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Abstract—This paper studies a network under TCP congestion numbers of connections, each carrying minuscule amounts
control, in which the number of flows per user is explicitly teken  of traffic. This issue relates to results [1], [4] on stociast
into account. We present a control law for this variable that stability of the number of flows in a network, when these @rriv

in combination with congestion control, induces as equilidum . .
the maximization of social welfare measured at the level of "@andomly and are served according to some flow level fairness

users, rather than the level of TCP connections. We use fluid (Mmax-min fairness, ow-fairness, [12]). The stability condition
flow models to prove stability theorems on the dynamics of is that the overall exogeneous user rate demand must fitrwithi
the overall system, combining the dynamics of flows with the network capacity, a condition not affected by the rate aintr
dynamic rates and prices of congestion control. We then del@ ot Tcp: g user with high demand who is getting a low rate
an adml_ssmn control pollcy for_ discrete TCP flows, that em_uhtes f TCP. will TCP ti ded t
the continuous behavior, and is modeled as a Markov chain. We 'TOM TLF, Wil open as many connections as needed 1o
present simulation studies of the overall system, which exbit —Obtain its desired rate. Furthermore, if users happen toedes
its stability and the desired user-level fairness behavior an overall demand that cannot be met, stability fails and the
number of TCP connections will grow without bounds. The
end result is a loss of performance not just for the greedy
. ] _users, but for the entire network, as also discussed in [5].

A fundamental problem in networking concerns the distri- \jotivated by these considerations, in this paper we propose
bution of network resources efficiently and fairly. Since thiy (ecover the user-level efficiency and fairness model of
seminal work of Kelly gt al. [6], it has become customary t,?ne SYSTEM problem, by controlling the number of TCP
frame such questions in the language of welfare economig§nnections admitted in the network. In other words, let the
postulating that resources should be allocated so as t@ 80Iser weight parameter be the number of TCP connections it
network utility maximization problem. Recent surveys to thegnens: we propose to control this parameter in feedback so
now abundant literature on this topic are [3], [13]. _as to achieve an equilibrium that maximizes user welfare. In

In particular, these models apply to Internet congestiagy,tion |1 we study this type of mechanism at the level of fluid
control [9], [13], by associating to each TCP flow a utilityy,oels; as if the number of flows were a continuous variable.
function that determines their response in rate to congestiye propose a control law that adapts this variable based on
signals or “prices”. The resulting equilibrium, if reachedg, rent congestion prices, and the per-flow rate obtained by
achieves a notion of flow level fairness. In the language bf [6rcp: the equilibrium of the overall system is designed teesol

the above is the “NETWORK problem”, on top of which it waghe sySTEM problem, and we obtain obtain analytical results
proposed to add a “USER problem” through which users co dynamic stability of this equilibrium.

express their preferences through a choice of weight in theIn Section IIl we move closer to implementation by consid-
TCP utility function, making the overall equilibrium optieé o, the giscrete nature of flows. We emulate the fluid flow
overall welfare, the “SYSTEM problem”. What has beeq,, yith an admission control policy, defined in terms of aruse
Iacklng in both literature and practllce IS an Irnp!emenmt,'odemand curve that reflects a service level agreement between
of this outer loop by the users. Without it, one is left withyo \;ser and the network. This admission control stabilizes
a network that strives to impose faimess between indNidugg \arkov chain that results from stochastic flow arrivals,
TCP flows, not user Ievgl falrness_. I_n particular, as r‘:"Wmﬂor an arbitrary exogenous load. In Section IV we develop
argued eloquently by Briscoe [2], it is useless to make floW qjnjator for this system with two timescales: stochastic
rates fair if users are allowed to open an unspecified amduntQ. 1 anq workloads, and congestion control via diffieg

such flows. .Indeed., p2p appligations in the Internet are Imovg uations. We present simulations that exhibit the featofe
to use precisely this mechanism to push for a larger shareyl ,ntro| algorithm. Conclusions are given in Section V.
the bandwidth “pie”.

Failure to control the number of TCP flows not only com-
promises fairness, but it can also jeopardize network Igabi Il. USERLEVEL FAIRNESS CONTROL
If many users resorted to such greedy tactics, the end result FOR MULTIPLE TCPFLOWS
could well be a “tragedy of the commons” scenario with large \ne consider a network composed of links, indexedlpy

