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Abstract—This paper studies a network under TCP congestion
control, in which the number of flows per user is explicitly taken
into account. We present a control law for this variable that,
in combination with congestion control, induces as equilibrium
the maximization of social welfare measured at the level of
users, rather than the level of TCP connections. We use fluid
flow models to prove stability theorems on the dynamics of
the overall system, combining the dynamics of flows with the
dynamic rates and prices of congestion control. We then develop
an admission control policy for discrete TCP flows, that emulates
the continuous behavior, and is modeled as a Markov chain. We
present simulation studies of the overall system, which exhibit
its stability and the desired user-level fairness behavior.

I. I NTRODUCTION

A fundamental problem in networking concerns the distri-
bution of network resources efficiently and fairly. Since the
seminal work of Kelly et al. [6], it has become customary to
frame such questions in the language of welfare economics,
postulating that resources should be allocated so as to solve a
network utility maximization problem. Recent surveys to the
now abundant literature on this topic are [3], [13].

In particular, these models apply to Internet congestion
control [9], [13], by associating to each TCP flow a utility
function that determines their response in rate to congestion
signals or “prices”. The resulting equilibrium, if reached,
achieves a notion of flow level fairness. In the language of [6],
the above is the “NETWORK problem”, on top of which it was
proposed to add a “USER problem” through which users could
express their preferences through a choice of weight in the
TCP utility function, making the overall equilibrium optimize
overall welfare, the “SYSTEM problem”. What has been
lacking in both literature and practice is an implementation
of this outer loop by the users. Without it, one is left with
a network that strives to impose fairness between individual
TCP flows, not user level fairness. In particular, as recently
argued eloquently by Briscoe [2], it is useless to make flow
rates fair if users are allowed to open an unspecified amount of
such flows. Indeed, p2p applications in the Internet are known
to use precisely this mechanism to push for a larger share of
the bandwidth “pie”.

Failure to control the number of TCP flows not only com-
promises fairness, but it can also jeopardize network stability.
If many users resorted to such greedy tactics, the end result
could well be a “tragedy of the commons” scenario with large
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numbers of connections, each carrying minuscule amounts
of traffic. This issue relates to results [1], [4] on stochastic
stability of the number of flows in a network, when these arrive
randomly and are served according to some flow level fairness
(max-min fairness, orα-fairness, [12]). The stability condition
is that the overall exogeneous user rate demand must fit within
network capacity, a condition not affected by the rate control
of TCP: a user with high demand who is getting a low rate
from TCP, will open as many TCP connections as needed to
obtain its desired rate. Furthermore, if users happen to desire
an overall demand that cannot be met, stability fails and the
number of TCP connections will grow without bounds. The
end result is a loss of performance not just for the greedy
users, but for the entire network, as also discussed in [5].

Motivated by these considerations, in this paper we propose
to recover the user-level efficiency and fairness model of
the SYSTEM problem, by controlling the number of TCP
connections admitted in the network. In other words, let the
user weight parameter be the number of TCP connections it
opens; we propose to control this parameter in feedback so
as to achieve an equilibrium that maximizes user welfare. In
Section II we study this type of mechanism at the level of fluid
models, as if the number of flows were a continuous variable.
We propose a control law that adapts this variable based on
current congestion prices, and the per-flow rate obtained by
TCP; the equilibrium of the overall system is designed to solve
the SYSTEM problem, and we obtain obtain analytical results
on dynamic stability of this equilibrium.

In Section III we move closer to implementation by consid-
ering the discrete nature of flows. We emulate the fluid flow
law with an admission control policy, defined in terms of a user
demand curve that reflects a service level agreement between
the user and the network. This admission control stabilizes
the Markov chain that results from stochastic flow arrivals,
for an arbitrary exogenous load. In Section IV we develop
a simulator for this system with two timescales: stochastic
arrivals and workloads, and congestion control via differential
equations. We present simulations that exhibit the features of
the control algorithm. Conclusions are given in Section V.

II. U SER-LEVEL FAIRNESS CONTROL

FOR MULTIPLE TCP FLOWS

We consider a network composed of links, indexed byl,
with capacitycl, and a set of end-to-end users, indexed byi,
which send their flow through a single path, characterized by
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the routing matrixR, with entries

Rli =

{

1 if sourcei uses linkl
0 otherwise

.

