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Abstract—We study pricing games in single-layer relay net- allocation in case it is indifferent among multiple (optimal)
works where the source routes traffic selfishly according to allocations’ Given relays’ bids, the source allocates its total
the strategic bids made by relays. Each relay's bid includes a {raffic in 4 way that minimizes the sum of its own transmission
charging function and a proposed traffic share. Relays aim to t d th t de t | Th idered
maximize their individual profit from forwarding traffic. We costs an _e p_aymen S _ma. etore aYS- € games consiaere
show that the socially optimal traffic allocation can always be here can exist in both wireline and wireless networks, where
induced by an equilibrium where no relay can increase its profit communication consumes resources and nodes are often selfish
by unilaterally changing its bids. Inefficient equilibria arise due  agents such as ISPs. Despite the simple topology, the oligopoly
to the monopolistic pricing power of a superior relay. This lead to - o3 yag studied in this paper aptly model the local competitions
a finite price of anarchy if marginal cost functions are concave, that ist i t ks with histicated t loai
and an unbounded price of anarchy when the marginal cost a may existin ne W9r S with more sophis |cae. on ogies.
functions are convex. In this respect, the oligopoly games serve as building blocks

for games with multiple layers of relays and more general

I. INTRODUCTION multi-hop network structure.

It has been widely recognized that cooperation in networksPricing schemes were introduced into network resource al-
formed by autonomous and selfish nodes cannot be achielf§gftion problems first as a means of decomposing a global op-
unless sufficient incentives are provided to the nodes. SU¥Rization into sub-problems solved by individual agents [5].
incentives normally take the form of payments or rewards {8 @ddition to being a facilitating device, pricing serves as
the nodes if they help forward other nodes’ traffic [1][4]. pan essential mechanism fpr inducing sougl optimum when
node is usually willing to participate in routing only if it cantSers (source nodes) selfishly choose their routes [6]. It is
charge more than the cost of servicing the transit traffic. Whifée!l known that without appropriate pricing, e.g. marginal cost
a selfish node always prices its service with the ultimate aificing. selfish routing inevitably results in loss of efficiency,
of maximizing its profit, it has to do so strategically since th&hich in general can be arbitrarily large [7], [8]. _
customers it courts may potentially buy services from other When service providers are also mindful of their own inter-
nodes. Thus, there exists a trade-off in each node’s pricifigh they will use pricing to their own advantage rather than to
decision. That is, higher charges potentially yield larger profi€€d any social mission. With both users and service providers
margins but risk losing market share to its competitors. ~ P€having selfishly, the network increasingly approximates a

In this work, we study games that arise from the selfish afi¢€ market, where prices assume a variety of functions and
strategic pricing behavior of relay nodes in single-layer reld§@d to direct or indirect competition among service providers.
networks with one source and one destination. This type 6PF &xample, pricing network services according to their
games will be referred to agigopolies A node is selfish in the duality helps to match each type of service with the customers
sense that maximizing its own profit is its sole objective. Beirf§@t value it the most [9], [10]. By modelling the interaction
strategic means that a node is able to optimally design RRetween the service provider and the users as a Stackelberg
bids based on the its competitors’ strategies and its custom&l®ne, [11] shows that when the service provider always adopts
response. the profit-maximizing price, its revenue per unit bandwidth

In an oligopoly pricing game, the source needs to forwa@d the net utility of gach user both improve with the num_ber
its traffic to a set of relays, who in turn send the traffic t§7 Users. When multiple service providers are present in a
the destination. As a service provider to the source, ea@RtWOrk, price competition inevitably ensues [12]-[14]. It is
relay announces (1) a charging function which specifies tf§monstrated in [12], [13] that cooperation in pricing is in the
payments it demands from the source depending on the am t interest of service providers who jointly serve the same

of traffic allocated by the source and (2) a proposed trafffustomers. The consequence of non-cooperation is analyzed
. [14], which shows that price competition in parallel-serial

share which helps the source decide on a unique tra P -
networks can cause arbitrarily large efficiency loss.

