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_Abstract— In this paper the fading multiple antenna (MIMO) which is one of the building blocks of information-theooeti
wire-tap channel is investigated under short term power con security, was introduced in [1], and later studied in [2] and
straints. The secret diversity gain and the secret multiplexing [3]. A long gap of about 30 years followed these initial

gain are defined. Using these definitions, thesecret diversity- til th h it ined int G
multiplexing tradeoff (DMT) is calculated analytically for no papers until the research community regained interesoaree

transmitter side channel state information (CSI) and for full CSI.  Communication applications for wireless networks. Relgent
When there is no CSI at the transmitter, under the assumptiorof  the ergodic secrecy capacity is calculated for fading wire-

Gaussian codebooks, it is shown that the eavesdroppetealsboth  tap channels in [4], [5]. The multiple access channel with
transmitter and receiver antennas, and the secret DMT depetis an external eavesdropper is studied in [6] and [7]. Secrecy

on the remaining degrees of freedom. When CSI is available at itv for broadcast and interf h Is is i "
the transmitter (CSIT), the eavesdroppersteals only transmitter ~ C@Pacity for broadcast and Interierence channeis 1S Ipzete

antennas. This dependence on the availability of CSI is urte N [8], and for fading broadcast channels in [9]. Similarly,
the DMT results without secrecy constraints, where the DMT the secrecy capacity for the relay channel with an external
remains the same for no CSI gind full CSI at the transmitter eavesdropper is studied in [10] and [11].
under short term power constraints. A zero-forcing type scheme 1, \yireless channels, multiple antennas increase robsstne
is shown to achieve the secret DMT when CSIT is available. . . o .
against fading, and also transmission rates. Multipleraras
Keywords: Diversity-multiplexing tradeoff, MIMO, se-  are considered in the context of wire-tap channels in [1Z]{
crecy, wire-tap channel. [17]. In [13] the authors find the secrecy capacity of the Gaus
sian multiple-input multiple-output (MIMO) wire-tap chael,
. INTRODUCTION when the source and the destination have two antennas each
In wireless communications, communication medium ignd the eavesdropper has only a single antenna. Concurrent

shared. Any transmission can be overheard by nearby noc%’égfk in [14] an_d [15] establislh tr:je sehcriclyll capacity for .the
If eavesdroppers are present in the environment, then rﬁ\ |nngIMO wire-tap ¢ argne un elrt %? cs| assurr]pnc:cn
confidential information such as user IDs, passwords, atitcre or arbitrary antenna numbers. A closed-form expression fo

card numbers become vulnerable. In addition to voice, imadge Secrecy capacity is found in _[18]' .
video, and data transmissions, future applications emwisi For fading channels under stringent delay constraints, the

wireless transmission of sensitive information such asqeal outage formulation proves to be more useful than capacity.

and locality information. Therefore, wireless securityas For the wire-tap channel, outage a}pproach is considered in
essential system requirement [12], [19] and [20]. Outage probability for a target secrecy

In current wireless systems, protection against eavesdréﬁte is also investigated in [5], when the source, the destin .
ping is provided at higher layers of the Open Systen@q 'Fhe eavesd_r(_)pper have CSI, and optlr_n_al power allocation
Intercor_mef:tion (0SsI) reference_ model. Transport, ndtwqp(;:'i;]ees (grt]r?;rnt]wlgllrgIztiéhﬁozgila%eéf&?eb?jzlg:geir%fczle:gm
or.apphcatlon_ layer protocols aim to prevent eavesdrappi investigated in ’[21] 221, (23], [24], [25], [26] and TR
Using .encryptlo_n. I—!owever, !<ey exchange and repewal mggin important perforrr;ance,mea,sure f’or MI,MO fading chan-
be dlfflc_ult conS|der|ng_ the wireless netyvork dynamics. §,hu els that simultaneously considers probability of errat data
developing new security protocols, which do not necessitd! tes is the diversitv-multinlexing tradeoff (DMT). esiahed
keys or cannot be broken even with infinite computing powé_ff‘ W P 9 ( ), ;
are of utmost importance for future development of Wireleéﬂ% [2f8].dThe ?I\I/r{ 'g aﬁht')grt'v%NR ?hnal)d/gs Qt”d dgscnbde?h
applications. e fundamental tradeoff between the diversity gain and the

Physical layer security techniques provide unconditionmgg‘g&n’n%?‘zwér—rgﬁ]g'\t’ﬁés'rtg’ ?t'allr(]e |§nthe ;ﬁc.zyt;itiaitg
secrecy through channel coding at the physical layer and coh ity ' ultiplexing gain |

plement higher layer security methods. The wire-tap channgicréase O_f the transmission rate in the I|r_n_|t of higNR.
The DMT is strongly related to the probability of outage as
The material in this paper was presented in part at the 42ndudin probability of error is generally dominated by the outagerav
Conference on Information Sciences and Systems, CISS Fo0&eton, NJ, gt high SNR.
and at the 16th European Wireless Conference, Lucca, Aalg| 2010.
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thesecretDMT depends on the remaining degrees of freedorthe pointsd,, (1) = (m —{)(n —1), 1 = 0,1, ..., min{m, n}
when there is no CSIT. This behavior is also observed in [2[48]. The degrees of freedom in this systemnisn{m,n},
for compound channels only for the maximum multiplexingnd the multiplexing gain can increase up to this value.
gain point. Our work can be thought of as a generalizati@®imilarly, the maximum diversity gain isin, and the diversity
of [21], capturing the behavior for all diversity gains. We@ gain decreases as the multiplexing gain increases.

