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Abstract—We study pricing games in single-layer relay net-
works where the source routes traffic selfishly according to
the strategic bids made by relays. Each relay’s bid includes a
charging function and a proposed traffic share. Relays aim to
maximize their individual profit from forwarding traffic. We
show that the socially optimal traffic allocation can always be
induced by an equilibrium where no relay can increase its profit
by unilaterally changing its bids. Inefficient equilibria arise due
to the monopolistic pricing power of a superior relay. This lead to
a finite price of anarchy if marginal cost functions are concave,
and an unbounded price of anarchy when the marginal cost
functions are convex.

I. I NTRODUCTION

It has been widely recognized that cooperation in networks
formed by autonomous and selfish nodes cannot be achieved
unless sufficient incentives are provided to the nodes. Such
incentives normally take the form of payments or rewards to
the nodes if they help forward other nodes’ traffic [1]–[4]. A
node is usually willing to participate in routing only if it can
charge more than the cost of servicing the transit traffic. While
a selfish node always prices its service with the ultimate aim
of maximizing its profit, it has to do so strategically since the
customers it courts may potentially buy services from other
nodes. Thus, there exists a trade-off in each node’s pricing
decision. That is, higher charges potentially yield larger profit
margins but risk losing market share to its competitors.

In this work, we study games that arise from the selfish and
strategic pricing behavior of relay nodes in single-layer relay
networks with one source and one destination. This type of
games will be referred to asoligopolies. A node is selfish in the
sense that maximizing its own profit is its sole objective. Being
strategic means that a node is able to optimally design its
bids based on the its competitors’ strategies and its customer’s
response.

In an oligopoly pricing game, the source needs to forward
its traffic to a set of relays, who in turn send the traffic to
the destination. As a service provider to the source, each
relay announces (1) a charging function which specifies the
payments it demands from the source depending on the amount
of traffic allocated by the source and (2) a proposed traffic
share which helps the source decide on a unique traffic

1This research is supported in part by NSF grant CNS-0626882 and AFOSR
grant FA9550-06-1-0135.

allocation in case it is indifferent among multiple (optimal)
allocations.2 Given relays’ bids, the source allocates its total
traffic in a way that minimizes the sum of its own transmission
costs and the payments made to relays. The games considered
here can exist in both wireline and wireless networks, where
communication consumes resources and nodes are often selfish
agents such as ISPs. Despite the simple topology, the oligopoly
games studied in this paper aptly model the local competitions
that may exist in networks with more sophisticated topologies.
In this respect, the oligopoly games serve as building blocks
for games with multiple layers of relays and more general
multi-hop network structure.

Pricing schemes were introduced into network resource al-
location problems first as a means of decomposing a global op-
timization into sub-problems solved by individual agents [5].
In addition to being a facilitating device, pricing serves as
an essential mechanism for inducing social optimum when
users (source nodes) selfishly choose their routes [6]. It is
well known that without appropriate pricing, e.g. marginal cost
pricing, selfish routing inevitably results in loss of efficiency,
which in general can be arbitrarily large [7], [8].

When service providers are also mindful of their own inter-
est, they will use pricing to their own advantage rather than to
heed any social mission. With both users and service providers
behaving selfishly, the network increasingly approximates a
free market, where prices assume a variety of functions and
lead to direct or indirect competition among service providers.
For example, pricing network services according to their
quality helps to match each type of service with the customers
that value it the most [9], [10]. By modelling the interaction
between the service provider and the users as a Stackelberg
game, [11] shows that when the service provider always adopts
the profit-maximizing price, its revenue per unit bandwidth
and the net utility of each user both improve with the number
of users. When multiple service providers are present in a
network, price competition inevitably ensues [12]–[14]. It is
demonstrated in [12], [13] that cooperation in pricing is in the
best interest of service providers who jointly serve the same
customers. The consequence of non-cooperation is analyzed
in [14], which shows that price competition in parallel-serial
networks can cause arbitrarily large efficiency loss.