1This research is supported in part by NSF grant CNS-0626882 and AFOSR
grant FA9550-06-1-0135. 2The necessity of the second part is explained in detail later.
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A distinctive feature of the games studied in this work ifrom s and a direct link tav. We will explain other notations in
that the bid from each relay to the source includes a (possilitigure 1 shortly. To make the problem interesting, we assume
nonlinear) charging function which specifies the paymentthat there is no direct link betweenand w and there are at
contingent on the amount of service provided. Previous woldast two relays. The soureeneeds to send traffic of a fixed
on pricing games almost exclusively assume a constant umite R, which is to be allocated to the relays. Pricing games
price (linear charging function) from every service providegrising from such topologies will be referred to@gyopolies
which is reasonable if the users being charged moe- Denote by f; the rate of flow sent through relay It
atomic [6], [7], [14], [15], i.e., each user has infinitesimalis implicitly assumed throughout the paper that> 0. A
traffic. Our work is among the relative few that investigat&raffic allocation vectorf £ (f;);cz is said to befeasibleif
the behavior ofatomic users [8] and the relays servicing) , ; fi = R..
them. Smcg the. user now has nop-negllglble .trgfflc that S |ink Cost and Charging Functions
be arbitrarily split and sent to multiple relays, it is necessary ] . . . .
to consider the use of nonlinear charging functions to specifyEach link (i, j) € £ has a strictly increasing and strictly
service fees. It turns out that the generalization from const&ifvex cost functionD;;(f;), where fi; denotes the flow
unit prices to nonlinear charging functions allows for a mucite on link (i, j). Without loss of generality, we assume that
richer set of possibilities in pricing games. Even in economidgij (0) = 0.° Due to the single-layer topology.; = fiw = fi-
literature, the issue of nonlinear pricing is relatively new ann® costDi;(fi;) can, for example, represent the queuing
proves to be quite challenging [16]. delay incurred or(z’,j) with arrival rate f;;, e.g. the average

We show that an oligopoly pricing game always has Nadfcupancy functionf;;/(ci; — fi;) of an M/M/1 queue with
equilibria where no relay can increase its profit by unilateralfrVice rate:;;. As another example, if the links are wireless,
changing its bids. The traffic allocation at an equilibriumPii(fi;) can measure the transmission power required for
however, may or may not be socially optimal. We show th&Chieving ratef;; on the channel fromi to j. For example, if
the game always has efficient equilibria. In other words, ifie link transmission ratg;; is determined by the transmission
price of stability defined as the ratio of theninimumcost POWer P as fi; = Wlog(l + KP;) for some constants
at an equilibrium to the cost at the social optimum, is equil’> £ > 0,* ther‘Pij =K (2m/v'v —1) £ Dy;(fij), which is
to one. Typically, inefficient equilibria also exist and they arglrictly increasing and convex iff;. _
always monopolistic, i.e., a dominant relay carries all the flow FOr analytical purposes, we further assume thay(-) is
from the source. The ratio of th@aximumequilibrium cost Ccontinuously differentiable with derivativé;;(-). From now
to the cost at the optimum, or thEice of anarchy is upper ©On: We Will more often refer to the derivatives;(-) = Dj;(-)
bounded by the number of relays if marginal cost functions af§ the (marginal) cost functions. By previous assumptions,

concave. In this case, the worst inefficient equilibria arise froffis (*) S positive and strictly increasing. To simplify notation,

symmetric oligopolies with linear marginal cost functionsVe denote the cost function on reldy outgoing link byD; (-)

. . . N
When marginal cost functions are convex, however, the prig8d its marginal cost function by;(-). Let Ai(t) = dsi(t) +

of anarchy can be arbitrarily large. d;(t) denote the marginal cost on path i, w). The socially
optimaltraffic allocation is the one that minimizes the network
Il. NETWORK MODEL AND PROBLEM FORMULATION costy_; ;) Di;(fi;)- Because link costs are strictly convex, the

socially optimal allocation isiniquelycharacterized by

M) = min A7)

A. Network Traffic and Multi-hop Routing

We consider a relay network represented by a directed graph
g = (W, ) where the node seV consists of onesources, r* > 0. That is, every path from to w with positive flow
onedestinationw, and a single layer of paralletlaysZ which  aq the minimum marginal cost among all paths. For other-
can be used to forward traffic fromto w. A typical topology \yise one can reduce the total cost by shifting an infinitesimal
is illustrated in Figure 1. Herey relays each have a direct link 5,5t of flow from a path with non-minimum marginal cost
to one with the minimum marginal cost.

