For anyi, we can write

P (secrecy rate outage)

= P (secrecy rate outage|Eu,i)P (Eu,i)

+ P (secrecy rate outage|Ec
u,i)P (Ec

u,i)

≤ P (Eu,i) + P (secrecy rate outage|Ec
u,i), (22)

where we have upper bounded both
P (secrecy rate outage|Eu,i) andP (Ec

u,i) with 1.
To calculate an upper bound on the first term in (22), we

use an upper bound on the probability density function (pdf)
of µk. We obtain this bound using the joint pdf of the ordered
eigenvalues0 ≤ µ1 ≤ µ2 ≤ ... ≤ µk of the matrixHEH

†
E



8

[28, Lemma 3], which is

p(µ1, ...µk) = K−1
m,k

k
∏

i=1

µm−k
i

∏

i<j

(µi − µj)
2e−

∑
k
i=1 µi ,

whereKm,n is a normalizing constant. Then,

p(µk) =

∫ µk

0

...

∫ µ2

0

p(µ1, ...µk)dµ1...dµk−1

= K−1
m,kµ

m−k
k e−µk

∫ µk

0

...

∫ µ2

0

k−1
∏

i=1

µm−k
i

∏

i<j

(µi − µj)
2e−

∑k−1
i=1 µi

dµ1...dµk−1

(e)

≤ K−1
m,kµ

m−k
k µ

k(k−1)
k e−µk

∫ µk

0

...

∫ µ2

0

k−1
∏

i=1

µm−k
i e−

∑k−1
i=1 µidµ1...dµk−1

(23)
(f)

≤ K−1
m,kµ

m−k
k µ

k(k−1)
k e−µk [(m− k)!]k−1 (24)

where (e) is because each(µi − µj)
2 ≤ µ2

k, and there are
k(k− 1)/2 many(µi −µj)

2 terms involved. Before we write
(f) we first bound the innermost integral in (23) as
∫ µ2

0

µm−k
1 e−µ1dµ1 = γ(m− k + 1, µ2)

(g)
= (m− k)!

[

1− e−µ2

(

m−k
∑

l=0

µl
2

l!

)]

≤ (m− k)!,

whereγ(., .) is the lower incomplete gamma function. Note
that for (g) we used the series expansion of this function
[32]. Applying this result repeatedly to all the integrals in (23)
leads to(f). Using this upper bound on the pdf of the largest
eigenvalueµk, we can now find an upper bound onP (Eu,i).
Let Ci = ci log SNR for short hand notation. Then,

P (Eu,i)

= P (µk > Ci)

=

∫ ∞

Ci

p(µk)dµk

(h)

≤ K−1
m,k[(m− k)!]k−1

∫ ∞

Ci

µm−2k+k2

k e−µkdµk

= K−1
m,k[(m− k)!]k−1Γ(m− 2k + k2 + 1, Ci) (25)

(i)
= K−1

m,k[(m− k)!]k−1e−Ci

m−2k+k2
∑

l=0

Cl
i

l!
, (26)

where we used (24) to obtain(h). In (25) Γ(., .) denotes the
upper incomplete Gamma function, and we used the series
expansion of this function to obtain(i) [32]. Then, it is easy
to show that

P (Eu,i) ≤̇ SNR−ci , (27)

as thee−Ci term in (26) determines the highSNR behavior
of (26).

For the second term in (22) we show that

P (secrecy rate outage|Ec
u,i)

= P

(

∏L

i=1 (1 + λiSNR)
∏k

i=1 (1 + µiSNR)
< SNRrs |Ec

u,i

)

(j)

≤ P

(

∏L

i=1 (1 + λiSNR)

(1 + (ci log SNR)SNR)
k
< SNRrs

)

(k)

≤ P

(

L
∏

i=1

(1 + λiSNR)

< (2max{1, ci})
k(log SNR)kSNRrs+k

)

(l)

≤ P

(

L
∏

i=1

(1 + λiSNR) < Ak(log SNR)kSNRrs+k

)

(m)

=̇ SNR−dm,n(rs+k)

=̇ SNR−d(m−k),(n−k)(rs). (28)

In the above inequalities,(j) is because the largest eigenvalue
µk and hence allµi’s are upper bounded byci log SNR given
Ec
u,i. (k) is due to the fact that

1 + (ci log SNR)SNR ≤ 2max{1, ci}(log SNR)SNR,

and (l) follows becauseci ≤ (m − k)(n − k), for all i =
1, ...,min{m,n}− k− 1, and we defineA = 2max{1, (m−
k)(n − k)}. Finally, (m) is becauseAk(log SNR)kSNRrs+k

has the same multiplexing gain asSNRrs+k, and thus the
results in [28] apply.

Overall, substituting (27) and (28) into (22), using the
definition of ci, and

P (secrecy rate outage)≤̇SNR−d(m−k),(n−k)(rs).

We can observe that this upper bound on
probability of secrecy rate outage is the same
as the lower bound we calculated above. We
conclude that P (secrecy rate outage)=̇SNR−ds(rs) =
SNR−d(m−k),(n−k)(rs) and the secret multiplexing gain
satisfiesrs ≤ min{m,n} − k for k < min{m,n}.

If k ≥ min{m,n}, thenP (secrecy rate outage|El) in (20)
takes a constant value and does not decay withSNR. AsP (El)
is also equal to a constant,P (secrecy rate outage) is lower
bounded by a fixed value in(0, 1]. Thus, we conclude that
whenk ≥ min{m,n}, the secret DMT reduces to the single
point (0, 0).
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Fig. 1. The source, the destination and the eavesdropper respectively have
3, 4 and 2 antennas. The DMT with no secrecy constraints, secret DMT with
transmitter and receiver CSI and, secret DMT with receiver CSI only are
shown.
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Fig. 2. The source, the destination and the eavesdropper respectively have
4, 2 and 1 antennas. The DMT with no secrecy constraints, secret DMT with
transmitter and receiver CSI and, secret DMT with receiver CSI only are
shown.
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Fig. 3. The source, the destination and the eavesdropper respectively have
2, 2 and 1 antennas,rs = 0.75.
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Fig. 4. The source has 2 antennas, and the destination and theeavesdropper
each have a single antenna,rs = 0.75.
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