Following [6], assign each user a utilityUi(ρi), increasing and
concave function of theaggregate rate ρi it obtains from the
network, potentially through multiple TCP flows. Specifically
ρi = nixi, wherexi is the rate assigned by TCP to a single
flow, andni is the number of flows. The aggregate rate in link
l from all sources is

yl =
∑

i

Rliρi. (1)

In matrix form, we writey = Rρ. We are now in a position
to state the desired resource allocation:

Problem 1 (SYSTEM): Maximize
∑

i Ui(ρi), subject to
link capacity constraintsRρ ≤ c.

This is the same problem considered by [6]; its rationality
as a model for fairness is that users are considered as an entity,
in terms of the overall bandwidth resources they consume. The
utility functions in Problem 1 are a degree of freedom that may
reflect different models of fairness or service differentiation.
A useful family in this regard is the well-knownα-fairness
model from [12],

Ui(ρ) = ki

ρ1−α

(1 − α)
, with α > 0. (2)

Each TCP flow of sourcei obtains a ratexi that is determined
in feedback, based on congestion priceqi received from the
network, following a control law determined by the underlying
TCP protocol. A simple fluid model of this relationship is the
demand curve

xi = fTCPi(qi); (3)

equivalently, TCP is maximizingUTCPi(xi)− qixi for an in-
creasing, concave utility functionUTCPi satisfyingU ′

TCPi =
f−1

TCPi. Another model of rate control, with the same equilib-
rium behavior, is the “primal” law

ẋi = κ(xi)[U
′
TCPi(xi) − qi]. (4)

For more details see e.g. [13]. We emphasize the distinction
between the utility functionUTCPi that models theprotocol
behavior at a fast time scale, and the utilityUi that models the
user demand, at a slower time-scale. For instance, if the net-
work runs TCP-Reno, its demand curve can be approximated
by the square-root formula of [11], corresponding toUTCP of
the α-fairness kind withα = 2. This utility need not reflect
the demand of the user behind this flow.

Concentrating on the fast time-scale of TCP congestion
control where the number of flowsni remains constant, the
resource allocation can be characterized by another network
utility maximization problem:

Problem 2 (TCP Congestion control):
Maximize

∑

i niUTCPi(xi), subject to link capacity con-
straints

∑

i Rlinixi ≤ cl for eachl.

Here, as in the standard formulation (see [13], Chapter 9),
each TCP flow is assigned a utilityUTCPi, and the congestion
control portion maximizes its sum; the objective above groups

terms for theni flows of each user. We can also call the
above a “NETWORK” problem as the one considered in [6]
with weighted log utilities; here, the weights are given by the
numbers of flowsni.

TCP congestion control can be related with Problem 2 if
one assumes link congestion pricespl generated by

ṗl = γl (yl − cl)
+
pl

:=

{

yl − cl, if yl > cl or pl > 0;
0 otherwise.

(5)

and source prices
qi =

∑

l

Rlipl, (6)

in vector form q = RT p. Then the equilibrium rates solve
Problem 2, and are globally attractive [13].

This brings us to our main problem. For each fixed set of
ni’s, the network returns a certain set of TCP ratesxi per flow,
hence an overall rateρi = nixi per user. It is not difficult to
see that the mappingni 7→ ρi for one user in equilibrium
is nondecreasing, for all othernj ’s fixed. Therefore each
individual user, acting selfishly, has an incentive to increase
its number of connections; if one user (or a subset) behaves in
this manner while the rest keepni unchanged, the latter group
would be pushed out of the network as theirxi’s diminish.
The scenario where everybody greedily increasesni without
bound could hypothetically give fairρi’s, but at a complexity
cost which is clearly also undesirable.

In conclusion, if one seeks to control the resource allocation
at the user level, the numbers of flowsni should be controlled.
The purpose of this section is to find a control law forni at
a slow time-scale, that in conjunction with TCP at a faster
time-scale, reaches user ratesρi compatible with Problem 1.
We now propose such an algorithm at the level of fluid flow
models, and study its analytical properties.

Control of the number of flows:

ṅi = β
(

U ′−1
i (qi) − ρi

)

(7)

whereβ is a positive constant. The above equation treatsni as
a continuous variable, later on we will consider more practical
versions with discrete numbers of flows.