We model the source and relays as selfish agents who
must pay for the costs on their outgoing links. Whildas to
send all its traffic out, it strives to do this with the minimum
cost. On the other hand, a relay has an incentive to forward
traffic for s only if it is adequately rewarded in the form of
payments. The amount of payment is determined as follows.

Each relayi announces aharging function P;(-), with
P;(0) = 0, which specifies the paymerf;(f;) it demands

3Since D;;(0) is the sunk cost on links, 5), its value is irrelevant to the
strategic choice of the agents participating in the game.
Fig. 1. Oligopoly with N relays. 4Assume that with proper time or frequency scheduling, transmission on
different links are non-interfering.
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shoulds forward traffic of ratef; to it. For analytical purposes, Tie-Breaking RuleLet 4 be the normalized version ef £
we assume thab(¢) is continuously differentiable with the (v;)icz, i.e, % = v /(32;v;)- If all 5 = 0, let 3, = 1/|Z|
derivative being thericing functionp;(¢). Note that eact?;(-)  for everyi. WheneverA has multiple elements, chooses the
provides s a continuumof options, namely the rate-chargeone closest tay. To be more specific, define

pairs (fi, P;(f:)). The destinationw does not charge relays A _

for receiving traffic. Beside®;(-), each relay; also proposes AT = arq%éim 1o = I,

to s a traffic sharey; € [0, 1], whose use will be explained in a . ) )
moment. After learning P;(-), vi)icz, s decides on the traffic where || - | denotes the Euclidean norm. Notice thdt is

allocation and makes payments to the relays accordingly. 10Nty determined by(B;(-)) and (). It is easy to see that
A* is non-empty. If A* is a singleton, as typically is the

case, let¢* be that only element. Otherwise,choosesp™

to be the allocation in4* with the highest rank according
The pricing games starts with each relay announcing s a predetermined lexicographic ordeFor example,s can

bid. Then, the source allocates traffic to the relays in a wayindex the relays byl,2,-- - ,|Z|. An allocation¢ is said to

that minimizes its total payment. Upon receiving traffic ange |exicographically higher thag’ if on the first coordinate
payments froms, each relay is required to forward as mucly whereg and¢’ differ, 0; > ¢
traffic as it receives to the destinatian The payoff of each  jth the above tie-breaking rule, we can write the traffic

relay in this game is the profit it makes through servicing thglocation¢* as afunction® of the relays’ bids, i.e.,
traffic, i.e., the payment frons minus the total cost on its

C. Pricing Game

outgoing link. In this section, we will define the oligopoly ¢" = (¢])iez = ©((Bi("), Vi)iez)-
pricing game more formally. The traffic sent froms to i thus is f; = R.¢?.
1) Bidding Strategy:For convenience, we henceforth adopt
the equivalent charging model where pays B;(f;) £ Remark: The tie-breaking rule is intended to yield a de-

Dyi(fi) + P,(f;) to i and i pays the link costDy;(f;) in finitive traffic allocation even wher is indifferent among
addition to D;(f;). Later on, we will more often refer to Multiple (optimal) allocations. The total payment byemains
B,(-) asi’s charging function. As implied by our assumptionghe same irrespective of how the tie is resolved.