{ferragut,paganii@ort.edu.uy. Research supported in part by PD'IWith CapaCityClv_and a set of end'_to'end users, indexe_diby
Uruguay, and by AFOSR-US, grant FA9550-06-1-0511. which send their flow through a single path, characterized by
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the routing matrixR, with entries terms for then; flows of each user. We can also call the
1 if sourcei uses link apove a NETWORl.(I .problem as the one cons@ered in [6]
Ry = : . with weighted log utilities; here, the weights are given hg t
0 otherwise
numbers of flowsn;.
Following [6], assign each user a utility;(p; ), increasingand ~ TCP congestion control can be related with Problem 2 if
concave function of theggregate rate p; it obtains from the one assumes link congestion priggsgenerated by

network, potentially through multiple TCP flows. Speciflgal :
. . L . + Y — c, if Yy > orpl>0;
pi = n;x;, Wherez; is the rate assigned by TCP to a single p; = v, (yi — cl)pl =10 otherwise (5)
flow, andn; is the number of flows. The aggregate rate in linlind source prices '
I from all sources is ¢ = ZRzipz, (6)
l

Y= ZRliPi- 1)

in vector formg = RTp. Then the equilibrium rates solve

In matrix form, we writey = Rp. We are now in a position Pr_cl)_l;)]I_erE 2 and are globally attra(gtllve [1[:3]' h fixed f
to state the desired resource allocation: IS brings us to our main problem. For each fixed set o

Problem 1 (SYSTEM): Maximize Y, U;(p;), subject to n;'s, the network returns a certain set of TQP rateger flow,
link capacity constraintsp < c. hence an overall ra_tm = n;x; per user. Itis pot dlff.I(.:u|.t to
see that the mapping; — p; for one user in equilibrium
This is the same problem considered by [6]; its rationalifg nondecreasing, for all other;’s fixed. Therefore each
as a model for fairness is that users are considered as &) enfidividual user, acting selfishly, has an incentive to iase
in terms of the overall bandwidth resources they consume. Tigs number of connections: if one user (or a subset) behaves i
utility functions in Problem 1 are a degree of freedom thay manis manner while the rest keep unchanged, the latter group
reflect different models of fairness or service differettid@  \would be pushed out of the network as thejts diminish.

A useful family in this regard is the well-knowa-faimess The scenario where everybody greedily increasesvithout

model from [12], bound could hypothetically give fajs;’s, but at a complexity
pl=e . cost which is clearly also undesirable.
Ui(p) = ki T—a) with o > 0. 2 In conclusion, if one seeks to control the resource allocati

) . . . at the user level, the numbers of flowsshould be controlled.
Each TCP flow of sourcéobtains a rate; that is determined The purpose of this section is to find a control law forat

in feedi)e}clﬁ, based on COT?GS“O” prigereceivehd from the 50w time-scale, that in conjunction with TCP at a faster
network, following a control law determined by the undenlyi 4o scale; reaches user ragescompatible with Problem 1.

TCP protocol. A simple fluid model of this relationship is th%e now propose such an algorithm at the level of fluid flow
demand curve models, and study its analytical properties.

z; = fropi(@); 3
equivalently, TCP is maximizing'rcp;(z;) — ¢:x; for an in-  Control of the number of flows:
i ili i ; i i ! . = . —

crEFS|ng, concave utility functiobizcp; sgtlsfymgUTCP,L N fui = 3 (Uil 1(%) _ pi) @)

fréps- Another model of rate control, with the same equilib-

rium behavior, is the “primal” law where( is a positive constant. The above equation treatas
) , a continuous variable, later on we will consider more pradti
;= &(2:) [Urcpi(i) — ¢l (4)  versions with discrete numbers of flows.

between the utility functior/;¢ p; that models theprotocol ~ fight hand-side compares the user's demand at the current
behavior at a fast time scale, and the utility; that models the congestion price, with the rate obtained currently from the
work runs TCP-Reno, its demand curve can be approxima@@nnections should be increased, or decreased. The various

the a-fairness kind witha = 2. This utility need not reflect hi =B (U q) — pi) ; (8a)
the demand of the user behind this flow. ! ’

Concentrating on the fast time-scale of TCP congestion @i = frep(a:); (8b)
control where the number of flows; remains constant, the Pi = NiT;. (8c)
resource allocation can be characterized by another nbtw?femark: Alternatively, (8b) could be replaced by the primal
utility maximization problem: law (4).

Problem 2 (TCP Congestion control):
Maximize > . n;Urcpi(x;), subject to link capacity con-
straints) , Ryn;x; < ¢; for eachl.