argue that the secret DMT depends on the available CSI at th
transmitter (CSIT). This is unlike the regular point-toipto
DMT without security constraints, which is not affectedrfro
the transmitter CSI for constant-rate transmission. U@iT

assumptions, we also suggestzaro-forcing type scheme, .. 1 N o :
which achieves the secret DMT upper bounds. limy 00 i H(W|Y}'), and the probability of decoding error

Next, we introduce the system model in Section Il and th at the destination approaches zeroMsapproaches infinity

state the secret DMT for no CSIT in Section Ill. Section ljeﬂ]ﬁilgc(ja:gr:nrgg]v_m ~H(W[Yg') is also known as the
covers the secret DMT when there is CSIT. We conclude |nq '

Section V. The papers [1], [2], [3] prove that the secrecy rate
Ry =[I(X;Yp) — I(X;Yg)]" 3

Under secrecy constraints, the source not only aims to
send the messag®@’ reliably but also securely to the des-
tination. The secrecy rateR; is achieved if the secrecy
constraint is satisfied; i.eR, = limy_o %H(W) =

Il. SYSTEM MODEL AND PRELIMINARIES

We consider a multiple-antenna wire-tap channel, in whidh achievable for any input distribution(X), where o™
the source, the destination and the eavesdropper have denoteSrnax{O,¢}. A brief overview of th(?d)ach|evab|llty is
and k antennas respectively. Both the destination and tRé follows: Defined = 2V&™, B = 2V and the sets
eavesdropper have CSI about their incoming channels. 4h= {1,..,A} and B = {1, ..., B}. The source generates
Section IIl we assume the source node does not have ahy< B channel codewordX{ i.i.d. with p(X). In order to
transmit CSI. We will consider the case when the source hg@nd a secret message= A, the source choosésuniformly
transmitter CSI in Section IV. from the set3, formsW = (a,b) and maps$V into the channel

For each channel use the channel is represented as follogdewordX?. Note thatB is the number of dummy code-

words used to confuse the eavesdropper for @achA. In [1],
Yp = HpX+7Zp (1) [2], [3], with full CSI at the transmitter and the receivef®)
Yr = HgX+Zg. (2) is set toR, defined in (3), and??) = I(X; Y g). Under this
) ) i setup, the total number of codewords in the source codelsook i
In the aboye equat|onK_|s anm x 1 vector, which denotes , . ' _ 9NI(X;¥p)  and the destination can reliably decode
the transmitted source signal.p andY g aren x 1 andk x 1 W and hence:. However, the eavesdropper can only decode

vectors, and represent the re(_:elved §|g_nals at the deenna[he indexb and has no information about the secret message
and the eavesdropper respectively. Similally, andZg are a. Thus secrecy is achieved

n x 1, andk x 1 vectors that indicate the independent additive

noise at the destination and the eavesdropper. BotlandZ In this work, we investigate the highNR behavior of the
have independent and identically distributed (i.i.d.) ptem Probability of error (including the probability that secyeis
Gaussian entries with zero mean and unit variance. Thet achieved) with a target secrecy rate equaktd’ (SNR).
matricesHp and Hy, consisting of i.i.d. complex GaussianWe assume the system is delay-limited and requires constant
entries with zero mean and unit variance, are of sizen, and Secrecy rate transmission. There is also short-term agerag
kxm. They respectively denote the channel gains between fewer constraintnSNR that the transmitter has to satisfy for
source and the destination and the source and the eavesdroggch codeword transmitted. We define seeretmultiplexing

As the fading is assumed to be slol,, and Hy are fixed gain as
for the whole duration of the communication.

When there is no secrecy constraint, the source fixes its
transmission rate aR(”)(SNR) and aims to transmit the
messagdV, W € W = {1,2, ”'72NR(T)}’ in N channel uses. The secret multiplexing gaim, shows how fast the target
The destination declares an error if its decisibn W, W €  Secrecy rate scales with increasisiyR. The secretdiversity
W. This error probabilityP, (SNR), is shown to be dominated gain, ds, is equal to
by the outage event, oP.(SNR)=P(R < R™(SNR))!, . logP.(SNR) .,
whereR = I_(X; Yp) is the mstantaneou_s mutual information P W = —ds,
corresponding to the chosen transmission scheme [28]. -

The diversity-multiplexing tradeoffd(r), establishes a re- whereBe(SNR) dgnotes the probab|I|t_y of error under secrecy
lation between the target transmission raté’) (SNR) and constraints. In this paper, we establish the tradeoff betwe
probability of errorP, (SNR) [28], wherer is the multiplexing S€cret diversity gainl; and the secret multiplexing gain,
gain. It is shown to be the piecewise linear function joininés(rs)-