The intuition behind this control law is straightforward: the
right hand-side compares the user’s demand at the current
congestion price, with the rate obtained currently from the
network. This difference dictates whether the number of
connections should be increased, or decreased. The various
layers of the user are collectively described by

ṅi = β
(

U ′−1
i (qi) − ρi

)

; (8a)

xi = fTCP (qi); (8b)

ρi = nixi. (8c)

Remark: Alternatively, (8b) could be replaced by the primal
law (4).
Combining this user law with equations (1) and (6) that
characterize the network, and (5) that characterizes prices of
network links, we have a complete description of the control
loop. This overall model is analogous to the congestion control
picture of e.g. [9], but with the overall rates of users as
variables, instead of the rates of individual flows. Since this
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model is directed to the slower time scale of the birth and
death of flows, we will not consider network delays in the
dynamics.

An equilibrium point(n∗, x∗, ρ∗, y∗, p∗, q∗) of the overall
system will satisfyy∗ = Rρ∗, q∗ = RT p∗, ρ∗i = n∗

i x
∗
i and

U ′
i(ρ

∗
i ) = q∗i , (9)

p∗l (cl − y∗
l ) = 0, (10)

U ′
TCPi(x

∗
i ) = q∗i . (11)

(9-10) imply the Karush-Kuhn-Tucker conditions for optimal-
ity in Problem 1 (see [13], replacingx with ρ). Also, (10-
11) imply the KKT conditions for Problem 2. This follows
from considering the corresponding Lagrangian. Therefore, the
equilibrium prices serve simultaneously as Lagrange multipli-
ers for both optimization problems. This justifies the use ofthe
same price variable for TCP congestion control and admission
control.

A. Local stability for the network case

We wish to establish the stability of the equilibrium point
under the proposed dynamics. In this section, we provide a
local result following apassivity approach (cf. [7]), that was
first introduced in the congestion control context by Wen and
Arcak [14]. In that paper, the authors show that the system
(ρ − ρ∗) 7→ (q − q∗) with links applying the dual law (5) is
passive with storage functionVnet(p) = 1

2γ

∑L
i=1(pi − p∗i )

2.
In other words, they establish the dissipation inequality

V̇net ≤
∑

i

(qi − q∗i )(ρi − ρ∗i ) (12)

along trajectories of the system. To establish stability ofthe
entire closed loop, it suffices to show that the user system
−(qi − q∗i ) 7→ (ρi − ρ∗i ) is itself passive for eachi. Indeed,
this would mean that there is a storage functionVi(n) for the
subsystem of useri, satisfying

V̇i ≤ −(qi − q∗i )(ρi − ρ∗i ) (13)

Adding (12) and (13) for eachi implies thatV := Vnet+
∑

i Vi

is a Lyapunov function for the closed loop system, from which
stability follows. Also, a slight refinement with strict inequal-
ities in (13) (strict passivity) implies asymptotic stability. At
the time of writing we are only able to establish this pas-
sivity locally around equilibrium, through the corresponding
linearization. For this we resort to a characterization of linear
passivity in terms of the system transfer functionH(s) (see
[7]): a system is passive if it is stable and Re(H(jω)) ≥ 0 for
all ω ∈ R, and strictly passive if the above inequality is strict.

Lemma 1: The linearization of the system−(qi − q∗i ) 7→
(ρi−ρ∗i ) defined by equations (8) has a strictly passive transfer
function Hi(s).

Proof: We omit for brevity the derivation of the lineariza-
tion and its corresponding Laplace transform. The end result
is (dropping the subindexi):

H(s) =
n∗bs + βx∗a

s + βx∗
, (14)

where a = −
∂U ′−1(q)

∂q
(q∗), b = −

∂fTCP (q)

∂q
(q∗),

positive due to the concavity of utility. This is a system of
the “lead-lag” type. It is straightforward to see the the curve
H(jω) (the Nyquist plot) is a circle on the right half-plane,
through the pointsH(0) = a and H(∞) = n∗b. Therefore
Re(H(jω)) > 0 as was to be proved.

REMARK : We could also replace (8b) with (4) as remarked
before. In that case, the transfer function is

H(s) =
(kn∗ + βx∗a)s + (kβx∗ab)

(s + kb)(s + βx∗)

which can be shown to be passive as well.
We can now state the main result of this section:
Theorem 2: The equilibrium of the system given by (8),

(1), (6) and (5) is asymptotically stable.
Proof sketch: Given the strict passivity of the linearized

system−δqi → δρi, there exists (see [7]) a quadratic storage
function satisfying a local dissipation inequality of the form
(13). The construction of the global Lyapunov function follows
as described above.

B. Global stability for the single link case

Although the above result is only local, simulations of the
differential equations indicate that stability holds globally as
well. In this section, we give a global stability proof under
more restrictive conditions:

• We consider a network with a single bottleneck of ca-
pacity C which is shared byN users, each with utility
functionUi, i = 1, . . . , N

• We assume the congestion control algorithm of all users
follows the same demand curvefTCP . For instance, this
could correspond to everyone running TCP-Reno with the
same round-trip time.