Combining this user law with equations (1) and (6) that
characterize the network, and (5) that characterizes pote
network links, we have a complete description of the control
Here, as in the standard formulation (see [13], Chapter ®pp. This overall model is analogous to the congestionrcbnt
each TCP flow is assigned a utilityrcp;, and the congestion picture of e.g. [9], but with the overall rates of users as
control portion maximizes its sum; the objective above gsuvariables, instead of the rates of individual flows. Sincde th



model is directed to the slower time scale of the birth and where ¢ — — 20 '(a) ("), b= _Ofrcr(q) (")
death of flows, we will not consider network delays in the dq ’ dq ’
dynamics. positive due to the concavity of utility. This is a system of
An equilibrium point (n*, z*, p*, y*, p*, ¢*) of the overall the “lead-lag” type. It is straightforward to see the theveur
system will satisfyy* = Rp*, ¢* = RTp*, p; = n}z} and H(jw) (the Nyquist plot) is a circle on the right half-plane,
through the points (0) = a and H(oco) = n*b. Therefore

Uipi) = i’ ©) Re(H(jw)) > 0 as was to be proved.
pi(a—y/) =0, (10) u
Ubepi(xl) = q;- (11) REMARK: We could also replace (8b) with (4) as remarked

before. In that case, the transfer function is
.(9—1.0) imply the Karush—Kuhn-Tuclfer co_ndltlons for optima (kn* + Bz*a)s + (kBz*ab)
ity in Problem 1 (see [13], replacing with p). Also, (10- H(s) = D "
11) imply the KKT conditions for Problem 2. This follows (5 + kb)(s + fz7)
from considering the corresponding Lagrangian. Theretbee Which can be shown to be passive as well.
equilibrium prices serve simultaneously as Lagrange piisiti VW& can now state the main result of this section:
ers for both optimization problems. This justifies the usthef ~ Theorem 2. The equilibrium of the system given by (8),

same price variable for TCP congestion control and admmissict): (6) and (5) is asymptotically stable. o
control. Proof sketch: Given the strict passivity of the linearized

system—dq; — dp;, there exists (see [7]) a quadratic storage
- function satisfying a local dissipation inequality of therm
A. Local stability for the network case (13). The construction of the global Lyapunov function éels

We wish to establish the stability of the equilibrium poin@S described above. u
under the proposed dynamics. In this section, we provide a
local result following apassivity approach (cf. [7]), that was B. Global stability for the single link case
first introduced in the congestion control context by Wen and Although the above result is only local, simulations of the
Arcak [14]. In that paper, the authors show that the systediifferential equations indicate that stability holds gidip as
(p = p*) = (g — ¢*) with links applying the dual law (5) is well. In this section, we give a global stability proof under
passive with storage functiovi,e:(p) = 5- S (i — )% more restrictive conditions:

In other words, they establish the dissipation inequality « We consider a network with a single bottleneck of ca-
Vo< Z(q’i — )i — p) (12) ?uicétﬁ/oﬁgﬂci |15: .s.r??;\?d byV users, each with utility
’ « We assume the congestion control algorithm of all users
along trajectories of the system. To establish stabilitythaf follows the same demand curyec p. For instance, this
entire closed loop, it suffices to show that the user system could correspond to everyone running TCP-Reno with the
—(q; — qf) — (p; — p}) is itself passive for each. Indeed, same round-trip time.
this would mean that there is a storage functiotm) for the . We adopt a separation of time-scales argument. For fixed
subsystem of user, satisfying numbers of flowsn = (ni,...,nx), We assume the
V< (o — a)(oi — oF 13 rates and prices of the congestion control loop converge
i < =6 — ) (pi — pi) (13) quickly to the solution of Problem 2. Denote by(n), the
Adding (12) and (13) for eachimplies thatV’ := V,,.;+3", Vi corresponding TCP rate, hj(n) = p(n) the congestion
is a Lyapunov function for the closed loop system, from which ~ Price of the link. pi(n) = n;i(n) is the i-th users
stability follows. Also, a slight refinement with strict igeal- aggregate rate. The hat indicates the equilibrium values
ities in (13) (strict passivity) implies asymptotic statyil At for the congestion cont_rol at the fast_ timescale. We then
the time of writing we are only able to establish this pas- Model the slow dynamics of the; variables by
sivity locally around equilibrium, through the corresponding n; = 3 [U;fl(@(n)) — pi(n)] . (15)

linearization. For this we resort to a characterizationiréar ) N _
passivity in terms of the system transfer functifiifs) (see ~ Before stating the stability theorem, note that since these
[7]): a system is passive if it is stable and(REjw)) > 0 for Single price and a common TCP demand curve, the individual
all w € R, and strictly passive if the above inequality is strictOW rates are common to all users:

Lemma 1: The linearization of the system (¢; — ¢f) — Fi(n) = ¢ — #(n) Vi (16)
(pi—p¥) defined by equations (8) has a strictly passive transfer va: L i
function H; (s).