IThe expression fi (SNR)=fo(SNR) is defined as limsype In a system with secrecy constraints, the probability aberr

log f1(SNR)/ log SNR = limgng o0 log f2(SNR)/ log SNR. In the rest Pe(S_NR), is due to two events: Either the destingtion does.not
of the paper, inequalities are also defined similarly. receive the secret message reliably, or secrecy is notwezhie

. R{(SNR)
SNR—oo log SNR

S



29]. Then secure communication immediately at the beginning of the
y g g
transmission block and there is not enough time to generate a

P.(SNR) = P (secrecy not achieved secret key.
or main channel decoding ern¢4)
< P(secrecy not achieved I11. N O CHANNEL STATE INFORMATION AT THE SOURCE

+: P(main channel decoding erjor (5) _ When the source node does not have CSI either about its
link to the destination or to the eavesdropper in the MIMO
where wire-tap channel, the secrecy capacity is not known. Howeve
motivated by the fact that when all nodes in the system
1 have complete CSI, Gaussian codebooks are optimum, [14],
£ P ( lim —HWIYZ) < RgT)(SNR)) . (6) [15], we assume Gaussian codebooks. We also conjecture that
Nooo N sending independent signals at equal power at each antenna
For the achievability scheme described above, settiffgoptimal at highSNR, as all the entries oHp and Hg

P(secrecy not achieved

B = 9NRYWESNR) gnd A x B = oNRrRT(SNR) _  respectively are identically distributed. Without CSIhet
oNR( (SNR)+NRW(SNR)  p(secrecy not achievediefined in Source has no preference over afieectionover the other for
(6) can be calculated as [1] its transmission. Thus, we assume the input covariancexmatr
) Q is a diagonal matrixQ) = SNRI,,, wherel,, indicates an
P(secrecy not achieved identity matrix of sizem. Then, the achievable secrecy rate in
= P(R™(SNR) - I(X;Yg) < R{")(SNR)) (3) becomes
~ P (I(X:Yg) > RO(SNR)). M o1, +HDQH},’ —log’Ik +HEQHEH+

+

L

[1°, (1 + 4SNR)

P(main channel decoding ermr whereL = min{m,n}, 0< A\ < ... <\ are the ordered
= P(main channel outage eigenvalues of the matriHDH},, 0<p; <...<py are the

B _ (7) ordered eigenvalues of the matrHEH};, and{ denotes the

= PU(X;Yp) < R"’(SNR)). (8) conjugate transpose.
Note that in (7) and (8), the term&X;Y ) and I(X;Yg) Theorem 1:For the multiple-antenna wire-tap channel de-
are evaluated for the chosen transmission scheme detetmifiged in (1) and (2), with full CSI at the destination and
by the codebook distributionp(X). On the other hand, the eavesdropper about their incoming channel gains and no

channel decoding error when the channel block lergtlis =

Finally, as the main channel outage event dominates the main
long enough and good codes are used [28], [

P.(SNR) in (4) can be lower bounded by CSl at the source, ik < min{m,n}, the secret diversity-
multiplexing tradeoff achieved by isotropic Gaussian dmmtek
P.(SNR) > P(secrecy not achieved is a piecewise linear function joining the points ds(1)),
> P(I(X;Yp)—-I(X;Yg)" < R)(SNR)) wherel =0,1,...,min{m,n} — k and
> P(I(X;Yp) - I(X;Yp) < R{"(SNR)) do(l) = (m —k —1)(n —k —1).
£ P(secrecy rate outage 9)

If ¥ > min{m,n}, then the secret diversity-multiplexing
for the chosen achievable scheme wiX). tradeoff reduces to the single poiftt, 0).

In the following we will calculate both (7) and (8) to obtain ~ Proof: We first find an upper bound on secret DMT. To
the upper bound in (5), and (9) to establish a lower bound &g this, we calculate the probability of the secrecy rataget
P.(SNR). Comparing the bounds, we will establish the secref (9) for R{") = r,log SNR, and show that at highNR, this
DMT. In Section I1l, we assumg(X) is an isotropic Gaussian probability is on the order ofNR~%~-*»-+("=) The details
input, whereas in Section IV-A, we calculate the bounds f@f the computation are presented in Appendix I.
the bestp(X) which attains the secrecy capacity [14]. To show that the above secret DMT upper bound is achiev-

i - ai le, we setR™) = R 4+ min{m,k}logSNR = (r

In this paper, we assume a single transmission block aple, s "+ {m, k}log (rs +
N channel uses under short-term power constraint. Thisian{m, k})log SNR bits/channel use, where the target secret
unlike the scenario in [20]. In [20] there are many block§ommunication rate iRéT) bits/channel use with multiplexing
to communicate and there is long-term power constraint. TB&IN 75, and R(Y(SNR) = min{m, k}log SNR. Then the
first communication block is merely used to generate a secfé@in channel is in outage when the destination cannot decode
key, and in the next block this key is used to enhance secre@te R'"), which has the probability
while another key is generated to be used in the following p
block. In other words, the key generation process [20] iayel
insensitive, and keys generated this way are used to prbict = P (I(X; Yp) < R(T))
delay-sensitive secret messages. In our system, comntignica = P(I(X;Yp) < (rs +min{m, k})log SNR)
session lasts a single code block, during which secrecydas t
be maintained. The transmitter and the receiver have to star