on D,;(-) and P;(-), B;(-) is continuously differentiable and 3) Payoff Function:The objective of selfish relays in for-
B;(0) = 0. Denote the space of functions with the abov@arding traffic is to maximize their individual profits. Thus,
properties byB. For convenience, we will often use theve define the payoff function of a relay to be its profit as
derivative 3;(t) 2 B;(t) = dy(t) + p;(t) to characterize the @ function of its own as well as other relays’ bids. L@t ;

charging function. denote the bids made by all relays other thafhe payoff
BesidesB; (), the bid submitted by also includes a scalar function of relayi is given by
~i € [0,1] which specifiesi’s proposed traffic share. When Ti(Qi, Qi) 2 Bi(fi) = [Des(fs) + Di(f:)] 1)

s allocates traffic to minimize its total payment, it takes the - x «

relays’ proposalg~;);cz into consideration if there is a tie Bi(Rs¢?) = [Dsi(BegD) + DilRadi)] - (2)

among multiple optimal allocations. We will specify the tieOn the RHS of (1) f; is the traffic going through linkss, i),

breaking rule in a moment. To summarize, each reldjds (i, w) induced by the bid§);, @_;. Thus, the first ternB; (f;)

Qi £ (Bi(-),v:) € Bx[0,1]. represents the revenudesarns froms.® The summation in the
2) Selfish Traffic Allocation:Upon receiving the relays’ bracket is the total cost incurred tdor forwarding traffic f;.

bids, s allocates its traffic in the most cost efficient way. Wén (2), f; is expressed in terms dt; and ¢;. Recall that the

use routing variables; 2 f;/R,, i € Z [17] to characterize routing decision bys is determined as

the traffic allocation. Clearly, the vector of routing variables * _ N Ay — 4 4

@ = (¢:)icz is feasible if it is nonnegative an¥,_; ¢; = 1. ¢ = 2((B;():7)ser) = B(Qi, Qi)-
To minimize its total payment to the relaysalways adopts Hence,¢" is subject to change ag; is varied.

a routing vectorgp® in the set 4) Static Pricing Game — Formal DefinitionWe now
formally define the (static) oligopoly pricing game (PG) as
A% arg minz B;(Rs¢;). having the following components:

¢ feasibleiez

o The set of playerg = {relays inG} = N\{s,w}.
Note thatA is determined by(B;(-))icz. It is always non- ¢ Strategy of pIay_evz: Qi = .(BZ-(-),%) € B x [Q, 1]. .
empty, since the set of feasibe is compact and the charg- * Payoff to playeri: the profit made by servicing traffig;:
ing fl_mctlons_(Bi(-))ieI are continuous. For some_chargmg Ti(Qi,Q—:) = Bi(fi) = [Dsil(f:) + Di (f:)]
function profiles(B;(+)), A has only one element, in which
case¢” is uniquely determined. For otherd, has more than  ®The lexicographic rule is intended to resolve any remaining ambiguity
one element, i.e.s is indifferent among multiple (optimal) after utilizing the proposed sharés;);cz. Its introduction is mainly for the

. T . K R urpose of being absolutely rigorous. It is never invoked at any equilibrium
allocations. In such cases, the following tie-breaking rulg pe studied in the rest of the work.
specifies which allocation chooses ag*. SRecall thati receives paymenB; (f;) from s and paysD,;(f;) by itself.
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fi _
— Bi(r) — \i(r) dr where f; maximizes
A < e solteh o allocation mduced by 10 @) % BilRe) = Bi(Ra = fi) = Dulf) = Di ()
where(f;);ez Is the selfish traffic allocation induce Yover fie [0, R.:

{Q,M €I} ) ) (iii) (i, (v4)je\i3) induces the tie-breaking rule afto
An ohgopoly PG is fully characterized byR, ()\1;(~))Z-€I'). generatep = f7/R,.
Next, we will study the outcome of such games. In particular,
we investigate whether a PG has an equilibrium, where nolimited by the space, we provide only some intuitive
relay can increase its profit by unilaterally changing its bigxplanations for the lemma. By definition (3J;(r) represents
and when an equilibrium exists, how the resulting selfish traffibe minimum cost that can achieve by forwarding traffic of

allocation compares to the socially optimal one. rate r to relays other thar. It will become evident in the
o next proof that fromi's viewpoint, the competition from all
D. Best Response and Equilibrium other;j € Z can be aggregated into a virtual competitaising