2The necessity of the second part is explained in detail later.
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A distinctive feature of the games studied in this work is
that the bid from each relay to the source includes a (possibly
nonlinear) charging function, which specifies the payment
contingent on the amount of service provided. Previous work
on pricing games almost exclusively assume a constant unit
price (linear charging function) from every service provider,
which is reasonable if the users being charged arenon-
atomic [6], [7], [14], [15], i.e., each user has infinitesimal
traffic. Our work is among the relative few that investigate
the behavior ofatomic users [8] and the relays servicing
them. Since the user now has non-negligible traffic that can
be arbitrarily split and sent to multiple relays, it is necessary
to consider the use of nonlinear charging functions to specify
service fees. It turns out that the generalization from constant
unit prices to nonlinear charging functions allows for a much
richer set of possibilities in pricing games. Even in economics
literature, the issue of nonlinear pricing is relatively new and
proves to be quite challenging [16].

We show that an oligopoly pricing game always has Nash
equilibria where no relay can increase its profit by unilaterally
changing its bids. The traffic allocation at an equilibrium,
however, may or may not be socially optimal. We show that
the game always has efficient equilibria. In other words, the
price of stability, defined as the ratio of theminimumcost
at an equilibrium to the cost at the social optimum, is equal
to one. Typically, inefficient equilibria also exist and they are
always monopolistic, i.e., a dominant relay carries all the flow
from the source. The ratio of themaximumequilibrium cost
to the cost at the optimum, or theprice of anarchy, is upper
bounded by the number of relays if marginal cost functions are
concave. In this case, the worst inefficient equilibria arise from
symmetric oligopolies with linear marginal cost functions.
When marginal cost functions are convex, however, the price
of anarchy can be arbitrarily large.

II. N ETWORK MODEL AND PROBLEM FORMULATION

A. Network Traffic and Multi-hop Routing

We consider a relay network represented by a directed graph
G = (N , E) where the node setN consists of onesources,
onedestinationw, and a single layer of parallelrelaysI which
can be used to forward traffic froms to w. A typical topology
is illustrated in Figure 1. Here,N relays each have a direct link
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Fig. 1. Oligopoly with N relays.

from s and a direct link tow. We will explain other notations in
Figure 1 shortly. To make the problem interesting, we assume
that there is no direct link betweens andw and there are at
least two relays. The sources needs to send traffic of a fixed
rateRs, which is to be allocated to the relays. Pricing games
arising from such topologies will be referred to asoligopolies.

Denote by fi the rate of flow sent through relayi. It
is implicitly assumed throughout the paper thatfi ≥ 0. A
traffic allocation vectorf , (fi)i∈I is said to befeasibleif∑

i∈I fi = Rs.

B. Link Cost and Charging Functions

Each link (i, j) ∈ E has a strictly increasing and strictly
convex cost functionDij(fij), where fij denotes the flow
rate on link(i, j). Without loss of generality, we assume that
Dij(0) = 0.3 Due to the single-layer topology,fsi = fiw = fi.
The costDij(fij) can, for example, represent the queuing
delay incurred on(i, j) with arrival ratefij , e.g. the average
occupancy functionfij/(cij − fij) of an M/M/1 queue with
service ratecij . As another example, if the links are wireless,
Dij(fij) can measure the transmission power required for
achieving ratefij on the channel fromi to j. For example, if
the link transmission ratefij is determined by the transmission
power Pij as fij = W log(1 + KPij) for some constants
W,K > 0,4 thenPij = 1

K

(
2fij/W − 1

)
, Dij(fij), which is

strictly increasing and convex infij .
For analytical purposes, we further assume thatDij(·) is

continuously differentiable with derivativedij(·). From now
on, we will more often refer to the derivativesdij(·) = D′

ij(·)
as the (marginal) cost functions. By previous assumptions,
dij(·) is positive and strictly increasing. To simplify notation,
we denote the cost function on relayi’s outgoing link byDi(·)
and its marginal cost function bydi(·). Let λi(t) , dsi(t) +
di(t) denote the marginal cost on path(s, i, w). The socially
optimal traffic allocation is the one that minimizes the network
cost

∑
(i,j) Dij(fij). Because link costs are strictly convex, the

socially optimal allocation isuniquelycharacterized by

λi(r∗i ) = min
j∈I

λj(r∗j )

if r∗i > 0. That is, every path froms to w with positive flow
has the minimum marginal cost among all paths. For other-
wise, one can reduce the total cost by shifting an infinitesimal
amount of flow from a path with non-minimum marginal cost
to one with the minimum marginal cost.