(main channel outage

a

—~
=

SNR—dm,n (rs+min{m,k})



_ { SNR ™ —rkun—k(rs) it k<m 7 To establish the secret DMT with CSIT, we first need the
1 if k>m following lemma.

where the mutual information is evaluated for isotropic &au Lemma 1:If & < min{m,n}, then p =
sian inputs and(a) is due to [28]. On the other hand, (7)dim{Null(Hp)* NNull(Hg)} > 0, where Null(Hp)*

becomes is the orthogonal complement of the null spaceldf and
Null(Hpg) is the null space oHg. If n < k ork >m,
P(secrecy not achieved thlén(p :E)O P poltmssm =M
_ : d '
= P(U(X;Yg) > R(SNR)) (11) Proof: The subspacediull(Hg) and Null(Hp)* are
= P(min{m, k}logSNR < I(X;Yg)) defined in the vector spac®™. If & < min{m,n}, then
= 0, Null(Hz) andNull(Hp)* respectively have dimensions—
) . . k and ¢ = min{m,n}, and have the basis setg =
since the maximum degrees of freedom in the sourcey, w, .. w,_;} and W = {wy,wo, ,wg}. In other

eavesdropper channel is equalitdn{m, k}, [28]. Overall, yords, the set#/ and W are both linearly independent sets.
if k& < m the upper bound on the probability of error (5]-|owever, asn—k-+q > m, UUW is linearly dependent. The

becomes intersection of the hyper-planésspan and/ span, includes
P,(SNR) = 0+ SNR % kn-r(re) at least one non-zero vector. Thps> 0.
GNR~m—k.n—n(rs)_ If n < k < m, then the basis setd and W are same

as above withg = n. However, in this casé/ U W is a

As the lower bound on probability of error (9) is the samdinearly independent set, a8 —k+¢g=m —k +n < m.

we conclude that the secret DMT is equaldg . «(rs) if  The intersection of the hyper-planksspan and/V span only
k < m.If k > m, the secret DMT is the single poirf0,0). include {0} and thusp = 0.

u If & > m, then Null(Hg) consists of only{0}. Then

Theorem 1 states that the eavesdropper costs the sys}@unm(HD)i N Null(Hp) = {0}, and thusp = 0. -
min{m, k} degrees of freedom, which affects the whole secret

DMT curve. When the degrees of freedom in the sourcg.
eavesdropper channehin{m,k}, is equal tok, then the
secret system becomes equivalent to(an— k) x (n — k)

Theorem 2:For the multiple-antenna wire-tap channel de-
ed in (1) and (2), with full CSI at all the terminals, if
k < m, the secret diversity-multiplexing tradeofi,(r;) is

system. However, ifmin{m, k} = m, then no degrees of & Piecewise linear function joining the poirtsd; (1)), where

freedom are left for the main channel, as > min{m,n}, t=0,1,..,m —kand
and the secret DMT reduces to the single pg¢ino). do(l) = (m —k—1)(n—1).

IV. CHANNEL STATE INFORMATION AT THE SOURCE If £ > m, then the secret diversity-multiplexing tradeoff

In the previous section secret DMT is established for MiMmdgduces to the single poilt0, 0).
wire-tap channels without CSIT. In this section we assume Proof: When the secrecy capacity is expressed as in
that transmitter has perfect CSI about the channel betweg@R), it is hard to calculate the secret DMT. We make use
itself and the eavesdropper, as well as its channel to thkthe highSNR secrecy capacity approximations provided in
destination. While it may be possible for the source to abtajl4] to find the secret DMT. We investigate the three cases
eavesdropper CSI if both the destination and the eavesdropp < min{m,n}, n <k < m, andk > m separately. First we
are part of the same network, the full CSIT assumption may figd an upper bound on secret DMT using (9).
harder to justify if the eavesdropper is merely an illegéten  For the first casé < min{m,n}, p > 0 by Lemma 1 and
listener. Nevertheless, this assumption will help us ustded H is not full column rank; i.ek < m, then the secrecy
the limitations and properties of secret DMT. Note that secrcapacity at higfSNR is given by [14]

DMT is still a meaningful metric as we consider constant

secret rate applications that operate under short-termepow’,(SNR) = Z log 0'72. +log |I,, + mSNRHDHEHTD
constraints, which can suffer from outage despite the alval jio;>1 '
CSIT. +o(1), (13)