Next, we formally define equilibria of an oligopoly pricingcharging functionB;(-). Sinces needs to payB;(R,) when
game. We start with the definition of the best response. ~ routing exclusively toi, its payment would be no more than
o . ) B;(R,) shoulds optimally route to bothi and:. Thus, the
Definition 1: The best response set dfjiven Q_; is maximum revenué could expect to have when forwardirfg
. N i _ is B;(R,)—B;(R,— f;). Itis then easy to see thB(f;; Q—;)
Bi(Q-i) = Q%Iégglf;ﬁ] Li(Qi, Q). represents’s maximum profit by winningf; from s, and f;*
o ) ) ) is i's optimal “market share”. Charging functio®;(-) and
Definition 2: A bid profile (Qi)i§1 constitutes a (pure yronased share; which satisfy the conditions in Lemma 1
strategy) Nash equilibrium if for any< 7, Q; € Bi(@-i)-  induces to allocate the ideal “market sharg to i and givei
Definition 3: An equilibrium (Q; );cz is efficientif it in- the maximum profit. '[hi_s is because (5) implies that aIIo_cating
duces the socially optimal traffic allocation. In this casefi [0 and the rest to yields the same cost toas allocating
(Q:)icz is said to induce the social optimum. all the traffic tos, whllt_a conditions _(4) and (5) combined imply
that no other allocation costs strictly less than the above two
In the next section, we will prove the existence of equilibrisgchemes. Therefore, optimal allocationssdhclude, at least,
and analyze their efficiency in oligopoly pricing games. (ff,Rs — f}) and (0, R;), where the two components are
the traffic allocated ta and, respectively. Condition (iii) is
necessary and sufficient to ensure thadpts for the former
A. Best Response Conditions and Existence of Equilibria allocation. Moreover, since ends up payingB;(R;), i has
We first present the necessary and sufficient conditions fgpximally reahz_ed Its profl_t pqtentl_al. . .
Qi to be relayi's best response t@_;. Define Note that while B;(-) satisfying (i) and (ii) always exists
(e.g. letB;(t) = B;(R,) — B;(R, —t) for t € [0, R,]), v

IIl. EQUILIBRIUM ANALYSIS

B;(t) 2 5 min Z B;(f;) satisfying (iii) may or may not exist. Thud3;(Q—;) may be
FET\{i} fa‘:tjez\{i} empty for some@)_;. Nevertheless, we will show that (pure
£ strategy) Nash equilibria always exist.
= p min Z Bj(r) dr., (3) To better understand and visualize conditions (i) and (ii) in
JETNE} f":tjez\{i} 0 Lemma 1, we rewrite them succinctly in an integral form:
which gives the minimum payment has to make for trans- t Y dr > f(j B;(Rs —r) dr, 0<t<R, 6
mitting traffic of ratet through relaysother thani. It is easy Bi(r) drq — L3Ry —7) dr,  t=fr, (6)

to show thatB;(t) is continuous and increasing. Its derivative, . o
denoted byp:(t), is in general piecewise continuous. Fowhere fi maximizes

€ (0, R,), let the left and right limits of3;(-) at¢ be denoted _ fi
by B:(t)~ and B;(t)*+.7 Li(fi, Qi) = ; By(Rs — 1) = Ai(r) dr, (7
Lemma 1:For anyi € 7 and anyQ_;, Q; € B;(Q_;) if over f; € [0, R,]. To gain an intuitive idea of the conditions,
and only if supposed; (Rs—r) and\;(r) are given by the dashed and solid
0] curves in Figure 2. A typical best responsgr) is shown as
Bi(t) > B;(Rs) — B;(Rs — t) (4) the dotted curve.
for all t € [0, R,]; B. Efficient Equilibria
(ii) We now analyze the allocation established by the oligopoly
Bi(ff) = B:(Ry) — B:(Ry — f7), (5) PG. Recall that given(s;(-))icz, s adopts the most cost
! ’ e efficient allocation(f;);cz, which satisfies
. I;]Etlﬁnﬂir:.derstood thas; (0) has only a right limit and thas; (R ) has only ﬁz(fz ) _ mlg /Bl(fj )7 8)
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Fig. 2. Typical best response curve in an oligopoly.