We model the sources and relays as selfish agents who
must pay for the costs on their outgoing links. Whiles has to
send all its traffic out, it strives to do this with the minimum
cost. On the other hand, a relay has an incentive to forward
traffic for s only if it is adequately rewarded in the form of
payments. The amount of payment is determined as follows.

Each relayi announces acharging functionPi(·), with
Pi(0) = 0, which specifies the paymentPi(fi) it demands

3SinceDij(0) is the sunk cost on link(i, j), its value is irrelevant to the
strategic choice of the agents participating in the game.

4Assume that with proper time or frequency scheduling, transmission on
different links are non-interfering.
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shoulds forward traffic of ratefi to it. For analytical purposes,
we assume thatPi(t) is continuously differentiable with the
derivative being thepricing functionpi(t). Note that eachPi(·)
provides s a continuumof options, namely the rate-charge
pairs (fi, Pi(fi)). The destinationw does not charge relays
for receiving traffic. BesidesPi(·), each relayi also proposes
to s a traffic shareγi ∈ [0, 1], whose use will be explained in a
moment. After learning(Pi(·), γi)i∈I , s decides on the traffic
allocation and makes payments to the relays accordingly.

C. Pricing Game

The pricing games starts with each relay announcing its
bid. Then, the sources allocates traffic to the relays in a way
that minimizes its total payment. Upon receiving traffic and
payments froms, each relay is required to forward as much
traffic as it receives to the destinationw. The payoff of each
relay in this game is the profit it makes through servicing the
traffic, i.e., the payment froms minus the total cost on its
outgoing link. In this section, we will define the oligopoly
pricing game more formally.

1) Bidding Strategy:For convenience, we henceforth adopt
the equivalent charging model wheres pays Bi(fi) ,
Dsi(fi) + Pi(fi) to i and i pays the link costDsi(fi) in
addition to Di(fi). Later on, we will more often refer to
Bi(·) asi’s charging function. As implied by our assumptions
on Dsi(·) and Pi(·), Bi(·) is continuously differentiable and
Bi(0) = 0. Denote the space of functions with the above
properties byB. For convenience, we will often use the
derivativeβi(t) , Bi(t)′ = dsi(t) + pi(t) to characterize the
charging function.

BesidesBi(·), the bid submitted byi also includes a scalar
γi ∈ [0, 1] which specifiesi’s proposed traffic share. When
s allocates traffic to minimize its total payment, it takes the
relays’ proposals(γi)i∈I into consideration if there is a tie
among multiple optimal allocations. We will specify the tie-
breaking rule in a moment. To summarize, each relayi bids
Qi , (Bi(·), γi) ∈ B × [0, 1].

2) Selfish Traffic Allocation:Upon receiving the relays’
bids, s allocates its traffic in the most cost efficient way. We
use routing variablesφi , fi/Rs, i ∈ I [17] to characterize
the traffic allocation. Clearly, the vector of routing variables
φ = (φi)i∈I is feasible if it is nonnegative and

∑
i∈I φi = 1.

To minimize its total payment to the relays,s always adopts
a routing vectorφ∗ in the set

A , arg min
φ feasible

∑

i∈I
Bi(Rsφi).

Note thatA is determined by(Bi(·))i∈I . It is always non-
empty, since the set of feasibleφ is compact and the charg-
ing functions(Bi(·))i∈I are continuous. For some charging
function profiles(Bi(·)), A has only one element, in which
caseφ∗ is uniquely determined. For others,A has more than
one element, i.e.,s is indifferent among multiple (optimal)
allocations. In such cases, the following tie-breaking rule
specifies which allocations chooses asφ∗.

Tie-Breaking Rule:Let γ̄ be the normalized version ofγ ,
(γi)i∈I , i.e, γ̄i = γi/(

∑
j γj). If all γj = 0, let γ̄i = 1/|I|

for everyi. WheneverA has multiple elements,s chooses the
one closest tōγ. To be more specific, define

A∗ , arg min
φ∈A

‖φ− γ̄‖,

where ‖ · ‖ denotes the Euclidean norm. Notice thatA∗ is
jointly determined by(Bi(·)) and (γi). It is easy to see that
A∗ is non-empty. IfA∗ is a singleton, as typically is the
case, letφ∗ be that only element. Otherwise,s choosesφ∗

to be the allocation inA∗ with the highest rank according
to a predetermined lexicographic order.5 For example,s can
index the relays by1, 2, · · · , |I|. An allocationφ is said to
be lexicographically higher thanφ′ if on the first coordinate
j whereφ andφ′ differ, φj > φ′j .