In the next subsection we establish the secret DMT with N .
CSIT and in Section IV-B we investigate different scheme&hereo(1) — 0 whenSNR — oo, Hy € C™*™ is the pro-

that achieve the best secret DMT with CSIT. jection matrix ontdNull(Hg), ando;, j = 1, ..., min{m, n}—
p, are the generalized singular values of matriflgs andHg.
A. Secret DMT with CSIT To find the secret DMT we investigate the secrecy rate outage

The secrecy capacity for the non-fading MIMO wire-tajproPability
channel with channel knowledge at all the terminals is foundsecrecy rate outage (14)
in [14], [15] as
mSNR

L, + HpH;H

In"'HDQHTD‘ = P Z logaf-—i—log
Cs = max log+———— (12) jioy>1
Qo

TH@) < mSNR ‘Ik + HEQHH +0(1) < rslog SNR) (15)




SNR

= P (10g I, + 2 HpHEHD | <y log SNR) (16) L, + HDQHH
D = P|log T < log SNR

SNR ‘Ik +HpQH ‘

_ /.../P (log I, + 2 Hp HEHD | < ry log SNR 6

= P(secrecy rate outage

11 11 km km . —dm—k.n(rs
Y = By, HE = ) = GNR k()
k m 3 3 On the other hand, the probability of secrecy not achieved is
JIIT feaeo (HYAH D (17)

P(secrecy not achieved
= P(I(X;Yg) > RY(SNR))

i=1j=1

For a fixedHg = Hpg, i.e. when aIIH%J) = HSJ), i = :
1,...kj =1,....m, the projection matri# can be written = P(log I + HEQHE‘ <I(X;Yg)) = 0.
asHi = AAT. The matrixA is of sizem x (m — k). We
can write A = [ay,...,am—k], Where the lengthn column
vectors aTj forT Tan orthonormal basis foNull(Hg). Let Note that it is possible to obtain the same DMT
Hp = [r},...,r]]" be written in terms of lengths row vectors .

ri,Di :[ i, ...,n.]Then each entry otHDA?(iﬂ = (r,a;), by setting R(T)(SNR) - 1Og‘1” + HpQHp),
i=1,...n,j=1,.. (m—k). The mean value of each entryand the ~dummy information +rate RW(SNR) =

is equal toE{(r;,a;)} = 0. We observe that the covariance[lOg I, + HDQHH _ RET)(SNR)J . This guarantees

Tt _ T T T _
f{;ai ’ ?’>§;aaitt> }is_zcgrf{i?;ﬁ r;}a;.. Tnhzgggggfigi I;;]}és_e,l 'as a desired constant secrecy r_aﬂ’éT (SNR) and ensures_that
the vectors are orthonormaLT-E{rTr Va, = 0, 0f j £ ¢ the main channel is never in outgge._However, unlike the
for any i and s. Therefore Jifi ° SS and ’: ¢ then Previous schemeP(secrecy not achieveds not on the order
' ' ' of 0.
For the second case < k < m, p = 0 by Lemma 1

E{(a},rb(rs,ag} = 1; otherwise, it is equal to zero. Thus,
HpAis a mgtnx, \_Nhose entries are i.1.d. .Gau55|an W'th Z810d the highfSNR secrecy capacity expression of [14] cannot
mean and unit variance. Then we can write the probability Iy

(17) as e used directly. However, the converse and achievability
in [14] can be extended to cover for = 0, by deleting
P <1og
k,n}. We can follow the same steps in the previous case to
calculateP( secrecy not achievedP(main channel outage
In other words, this system is equivalent to @n — k) x n high SNR is given by [14]
MIMO with a well known DMT d,,, _i)  (7s) [28]. Substitut-

certain rows and columns in the generalized singular value
decomposition [30]. Then the same secrecy capacity expres-
P | log .
and P(secrecy rate outageand find the secret DMT to be
=~ SNR~%m—m)n(rs) d(m—k),n(rs) forn <k <m.
i i ; lim C,(SNR)= Y logo’. (18)
ing this value in (17), we observe that SNR D oo 8 80
jioj>1

Combining the upper and lower bounds (5) and (9) we
conclude that the secret DMT is equaltq_y, ,, () if & < m.

mSNR
I, +

HpHEH,

< rslog SNR

11 11 km km
Y = gy, HE = g

mENR 4 AATH],

I, +

sion as in (13) holds withp replaced byp’ = min{m —
< rslog SNR)
Finally for the last casek > m, the secrecy capacity at
P(secrecy rate outage As the capacity expression does not grow with increasing

kK m
1 (i7) (35)  SNR, it is easy to see that the secret DMT is a single point
| ————— fagon (Hg”)dH ’

SNR (m=).n(re) [T fug (0,0). m
sy (ra) Note that, in the proof of Theorem 2 in the first achiev-
= SNR™mmmits able scheme, the number of dummy codewords, =
OF dy(ry) < dm—g)m (7s)- gNlos|li+HsQHL| s adapted to the source-eavesdropper

To attai h i Tgannel. Thus, secrecy is always attained. Available CSIT
0 allain secrecy we assume Ihe source uses 1.1.d. comp )ﬁroves the secret DMT with respect to secret DMT without
Gaussian codewords with covariance matgixand transmits

T p(T) @ pits/ch : h .~ CSIT and can also be used to guarantee no information is
at rateR_ = It T R |_ts channel use, w €€ IS |oaked to the eavesdropper when the destination receiees th
the covariance matrix that attains the maximum in (12). He[&ormation correctly. Hence, main channel outage andesscr
the target secret communication ratel%]g) bits/channel use.