Fig. 3. General (focal) equilibrium in duopoly.

whenever 7 > 0. Should there be multiple optimal allo-
cations, s invokes the tie-breaking rule based @Mi)icz.  Theorem 2:If an oligopoly equilibrium is competitive, it
Whether(f) is equal to the optimal allocatiofr}) depends must be efficient.
on how (8;(-),~:) are chosen by individual relays.
The proof, which is skipped here, makes use of a fundamen-
Theorem 1:The socially optimal traffic allocation of antal characteristic of a competitive equilibrium. That is, all the
oligopoly can always be induced by an equilibrium. That igompetitive relays set their equilibrium pricgs, (f) equal
the price of stability of an oligopoly pricing game is one.  to their marginal costs,, (f;;,); moreover their marginal costs
are equal to each other. This is reminiscent of the classic
'Bertrand oligopoly competition. The Bertrand competition
involves multiple producers with constant and identical unit
costs who each declare a unit price to the market represented
by a demand function. It is found that the only equilibrium of
e T the Bertrand competition is one where all producers set their
the same constant pricing functionjs indifferent among all _ . S )
price equal to the cost. The equilibria of our oligopoly game

feasible allocations. Howevef;y;);cz inducess to allocate . . 4

N N Y . o ~~ have the same feature in terms of the prices and marginal costs
r¥, which is equal toi’s optimal traffic f*, to each relayi. S . -

i ! evaluated at the equilibrium allocation point.

Therefore,(5;(),~:) constitutes an equilibrium which results
in the allocation(r}). O C. Inefficient Equilibria

Theorem 2 does not rule out the possibility of inefficient

Because the socially optimal allocation always exists, Weyjilibria. In fact, an equilibrium may be inefficient if it is
can conclude that themlwaysexists anefficientequilibrium . onhqjistic. Essentially, a monopolistic equilibrium takes

for any oligopoly pricing game. . _hold when a relay bids others out of competition to acquire
Although we used constan{j;()) (or linear charging the entire traffic. We call such behavior of the dominant relay

functiong’ (B;(-))) to construct an efficient equilibrium in the manipylative pricing The capability of manipulative pricing,

proof of Theorem 1, efficient equilibria can be established By,yever, stems from the relatively superior cost function of

nonlinear charging functions as well. For instance, Figurege gominant relay, as formalized in the next theorem. We skip
depicts an equilibrium in a duopoly PG where the two relayge proof due to space limit.

adopt 3 (), B2(-) of a more general shape with = r;/R;
andv, = (Rs — r})/Rs. Notice that in a duopolyg; () = Theorem 3:If an oligopoly equilibrium is monopolistic
B2(t) and Bs(t) = B1(t). Thus,r; is the optimal market share with dominant relaym, we must have
to 1 while R; — r; is optimal to2. Although s is indifferent R, R,
among all feasible allocations, it follows the proposed shares / Am () dr < / Aj(r) dr
(v1,72) so that the two relays each get its optimal share. 0 0

To derive a simple criterion for checking the efficiency ofor any other relay;.
an equilibrium, we need to make the following distinction. A
traffic allocation( f;);cz is monopolisticif f,, = Rs for some
relaym and f; = 0 for all j # m. In this casen is called the ~ Corollary 1: If the socially optimal allocation of an
dominantrelay. An equilibrium ismonopolisticif it induces a oligopoly is monopolistic, then every equilibrium of the
monopolistic allocation. An allocation is said to bempetitive oligopoly is monopolistic and efficient.
if there are at least two relayisj such thatf; > 0, f; > 0. . . L
Suchi andj are calledcompetitiverelays. An equilibrium is 't iS shown next that there always exists a monopolistic
competitiveif it induces a competitive allocation. equilibrium. Thus, we have the following conclusion.

Proof: We prove the theorem by constructing an equilibriu
that induces the socially optimal allocatiofr;). Define
A £ minjer Aj(r7). Let Bi(r) = A" and~; = r}/R; for
all <. Then, 8;(r) = B;(Rs —r) = A* and condition (6) is
satisfied for alli with f* = r¥. Since all the relays adopt

The next conclusion easily follows from Theorem 3.