With the above tie-breaking rule, we can write the traffic
allocationφ∗ as afunctionΦ of the relays’ bids, i.e.,

φ∗ = (φ∗i )i∈I = Φ((Bi(·), γi)i∈I).

The traffic sent froms to i thus isfi = Rsφ
∗
i .

Remark:The tie-breaking rule is intended to yield a de-
finitive traffic allocation even whens is indifferent among
multiple (optimal) allocations. The total payment bys remains
the same irrespective of how the tie is resolved.

3) Payoff Function:The objective of selfish relays in for-
warding traffic is to maximize their individual profits. Thus,
we define the payoff function of a relay to be its profit as
a function of its own as well as other relays’ bids. LetQ−i

denote the bids made by all relays other thani. The payoff
function of relayi is given by

Γi(Qi, Q−i) , Bi(fi)− [Dsi(fi) + Di(fi)] (1)

= Bi(Rsφ
∗
i )− [Dsi(Rsφ

∗
i ) + Di(Rsφ

∗
i )] . (2)

On the RHS of (1),fi is the traffic going through links(s, i),
(i, w) induced by the bidsQi, Q−i. Thus, the first termBi(fi)
represents the revenuei earns froms.6 The summation in the
bracket is the total cost incurred toi for forwarding trafficfi.
In (2), fi is expressed in terms ofRs andφ∗i . Recall that the
routing decision bys is determined as

φ∗ = Φ((Bj(·), γj)j∈I) = Φ(Qi, Q−i).

Hence,φ∗ is subject to change asQi is varied.
4) Static Pricing Game – Formal Definition:We now

formally define the (static) oligopoly pricing game (PG) as
having the following components:
• The set of playersI = {relays inG} = N\{s, w}.
• Strategy of playeri: Qi = (Bi(·), γi) ∈ B × [0, 1].
• Payoff to playeri: the profit made by servicing trafficfi:

Γi(Qi, Q−i) = Bi(fi)− [Dsi(fi) + Di (fi)]

5The lexicographic rule is intended to resolve any remaining ambiguity
after utilizing the proposed shares(γi)i∈I . Its introduction is mainly for the
purpose of being absolutely rigorous. It is never invoked at any equilibrium
to be studied in the rest of the work.

6Recall thati receives paymentBi(fi) from s and paysDsi(fi) by itself.
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=
∫ fi

0

βi(r)− λi(r) dr,

where(fi)i∈I is the selfish traffic allocation induced by
{Qi, i ∈ I}.

An oligopoly PG is fully characterized by(Rs, (λi(·))i∈I).
Next, we will study the outcome of such games. In particular,
we investigate whether a PG has an equilibrium, where no
relay can increase its profit by unilaterally changing its bid,
and when an equilibrium exists, how the resulting selfish traffic
allocation compares to the socially optimal one.

D. Best Response and Equilibrium

Next, we formally define equilibria of an oligopoly pricing
game. We start with the definition of the best response.

Definition 1: The best response set ofi given Q−i is

Bi(Q−i) = arg max
Qi∈B×[0,1]

Γi(Qi, Q−i).

Definition 2: A bid profile (Qi)i∈I constitutes a (pure
strategy) Nash equilibrium if for anyi ∈ I, Qi ∈ Bi(Q−i).

Definition 3: An equilibrium (Qi)i∈I is efficient if it in-
duces the socially optimal traffic allocation. In this case,
(Qi)i∈I is said to induce the social optimum.

In the next section, we will prove the existence of equilibria
and analyze their efficiency in oligopoly pricing games.