) rate outage events are the same. This is unlike the second
Unlike the no CSIT case, the number of dummy codewords, ,seq strategy where the main channel is never in outage,

d . .
used for each secret message,= 2VE? s variable and but information may be leaked to the eavesdropper or desired
equal to 2" o/l +HeQHL| Then the main channel outagesecrecy rate may not be attained.
probability is equal to In Fig. 1 secret DMT with CSIT is shown fom = 3,
n =4 andk = 2 in comparison to the secret DMT without
CSIT and the DMT without secrecy constraints. The DMT
L, + HDQHH < R(T)) without secrecy constraints, the secret DMT with CSIT ared th

i=1j=1

P(main channel outage
= P (log




secret DMT without CSIT are shown to be respectively equﬁ’_lgT)(SNR)), for which the DMT can easily be shown to be
to ds 4(r), dia(rs), and dy2(rs). In this example secrecy d,,_n(rs) as in (14)-(17). This extends the results in [24]
constraints impose both multiplexing gain and diversitingaand [25] to secret DMT, which prove that the zero-forcing
losses whether CSIT exists or not. method is optimal in terms of secure degrees of freedom.

On the other hand, if CSIT is available, secrecy constraintsNote that for MIMO channels the source node can do
do not always result in multiplexing gain loss with respedteamforming in the direction of the destination, if CSI is
to the DMT without secrecy constraints. This is illustratedvailable at the transmitter. Whether a secrecy constraint
in Fig. 2 for which the source, the destination and thexists or not, beamforming in the direction of the destorati
eavesdropper respectively ha¥e2 and1 antennas each. Inonly adds power gain to the achievable mutual information
this case, the secret DMT with full CSIT is equaldea(rs), 1(X;Yp) or log|I, + HpQHY, | term in (12) and does not
rs € [0,2], whereas the secret DMT with no CSIT is equal t@hange the DMT [28] or the secret DMT. However, when
d3,1(rs), 7s € [0,1]. Note that the secret DMT with no CSIT there are secrecy constraints, the transmitter CSI can éx us
always experiences a degrees of freedom loss, whereas segre:ontrol the beam directionof the transmitted message.
DMT with full CSIT only experiences secret diversity gainyjth this information, when the message is transmitted in
loss but not secret multiplexing gain lossnif — k& > n. the null space of the eavesdropper, the secret DMT changes

In Fig. 3 we compare secrecy outage probability for a Zignificantly as illustrated in the zero-forcing protocisi.the
antenna source, a 2-antenna destination, and a singlenantefgro-forcing scheme, as the secret messages are tramsimitte

eavesdroppern = 2, n = 2 andk = 1 using the secrecy the null space oHp, secrecy is always achieved.
capacity achieving scheme in (12). The secret multiplexing

gain is assumed to be equal to 0.75; thus the secret divergity artificial Noise
levels are equal t0.25, if there is no CSIT, and.5 if CSIT e .
. . . ) . In [31] the authors suggest an artificial noise scheme to
is available. Fig. 3 confirms these results, from which we can

. . . ncrease achievable secrecy rates. In the artificial naiserse
observe the secret diversity to be approximately equal ¢o t . .
. e source node sends its messages in the range spitg of
predicted values.

and sends extra noise Hp's null space. LefT' be anm x
(m—mn) matrix, whose columns form an orthonormal basis for
B. The Zero-forcing Scheme Null(Hp), V is a length¢m — n) column vector with i.i.d.

In this section we propose a simpkero-forcingmethod complex Gaussian entries yvith zero mean, 8rigk a length-
that achieves the full CSIT secret DMT as an alternative t§ column vector that carries source messages. Then source
the capacity achieving strategy studied in Theorem 2. sends

As k > m results in a trivial secret DMT, we assunke< X=S+TV.

m;i.e.Hg is notfull column rank. In the zero-forcing protocolas v is received in the null space &1, the destination is not
we transmit the secret information ¥, which is a length- affected from this extra nois¥, but the eavesdropper is. Then

(m — k) column vector, and send = AU at the transmitter, the received signals at the destination and the eavesdrappe
where Hz = AAT. The received signals at the destination

and the eavesdropper respectively become Yp = HpS+Zp
Y, = HpAU+Zp Yp = HpS+HTV+Z5
Yr = HpAU+Zp = Zg. We assume the vectosandV are independent and respec-

) o ) tively have the covariance matric€§SS} = SNRI,,, /2 and
Stated differently, the destination observes an equivalean- ¢ (vvt} = ;mSNRI,,_,/[2(m — n)]. Note that this choice

nel of Hp A, whereas the eavesdropper only observes noisgisfies the total power constraint as:
because the secret message is transmitted in its null sipace.