• We adopt a separation of time-scales argument. For fixed
numbers of flowsn = (n1, . . . , nN ), we assume the
rates and prices of the congestion control loop converge
quickly to the solution of Problem 2. Denote bŷxi(n), the
corresponding TCP rate, bŷq(n) = p̂(n) the congestion
price of the link. ρ̂i(n) = nix̂(n) is the i-th user’s
aggregate rate. The hat indicates the equilibrium values
for the congestion control at the fast timescale. We then
model the slow dynamics of theni variables by

ṅi = β
[

U ′−1
i (q̂(n)) − ρ̂i(n)

]

. (15)

Before stating the stability theorem, note that since thereis a
single price and a common TCP demand curve, the individual
flow rates are common to all users:

x̂i(n) =
C

∑N

i=1 ni

=: x̂(n) ∀i. (16)

From here we havêq(n) = U ′
TCP (x̂(n)) and ρ̂i(n) = nix̂(n)

which substituted in (15) give an autonomous system of
differential equations in the staten.

Theorem 3: The solution of the differential equations in
(15) converges globally to an equilibrium pointn∗ such that
ρ∗ = ρ̂(n∗) is the solution of Problem 1.
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Proof: First note that an equilibrium of (15), together with
(16), automatically ensures the KKT conditions (9-10) which
characterize the optimum of Problem 1. We thus focus on the
global stability proof.

Denote by|n| =
∑N

i=1 ni the total number of connections.
This wayx̂(n) = C/|n|. Adding equations (15) ini we obtain:

˙|n| = β

[

N
∑

i=1

U ′−1
i (q̂(n)) −

N
∑

i=1

ρ̂i(n)

]

Observing that
∑N

i=1 ρ̂i(n) = C and that

q̂(n) = U ′
TCP (x̂(n)) = U ′

TCP (C/|n|)

we can rewrite the dynamics of|n| as:

˙|n| = β

[

N
∑

i=1

fi

(

C

|n|

)

− C

]

, (17)

where we introduce the notationfi(x) = U ′−1
i (U ′

TCP (x)).
The function fi is increasing since it is the composition
of two decreasing functions. The preceding equation is an
autonomous differential equation in the scalar variable|n|.

Denoting by|n∗| the equilibrium point of (17), define the
following candidate Lyapunov function:

V1(|n|) =
1

2β
(|n| − |n∗|)2 (18)

By differentiation we obtain:

V̇1 = (|n| − |n∗|)

[

N
∑

i=1

fi

(

C

|n|

)

− C

]

= (|n| − |n∗|)

[

N
∑

i=1

fi

(

C

|n|

)

− fi

(

C

|n∗|

)

]

,

where the last step uses the equilibrium condition. Noting that
eachfi

(

C
|n|

)

is a decreasing function of|n|, we have that

V̇1 6 0, the inequality being strict away from equilibrium.
This shows that|n| converges to the equilibrium|n∗| and con-
sequently, the rate of each connectionx̂(n) → x∗ = C/|n∗|.

We return now to equation (15). By definingδni = ni −n∗
i

we can rewrite it as:

˙δni = β [fi(x̂(n)) − nix̂(n)]

= −βx̂(n)δni + β [fi(x̂(n)) − n∗
i x̂(n)]

The termfi(x̂(n)) − n∗
i x̂(n) = b(t) vanishes ast → ∞

sincex̂(n) → x∗ andfi(x
∗) = ρ∗i = n∗

i x
∗.

Now take the Lyapunov functionV2(δni) = 1
2β

(δni)
2, its

derivative is:

V̇2 = −x̂(n)(δni)
2 + b(t)δni (19)

Let ε > 0 be arbitrary, and chooset0 such thatx̂(t) > x∗

2

and |b(t)| < x∗

2 ε whenevert > t0. Then, in the region where
|δni| > ε and for t > t0 we have that:

|b(t)δni| <
x∗

2
ε|δni| < x̂(n)ε|δni| < x̂(n)(δni)

2

and this inequality proves that in equation (19), we haveV̇2 <
0 for |δni| > ε and t > t0. This shows that eventually,δni

will reach the set|δni| < ε and since this is true for arbitrary
ε, we have thatδni → 0.