III. E QUILIBRIUM ANALYSIS

A. Best Response Conditions and Existence of Equilibria

We first present the necessary and sufficient conditions for
Qi to be relayi’s best response toQ−i. Define

Bî(t) , minP
j∈I\{i} fj=t

∑

j∈I\{i}
Bj(fj)

= minP
j∈I\{i} fj=t

∑

j∈I\{i}

∫ fj

0

βj(r) dr., (3)

which gives the minimum payments has to make for trans-
mitting traffic of ratet through relaysother thani. It is easy
to show thatBî(t) is continuous and increasing. Its derivative,
denoted byβî(t), is in general piecewise continuous. For
t ∈ (0, Rs), let the left and right limits ofβî(·) at t be denoted
by βî(t)

− andβî(t)
+.7

Lemma 1:For any i ∈ I and anyQ−i, Qi ∈ Bi(Q−i) if
and only if

(i)
Bi(t) ≥ Bî(Rs)−Bî(Rs − t) (4)

for all t ∈ [0, Rs];
(ii)

Bi(f∗i ) = Bî(Rs)−Bî(Rs − f∗i ), (5)

7It is understood thatβî(0) has only a right limit and thatβî(Rs) has only
a left limit.

wheref∗i maximizes

Γ̄i(fi;Q−i) , Bî(Rs)−Bî(Rs − fi)−Dsi(fi)−Di (fi)

over fi ∈ [0, Rs];
(iii) (γi, (γj)j∈I\{i}) induces the tie-breaking rule ofs to

generateφ∗i = f∗i /Rs.

Limited by the space, we provide only some intuitive
explanations for the lemma. By definition (3),Bî(r) represents
the minimum cost thats can achieve by forwarding traffic of
rate r to relays other thani. It will become evident in the
next proof that fromi’s viewpoint, the competition from all
otherj ∈ I can be aggregated into a virtual competitorî using
charging functionBî(·). Sinces needs to payBî(Rs) when
routing exclusively tôi, its payment would be no more than
Bî(Rs) should s optimally route to bothi and î. Thus, the
maximum revenuei could expect to have when forwardingfi

is Bî(Rs)−Bî(Rs−fi). It is then easy to see thatΓ̄i(fi; Q−i)
representsi’s maximum profit by winningfi from s, andf∗i
is i’s optimal “market share”. Charging functionBi(·) and
proposed shareγi which satisfy the conditions in Lemma 1
induces to allocate the ideal “market share”f∗i to i and givei
the maximum profit. This is because (5) implies that allocating
f∗i to i and the rest tôi yields the same cost tos as allocating
all the traffic tôi, while conditions (4) and (5) combined imply
that no other allocation costs strictly less than the above two
schemes. Therefore, optimal allocations ofs include, at least,
(f∗i , Rs − f∗i ) and (0, Rs), where the two components are
the traffic allocated toi and î, respectively. Condition (iii) is
necessary and sufficient to ensure thats opts for the former
allocation. Moreover, sinces ends up payingBî(Rs), i has
maximally realized its profit potential.

Note that whileBi(·) satisfying (i) and (ii) always exists
(e.g. let Bi(t) = Bî(Rs) − Bî(Rs − t) for t ∈ [0, Rs]), γi

satisfying (iii) may or may not exist. Thus,Bi(Q−i) may be
empty for someQ−i. Nevertheless, we will show that (pure
strategy) Nash equilibria always exist.

To better understand and visualize conditions (i) and (ii) in
Lemma 1, we rewrite them succinctly in an integral form:

∫ t

0

βi(r) dr

{
≥ ∫ t

0
βî(Rs − r) dr, 0 ≤ t ≤ Rs

=
∫ t

0
βî(Rs − r) dr, t = f∗i ,

(6)

wheref∗i maximizes

Γ̄i(fi, Q−i) =
∫ fi

0

βî(Rs − r)− λi(r) dr, (7)

over fi ∈ [0, Rs]. To gain an intuitive idea of the conditions,
supposeβî(Rs−r) andλi(r) are given by the dashed and solid
curves in Figure 2. A typical best responseβi(r) is shown as
the dotted curve.

B. Efficient Equilibria

We now analyze the allocation established by the oligopoly
PG. Recall that given(βi(·))i∈I , s adopts the most cost
efficient allocation(f∗i )i∈I , which satisfies

βi(f∗i ) = min
j∈I

βj(f∗j ), (8)
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wheneverf∗i > 0. Should there be multiple optimal allo-
cations, s invokes the tie-breaking rule based on(γi)i∈I .
Whether(f∗i ) is equal to the optimal allocation(r∗i ) depends
on how (βi(·), γi) are chosen by individual relays.