Corollary 2: If the socially optimal routing of an oligopoly
8Note thatP;(-) — Bi(-) — Dyi(-) generally is nonlinear whe; (-) is 1S cp_mpetitive, then there exists an inefficient (monopolistic)
linear. equilibrium.
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Proof: We need only to show that there exists a

monopolistic equilibrium in such an oligopoly. Let all
Bi(-) be the same strictly decreasing functigi{-) such
that fj B(Rs — r)dr < [ N(r)dr for all t € [0,R,)
andi € 7 but [ B(R, — r)dr = fOR“‘ Am(r)dr where
m € argmin; fORS Ai(r)dr. Also let~,, = 1 and~; = 0
for all relays butm. Since §(-) is strictly decreasing,
B;(r) B(r) for all 7. By construction, f;* 0 is an
ideal flow toi # m (cf. (7)) and (6) holds withf* = 0
becauses;(-) = G;(-) = B(-) is strictly decreasing. From's
perspective5,,,(-) = 5(-) and [, = R, jointly satisfy m’s
best response conditions (6)-(7). The proposed shaygs
guarantee each relay getting its proposed share everisif
indifferent. So the monopolistic equilibrium is establishéd.

D. Price of Anarchy

The price of anarchy, as a measure of loss of social
efficiency due to selfish behavior of individual agents, Wa?l]
studied in the literature on selfish routing [7], [8]. In this work,
the price of anarchy of an oligopoly PG is defined as follows[2]

Definition 4: The price of anarchy(Rs, (A;(+))iez) oOf an
oligopoly PG (R, (Ai(+))iez) is the ratio of the maximum
cost at an equilibrium to the socially optimal cost, i.e.,

a MAX(f)eFE D ier fofi Ai(r) dr
minggyer Yo fi Ailr) dr

p(Rs, (Ni(+))iez)

where F¥ is the collection of all the allocations that can beg)

induced by an equilibrium of Ry, (A;(+))iez) and F is the
set of all feasible allocations.

The price of anarchy of an oligopoly PG is upper bounde
, the number of relays, when the marginal cost functions
(X\i(+)) are chosen from the class of nonnegative, strictly in-
creasing and@oncavefunctions. However, the price of anarchy
can be arbitrarily large whef\;(-)) are chosen from the class[10]

by |7

of nonnegative, strictly increasing amdnvexfunctions.

Theorem 4:If the cost derivativeg);(-)) are nonnegative,
strictly increasing and concavg(R;, (A;(-))) of an oligopoly
pricing game is upper bounded by the number of reldys

The upper bound is achieved when the marginal costs ?{5

identical and linear.

Unlike the selfish routing games studied in [7], [8], wherg4]
the price of anarchy is independent of the topology [15],

Theorem 4 indicates thai(R,, (Ai(-)):cz) of an oligopoly

PG explicitly depends on topology throudf|. It implies

that the more intensive (largef|) the competition is, the
more inefficient the market becomes if it is monopolized. T
situation is even worse if\;(-)) are convex .

Theorem 5:For a fixed numbelZ| > 2 of relays and for
any M > 0, there exists an oligopolyR,, (\i(-))icz) with
convex (\;(-)) such thatp(Rs, (\i(-))iez) > M.
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IV. CONCLUSION

This work presented a game-theoretic analysis of price
competition in unicast networks with a single layer of par-
allel relays. The introduction of possibly nonlinear charging
functions to the game enabled us to develop a much richer set
of results than if we allowed only constant unit prices. While
the socially optimal traffic allocation can always be induced
by an equilibrium, the game may have inefficient equilibria as
well. Furthermore, the existence of competition turns out to be
a two-sided coin. On the one side, any competitive equilibrium
must be efficient. On the other side, the conclusion that the
price of anarchy of an oligopoly where relays have concave
marginal costs is equal to the number of relays seems to
suggest that more intense competition only makes inefficient
(monopolistic) equilibria even worse. Efficiency loss can be
still worse when marginal cost functions are convex. We found
that the price of anarchy in this case can be arbitrarily large.
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