III. FAIR ADMISSION CONTROL:
STOCHASTIC MODEL AND IMPLEMENTATION.

In this section we expand our control models to take into ac-
count the discrete nature of connections. A direct discretization
of the fluid law (7) would involve both starting and terminating
flows, but the latter operation is disruptive in practice. For this
reason, in this section we consider a control policy that restricts
the admission of new connections only, and relies on their
natural termination, assuming each carries a finite workload.

We develop a stochastic model for this process, of a
similar nature to the one in [1], [4], which we begin by
reviewing. In their model, connections of useri arrive as a
Poisson process of intensityλi and each connection carries
an exponentially distributed workload of mean1/µi. The
rate at which this workload is served depends on congestion
control, resulting in a continuous time Markov chain model for
n(t) = (n1(t), . . . , nN (t)), the number of user connections at
any given time. TheQ−matrix transition rates are given by:

qn,n+ei
= λi; qn,n−ei

= µinix̂i(n),

where ei is i-th coordinate vector, and̂xi(n) is the rate
allocated to each connection by TCP, as a function of the
number of flows present. [4] considered max-min fairness,
and [1] generalized this to Problem 2 withα-fair utilities as
in (2). Other recent work in this direction is [10], and [8]
has extensions to wireless scheduling. The main result of [1],
[4] is that the necessary and sufficient condition for network
stability is:

N
∑

i=1

Rli

λi

µi

< cl ∀l. (20)

This says that stability is determined by the exogenous de-
mands λi

µi
, not the lower level resource allocation of TCP.

Users with high demand, if served by a small TCP rate, will
accumulate unfinished work and hence increase the number of
active connections, as new arrivals are generated. If the overall
demand satisfies (20), then an equilibrium inn is reached, but
this could be arbitrarily biased towards these greedy users.
And if the condition fails, we have an unstable Markov chain,
hence an increasing number of unfinished connections.

Analyzing this situation, it appears that the two main tasks
of congestion control (stability and fairness) are not being
addressed. Again, this is our motivation for controlling the
number of flows; we now propose an admission control
mechanism inspired on the results of Section II, to guarantee
stability and user fairness.

As in Section II, associate the utility functionUi(ρi) with
useri. The algorithm proceeds as follows: at the ingress node
we measure the aggregate loadρi the user obtains from the
network, and we compare it with the demand curveU ′−1

i (qi)
for the current network priceqi. The admission decision for a
new connection is:

If U ′−1
i (qi) > ρi → admit connection.

If U ′−1
i (qi) 6 ρi → discard connection. (21)

A queueing model similar to the one in [1], [4] can be
developed for this system. Ifn(t) = (n1(t), . . . , nN (t)) are the
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number of connections of each user, thenn(t) is a continuous
time Markov chain with transition rates:

qn,n+ei
= λi1{U

′−1

i
(q̂i(n))>ρ̂i(n)} (22a)

qn,n−ei
= µinix̂i(n) (22b)

where as in Section II-B,̂xi(n) and q̂i(n) are the connection
rates and route prices in equilibrium of the congestion control
Problem 2, and̂ρi(n) = nix̂i(n) is the aggregate rate of user
i.

With this policy, stability is not an issue anymore: under
mild restrictions on utilities, the admission control prevents
the processn(t) from escaping towards infinity. We state the
following result under the assumptions of Theorem 3. The
proof is omitted for brevity.

Proposition 4: Consider a single bottleneck of capacity
C, shared byN users with identical TCP demand curves
satisfyingU ′

TCP (x) → ∞ whenx → 0. Then the trajectories
of the Markov chain described by (22) converge to a bounded
setN .
The remaining issue is establishing the fairness of the
proposed admission control. The results of section II suggest
that our proposal should enable a fair allocation of resources
according to Problem 1. In the next section we show
simulations to support this conclusion.

Remarks on implementation
A denial of admission for a new TCP flow can me performed

by the ingress router, by simply discarding TCP packets with
the SY N flag activated that come from a certain user. The
decision would be made following a utility function, which
we can regard as a service-level agreement (SLA) between
a customer and the network. To enforce this policy, the edge
router must know the user aggregate rate and congestion price.
Both of these impose some inevitable overhead on the router,
at a per-user level.

We can also think of the ingress router of an operator where
the “user” is an aggregate of users, served by a common SLA,
the proposal can be more attractive, and equilibria with large
numbers of TCP flows become more natural.