Theorem 1:The socially optimal traffic allocation of an
oligopoly can always be induced by an equilibrium. That is,
the price of stability of an oligopoly pricing game is one.

Proof: We prove the theorem by constructing an equilibrium
that induces the socially optimal allocation(r∗i ). Define
λ∗ , minj∈I λj(r∗j ). Let βi(r) ≡ λ∗ and γi = r∗i /Rs for
all i. Then, βi(r) = βî(Rs − r) = λ∗ and condition (6) is
satisfied for alli with f∗i = r∗i . Since all the relays adopt
the same constant pricing function,s is indifferent among all
feasible allocations. However,(γi)i∈I inducess to allocate
r∗i , which is equal toi’s optimal traffic f∗i , to each relayi.
Therefore,(βi(·), γi) constitutes an equilibrium which results
in the allocation(r∗i ). ¤

Because the socially optimal allocation always exists, we
can conclude that therealwaysexists anefficientequilibrium
for any oligopoly pricing game.

Although we used constant(βi(·)) (or linear charging
functions8 (Bi(·))) to construct an efficient equilibrium in the
proof of Theorem 1, efficient equilibria can be established by
nonlinear charging functions as well. For instance, Figure 3
depicts an equilibrium in a duopoly PG where the two relays
adoptβ1(·), β2(·) of a more general shape withγ1 = r∗1/Rs

and γ2 = (Rs − r∗1)/Rs. Notice that in a duopoly,β1̂(t) =
β2(t) andβ2̂(t) = β1(t). Thus,r∗1 is the optimal market share
to 1 while Rs − r∗1 is optimal to2. Although s is indifferent
among all feasible allocations, it follows the proposed shares
(γ1, γ2) so that the two relays each get its optimal share.

To derive a simple criterion for checking the efficiency of
an equilibrium, we need to make the following distinction. A
traffic allocation(fi)i∈I is monopolisticif fm = Rs for some
relaym andfj = 0 for all j 6= m. In this case,m is called the
dominantrelay. An equilibrium ismonopolisticif it induces a
monopolistic allocation. An allocation is said to becompetitive
if there are at least two relaysi, j such thatfi > 0, fj > 0.
Suchi and j are calledcompetitiverelays. An equilibrium is
competitiveif it induces a competitive allocation.

8Note thatPi(·) = Bi(·) − Dsi(·) generally is nonlinear whenBi(·) is
linear.
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Fig. 3. General (focal) equilibrium in duopoly.

Theorem 2:If an oligopoly equilibrium is competitive, it
must be efficient.

The proof, which is skipped here, makes use of a fundamen-
tal characteristic of a competitive equilibrium. That is, all the
competitive relays set their equilibrium pricesβm(f∗m) equal
to their marginal costsλm(f∗m); moreover their marginal costs
are equal to each other. This is reminiscent of the classic
Bertrand oligopoly competition. The Bertrand competition
involves multiple producers with constant and identical unit
costs who each declare a unit price to the market represented
by a demand function. It is found that the only equilibrium of
the Bertrand competition is one where all producers set their
price equal to the cost. The equilibria of our oligopoly game
have the same feature in terms of the prices and marginal costs
evaluated at the equilibrium allocation point.

C. Inefficient Equilibria

Theorem 2 does not rule out the possibility of inefficient
equilibria. In fact, an equilibrium may be inefficient if it is
monopolistic. Essentially, a monopolistic equilibrium takes
hold when a relay bids others out of competition to acquire
the entire traffic. We call such behavior of the dominant relay
manipulative pricing. The capability of manipulative pricing,
however, stems from the relatively superior cost function of
the dominant relay, as formalized in the next theorem. We skip
the proof due to space limit.

Theorem 3:If an oligopoly equilibrium is monopolistic
with dominant relaym, we must have

∫ Rs

0

λm(r) dr ≤
∫ Rs

0

λj(r) dr

for any other relayj.

The next conclusion easily follows from Theorem 3.

Corollary 1: If the socially optimal allocation of an
oligopoly is monopolistic, then every equilibrium of the
oligopoly is monopolistic and efficient.