this scheme, we only send secret messages at a fixed transTr(E{X'X}) = Tr(£{S'S}) + Tr(E{VITITV})
mission rateRET)(SNR) in the null space of the eavesdropper = Tr(£{STS}) + Tr(E{VIV})
and the dummy information rate is set to zero. = Tr(E{Sst})) + Tr(E{VVT})

As the receiver knows the transmit strategy, it is also
informed aboutA and thus about the equiva?eynt channel. = mSNR/2+mSNR/2.
Then for every realization ofA, the equivalent channel gain Then the achievable secrecy (3) becomes
matrix still has i.i.d. complex Gaussian entries with zero
mean and unit variance. Assuming the covariance matrix of
U is mSNRI,,_1,/(m — k), the achievable secrecy rate (12) 1ts =108
becomes

SNR
I, + THDHTD’ -

K+ SYRHH]
log K] ,

whereK =T, + ;5N H, TTTH.

Simulations suggest that the artificial noise scheme also
achieves the secret DMT,,, i) n(rs) for m = 2, n =
asI(X;Yg) = 0. In other words, secrecy is always attaineds = 1. A comparison between zero-forcing and artificial noise
and the probability (7) is always zero. On the other hand, tipeotocols is shown in Fig. 4 when the source has 2 antennas

main channel outage probability is equal R{I(X;Yp) < and the destination and the eavesdropper respectively dave

I(X;Yp) = I(U;Yp) = log |I, + HDHEHTD%SNR




single antenna each. The figure confirms that both schentleat we find P(secrecy rate outageunder the same set of
achieve a secret diversity 0.25, when the secret multiptexiassumptions.

gain is 0.75. The artificial noise scheme only necessitatesSecrecy Rate Outage Lower Bounddefine & =
the main channel CSIT to determine the codebook structufe,; > a,i = 1, ..., k}, wherea is a positive real constant and
whereas to do zero-forcing the instantaneous channel gafndenotes the complement &f. Without loss of generality
matrix of the eavesdropper is also required. However, tlierla ¢ > 1. Then we can write probability of secrecy rate outage
has a superior outage probability performance with respes

to artificial noise. In zero-forcing the source concensadte

power in the null space dllz and it is guaranteed that the P(secrecy rate outage

eavesdropper does not get any information. Thus, an adyanta = P(secrecy rate outag®)P (&)
of zero forcing is that the source _does no_t have to employ a + P(secrecy rate outagfgf ) P(EF) (19)
secret codebook or send dummy information. > P(secrecy rate outaid) P(E)). (20)
V. CONCLUSION As a is a constant, we find®(&;) is also equal to a constant.
. . At high SNR
In this paper we study the MIMO wire-tap channel when

there are stringent delay constraints and short-term power  P(secrecy rate outag®)
constraint. We define and find ttsecretDMT for arbitrary L .
number of antennas at the source, the destination and the = <H§€_1 1+ A:SNR)
eavesdropper. First, we study no CSIT case with isotropic [[i=, (1 + piSNR)
Gaussian codebook. Our results show that the eavesdrogper d (a) ]‘[Z.L:1 (1+ X\;SNR)
creases the degrees of freedom in the direct linlo{m, n}, 2 P (1+ aSNR)F
by the degrees of freedom in the source-eavesdropper chan-

< SNR'* |5l> (21)

< SNR”)

nel, min{m, k}. The secret DMT depends on the remaining Q) L —
degrees of freedom. Therefore, & > m, then no degrees = (H (I+ASNR) < SNR )
of freedom is left for secure communication. Otherwise, the © =

secret DMT is equivalent to that of @an — k) x (n — k) = GNR 4mn(rstk)

MIMO without secrecy constraints. Then we study the effect (d)

A —kn—k(Ts
of transmitter CSI on secret DMT. We observe that unlike the SNR milre),
DMT without secrecy constraints, the transmitter CSI cleangyhere using the definition of, we substituted the mini-
the secret DMT and it becomes equivalent to the DMT Gfum value for ally; in (21) to obtain (a). (b) follows

a (m — k) xn MIMO if k < m; otherwise no tradeoff pecause(1+aSNR)* > SNR*. Using the DMT results
exists between secret multiplexing and secret diversitg. Without secrecy constraints [28]c) and (d) follow. As
also suggest a zero-forcing scheme, which achieves thetse?(secrecy rate outageéSNR ™% ("), we conclude that, (. )
DMT bound when CSIT is available, and compare it to thg ynper bounded with the DMT of dm—k) x (n—k) MIMO
artificial noise scheme. system.