IV. SIMULATIONS : STOCHASTIC LOAD WITH

ADMISSION CONTROL AND CONGESTION CONTROL

In order to test the admission control, we developed a
simulation tool based on JAVA that generates connections for
each user following a Poisson process of intensityλi. Each
arriving connection has an exponentially distributed workload
with mean1/µi. The connections present in the system at any
time perform a dual congestion control algorithm, simulated
through an Euler discretization of the differential equations.
This determines the rate allocated to each connection, and the
workload is consumed according to this time-varying rate.

We selected two simulation scenarios based on the linear
network shown in Figure 1.

C1 C2

User 1

User 2 User 3

Fig. 1. Linear network used in simulations.
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Fig. 2. Admission control in a linear network providing max-min fairness.

Scenario 1.In our first example we set the first link capacity
to C1 = 500kbps, the second link toC2 = 400kbps, and the
evolution of the system is simulated during100s. The arrival
intensities of each user areλi = 2 connections/second, and the
mean workloads are1/µi = 500kbit ≈ 60Kbytes, making
each link in the network congested.

We approximate max-min fairness by choosing user utilities
in the α-family with α = 5. For the underlying congestion
controllers, we chooseα = 2 to emulate TCP-Reno behavior,
with constants as in [11] inversely proportional to RTT. The
long route has twice the RTT of the shorter routes.

The results in Figure 2 show that the user in the long
route is allowed a greater number of flows, to compensate its
RTT, and that aggregate loads of users 1 and 3 are almost
equalized inρi = 200kbps which is the fair share under
max-min fairness. User 2 obtains the remaining bandwidth of
link 1, that is300kbps. As its link is less congested, the user
sees a lower congestion price, and therefore its connections
run faster, which explains why admission control is letting
less connections from this user enter the network.
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Fig. 3. Protection of non-greedy users in a linear network.

Scenario 2.We consider now the same linear network, but
in a situation where there are heavy and non heavy users. By
this we mean that some users demand an average loadλi/µi

which is below the fair share they would obtain by solving
Problem 1.

In our simulation, we achieve this by lowering the load of
user 3 toλ3 = 2 connections/second, with mean workload
1/µ3 = 50kbit. This amounts to an average load for user3 of
100kbps. The other users keep the same parameters as before.

In this situation, we would like User 3 to beprotected
by admission control: its connections should get through the
second link because any congestion present in this link is due
to User 1. This is in fact what happens in the simulation, as
shown in Figure 3. Note that since user 3 is not congesting
the link, its number of flows frequently hits zero, as does its
aggregate rate. To visualize more clearly the utilization,we
smoothed the aggregate rate obtained by each user.

As we can see, user 3 obtains approximately its average
load 100kbps, which is under the fair share the network will
allocate in case of high demands. The remaining bandwidth is
shared in a max-min way by greedy users, that is, they become
bottlenecked in link 1 withρ1 ≈ ρ2 = 250kbps.

Summary: These simulations show that the proposed ad-
mission control can reestablish fairness at the user-level, by
working with aggregate loads. It prevents greedy users from
obtaining more than their fair share in the network; and if
some users do not have enough traffic to reach their fair share,
they obtain what they demand and the remaining capacity is
allocated to the rest. As a final remark, the results are similar
if we choose workload sizes from a heavy-tailed distribution,
or if we use a different utility function for aggregate loads.

V. CONCLUSIONS AND FUTURE WORK

The mathematics of Internet resource allocation made large
strides with the introduction of microeconomic models [6],
suggesting there could be a meeting point of the engineering
side of congestion control and the economic side of user
incentives. Still, the two areas have remained largely separate.

This paper contributes to bridging the gap by modelling user
behavior in terms of the aggregate rate of all its connections,
and controlling this aggregate through a combination of rate
control of each connection, and admission control of the num-
ber of connections. Based on fluid-flow models, we developed
a control law for the number of flows, which combined with
standard TCP congestion control, has as equilibrium point the
solution to an optimal user-level resource allocation. We have
shown some theoretical results on the stability of this point.

The continuous control law guides us to propose an admis-
sion control policy for discrete flows, which leads to a Markov
chain model for the number of flows in the network. In contrast
to [1], [4], this procedure guarantees stability of the network
for any external demand. Simulation evidence indicates this
law approaches the optimal conditions of the fluid model; we
are working on establishing this fact analytically.

An interesting extension we are currently pursuing is the
combination of the flow dynamics with multipath routing. A
multipath ingress router can not only decide whether to admit
a connection or not, but also through which of the active routes
to send it, based on the cheapest congestion price. Preliminary
evidence shows this reaches the optimal rates of the multipath
network utility maximization problem.
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