It is shown next that there always exists a monopolistic
equilibrium. Thus, we have the following conclusion.

Corollary 2: If the socially optimal routing of an oligopoly
is competitive, then there exists an inefficient (monopolistic)
equilibrium.
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Proof: We need only to show that there exists a
monopolistic equilibrium in such an oligopoly. Let all
βi(·) be the same strictly decreasing functionβ(·) such
that

∫ t

0
β(Rs − r)dr ≤ ∫ t

0
λi(r)dr for all t ∈ [0, Rs)

and i ∈ I but
∫ Rs

0
β(Rs − r)dr =

∫ Rs

0
λm(r)dr where

m ∈ arg mini

∫ Rs

0
λi(r)dr. Also let γm = 1 and γi = 0

for all relays but m. Since β(·) is strictly decreasing,
βî(r) = β(r) for all i. By construction,f∗i = 0 is an
ideal flow to i 6= m (cf. (7)) and (6) holds withf∗i = 0
becauseβi(·) = βî(·) = β(·) is strictly decreasing. Fromm’s
perspective,βm(·) = β(·) and f∗m = Rs jointly satisfy m’s
best response conditions (6)-(7). The proposed shares(γi)
guarantee each relay getting its proposed share even ifs is
indifferent. So the monopolistic equilibrium is established.¤

D. Price of Anarchy

The price of anarchy, as a measure of loss of social
efficiency due to selfish behavior of individual agents, was
studied in the literature on selfish routing [7], [8]. In this work,
the price of anarchy of an oligopoly PG is defined as follows.

Definition 4: The price of anarchyρ(Rs, (λi(·))i∈I) of an
oligopoly PG (Rs, (λi(·))i∈I) is the ratio of the maximum
cost at an equilibrium to the socially optimal cost, i.e.,

ρ(Rs, (λi(·))i∈I) ,
max(fi)∈FE

∑
i∈I

∫ fi

0
λi(r) dr

min(fi)∈F
∑

i∈I
∫ fi

0
λi(r) dr

,

whereFE is the collection of all the allocations that can be
induced by an equilibrium of(Rs, (λi(·))i∈I) andF is the
set of all feasible allocations.

The price of anarchy of an oligopoly PG is upper bounded
by |I|, the number of relays, when the marginal cost functions
(λi(·)) are chosen from the class of nonnegative, strictly in-
creasing andconcavefunctions. However, the price of anarchy
can be arbitrarily large when(λi(·)) are chosen from the class
of nonnegative, strictly increasing andconvexfunctions.

Theorem 4:If the cost derivatives(λi(·)) are nonnegative,
strictly increasing and concave,ρ(Rs, (λi(·))) of an oligopoly
pricing game is upper bounded by the number of relays|I|.
The upper bound is achieved when the marginal costs are
identical and linear.

Unlike the selfish routing games studied in [7], [8], where
the price of anarchy is independent of the topology [15],
Theorem 4 indicates thatρ(Rs, (λi(·))i∈I) of an oligopoly
PG explicitly depends on topology through|I|. It implies
that the more intensive (larger|I|) the competition is, the
more inefficient the market becomes if it is monopolized. The
situation is even worse if(λi(·)) are convex .

Theorem 5:For a fixed number|I| ≥ 2 of relays and for
any M > 0, there exists an oligopoly(Rs, (λi(·))i∈I) with
convex(λi(·)) such thatρ(Rs, (λi(·))i∈I) ≥ M .

IV. CONCLUSION

This work presented a game-theoretic analysis of price
competition in unicast networks with a single layer of par-
allel relays. The introduction of possibly nonlinear charging
functions to the game enabled us to develop a much richer set
of results than if we allowed only constant unit prices. While
the socially optimal traffic allocation can always be induced
by an equilibrium, the game may have inefficient equilibria as
well. Furthermore, the existence of competition turns out to be
a two-sided coin. On the one side, any competitive equilibrium
must be efficient. On the other side, the conclusion that the
price of anarchy of an oligopoly where relays have concave
marginal costs is equal to the number of relays seems to
suggest that more intense competition only makes inefficient
(monopolistic) equilibria even worse. Efficiency loss can be
still worse when marginal cost functions are convex. We found
that the price of anarchy in this case can be arbitrarily large.
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