In this paper Wheq there is CSIT, we assumed the SOUrCe5ecrecy Rate Outage Upper Boun@io argue that the
knows both the main channel CSI and the eavesdropRei.recy rate outage lower bound is tight, we need a piecewise

channel _CSI to find the fundamental limits. When there Shalysis, which depends on the secret multiplexing gain. We
only main channel CSI the secure degrees of freedom jSfine,. as

recently established in [27], but investigating the seErsiT
remains to be an interesting open problem. Other possible= —(m +n — 2k —2i — 1)rg + (m — k)(n — k) —i(i + 1),
future directions include finding the secret DMT for impetfe fori = 0,1,...,min{m,n} — k — 1. We also define the event

or partial CSI and finding an analytical expression for th {
S X wi = {pk > c;logSNR}, and £, as the complement of
artificial noise DMT. Euie

For anyi, we can write
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APPENDIX I
SECRECY RATE OUTAGE PROBABILITY, NO CSIT P(secrecy rate outage
In Theorem 1 we need the probability of secrecy rate = P(secrecy rate outaffe, ;) P(Eu,i)
outage to calculate a lower bound on the probability of + P(secrecy rate outag® ;,)P(EC )
error. Thus, a Ipwer bound on the_probability of secrecy rate < P(E..:) + P(secrecy rate butaﬁi), (22)
outage is sufficient. However, in this appendix we find both a ' '
lower bound and an upper bound on the secrecy rate outageere we have upper bounded both

probability to show that the bounds are tight. We first d&(secrecy rate outag, ;) and P(E ;) with 1.

the computations fok < min{m,n}. We will discuss the To calculate an upper bound on the first term in (22), we
casek > min{m,n} at the end of the proof. As for theuse an upper bound on the probability density function (pdf)
no CSIT case of Section Il we assume Gaussian codeboafs:;. We obtain this bound using the joint pdf of the ordered
and the input covariance matri@ = SNRI,,, it is sufficient eigenvalued < pu; < ps < ... < uy of the matrixHEHfE



[28, Lemma 3], which is

(/Ll,. mkHN:n kH 1 1#i7
1<J
where K, ,, is a normalizing constant. Then,
Mk M2
plug) = / / 1y - pir)dp -dppg—1
= mku;cn k67
-
[ 0
1<jJ
d 1...d,LLk,1
()
—k k(k 1,
< Km U
Mk #2 & k-1
/ / Hu;n_ e Xi=t Midpy dpp—q
0 0 =1
(23)
) 1 m—k k(k-1) e~ 1k 1k—1
< Kmk Ky Mg [(m — k)!] (24)

where (e) is because eacly;
k(k —1)/2 many (u; — u;)* terms involved. Before we write
(f) we first bound the innermost integral in (23) as

— 11;)? < p2, and there are ui-

and (I) follows because; < (m —

For the second term in (22) we show that

: SNR™|€°,
[Ti=: (1 + piSNR) 7
P (

L
1%, (1 + A;SNR) SNR“)
P <

(1 + (c;log SNR)SNR)"
< (2max{1,¢;})¥(log SNR)kSNRT“‘k)

P(secrecy rate outags ;)
» (Hf_l (1 + \;SNR)

L
[T+ AisNR)
i=1

L
(H (1+ MSNR) < AF(log SNR) SNR’”S*’“)
=1

SNRfdm,n(rerk)
GNR 4=k (n—p (1) (28)

In the above inequalities;) is because the largest eigenvalue

ur and hence alli;’s are upper bounded by log SNR given

(k) is due to the fact that
1+ (¢;1og SNR)SNR, < 2max{1, ¢; }(log SNR)SNR,
k)(n — k), for all i =

/M u;”*ke—ﬂl dpuy = ~y(m—Fk+1,pu) 1,...,min{m,n} — k — 1, and we defined = 2 max{1, (m —
0 E)(n — k)}. Finally, (m) is becaused* (log SNR)*SNR"= ™"
(9) | i mok I has the same multiplexing gain &VR"™="*, and thus the
= (m-k)l|1-e o results in [28] apply.
1=0 Overall, substituting (27) and (28) into (22), using the
< (m—k), definition of¢;, and
where~(.,.) is the lower incomplete gamma function. Note P(secrecy rate outagigSNR ~4m—k).c—k) (7).
that for (9) we used the series expansion of this function -
[32]. Applying this result repeatedly to all the integrais(23) ~ We can observe that this upper bound on
leads to(f). Using this upper bound on the pdf of the largefirobability of secrecy rate outage is the same
eigenvalueu, we can now find an upper bound d?(gw.)_ as the lower bound we calculated above. We
Let C; = ¢; log SNR for short hand notation. Then, conclude that P(secrecy rate outageSNR™ %" =

SNRid(wnfk),(nfk)(Ts)
satisfiesrs < min{m,n} — k for k < min{m,n}.

P(&u4)

and the secret multiplexing gain

= P(up>Cy) If & > min{m,n}, then P(secrecy rate outag®) in (20)
& takes a constant value and does not decay SKR. As P(&;)
- /Ci pp)dpi is also equal to a constanP(secrecy rate outagds lower
(h) ' oo ) bounded by a fixed value 0, 1]. Thus, we conclude that
< K L[(m-— k:)!]’“fl/ 2R o b whenk > min{m,n}, the secret DMT reduces to the single
’ Ci point (0, 0).
= K LIm—k)"T(m -2k + k4 1,C) (25)
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