Proof: We omit for brevity the derivation of the lineariza-
tion and its corresponding Laplace transform. The end tres
is (dropping the subindey:

From here we havé(n) = U p(Z(n)) andp;(n) = n;&(n)
which substituted in (15) give an autonomous system of
Hlfferential equations in the state

Theorem 3. The solution of the differential equations in
(15) converges globally to an equilibrium point such that

_ n*bs+ Bz*a
p* = p(n*) is the solution of Problem 1.

H(s) = =2 (14)



Proof: First note that an equilibrium of (15), together with [1l. FAIR ADMISSION CONTROL:
(16), automatically ensures the KKT conditions (9-10) vbhic STOCHASTIC MODEL AND IMPLEMENTATION.
characterize the optimum of Problem 1. We thus focus on they, yhis section we expand our control models to take into ac-
global stability proof.
Denote by|n| = Zf\il n; the total number of connections.
This wayz(n) = C/|n|. Adding equations (15) inwe obtain:

count the discrete nature of connections. A direct diszaéitin
of the fluid law (7) would involve both starting and termimegi
flows, but the latter operation is disruptive in practicer &as

) reason, in this section we consider a control policy thaticts
n| =8> U @) - Zﬁi(n)‘| the admission of new connections only, and relies on their
i i natural termination, assuming each carries a finite workloa
Observing thatzfil pi(n) = C and that We develop a stochastic model for this process, of a
. . similar nature to the one in [1], [4], which we begin by
4(n) = Urcp((n)) = Urcp(C/|nl) reviewing. In their model, conLe]cti[orls of usearrive as a
we can rewrite the dynamics ¢f| as: Poisson process of intensity; and each connection carries

N an exponentially distributed workload of medn ;. The

|ﬁ| =3 [Z fi (g) - C (17) rate at which this workload is served depends on congestion
i=1 | control, resulting in a continuous time Markov chain moax| f

where we introduce the notatiofy (z) = U/~ (Upep (2). n(t) = (n1(t),...,ny(t)), the number of user connections at

The function f; is increasing since it is the compositior2NY 9iven time. TheQ matrix transition rates are given by:

of two decreasing functions. The preceding equation is an

autonomous differential equation in the scalar varidhle _ _ _
Denoting by|n*| the equilibrium point of (17), define thewhere ¢; is i-th coordinate vector, and;(n) is the rate

)

qn,n+ei - AZ’ qn,nfei = Ninix% (TL),

following candidate Lyapunov function: allocated to each connection by TCP, as a function of the
1 ) number of flows present. [4] considered max-min fairness,
Vi(|n]) = 35 (In] = |n*)) (18) and [1] generalized this to Problem 2 withfair utilities as

in (2). Other recent work in this direction is [10], and [8]
has extensions to wireless scheduling. The main result]of [1
[4] is that the necessary and sufficient condition for networ
stability is:

By differentiation we obtain:
N
. C
i = (ol n*)) [Zfi (5)-
=1

N
x C C
= (|n| ~ |n") [Z (g) -4 (e)
=1 . . . .
. " This says that stability is determined by the exogenous de-
where the last step uses the equilibrium condition. Notivag t mands2:, not the lower level resource allocation of TCP,

each f; (%) is a decreasing function df|, we have that ysers with high demand, if served by a small TCP rate, will
Vi < 0, the inequality being strict away from equilibrium.accumulate unfinished work and hence increase the number of
This shows thafn| converges to the equilibriunm*| and con- active connections, as new arrivals are generated. If teeativ
sequently, the rate of each connectitim) — z* = C/|n*|. demand satisfies (20), then an equilibriunmiis reached, but

We return now to equation (15). By defining; = n; —n} this could be arbitrarily biased towards these greedy users

N s
ZRlij <e Vi (20)

Y

we can rewrite it as: And if the condition fails, we have an unstable Markov chain,
BLfi(#(n)) — nid(n)] hence an increasing number of unfinished connections.
! ¢ Analyzing this situation, it appears that the two main tasks
= —Ba(n)on; + B[ fi(E(n)) — nji(n)] of congestion control (stability and fairness) are not bein
The term f;(2(n)) — nf2(n) = b(t) vanishes ag — oo addressed. Again, this is our motivation for controlling th
sinced(n) — z* and f;(z*) = p; = nlz*. number of flows; we now propose an admission control
Now take the Lyapunov functiofz(dn;) = 3(57%)2, its mechanism inspired on the results of Section II, to guagnte
derivative is: stability and user fairness.
Vh = —i(n)(6n:)? + b(t)on; (19) As in Section Il, associate the utility functidif;(p;) with

_’useri. The algorithm proceeds as follows: at the ingress node

Let ¢ > 0 be arbitrary, and choosg such thati(t) > %~ we measure the aggregate loadthe user obtains from the
and|b(t)| < %*s whenevert > ty. Then, in the region where network, and we compare it with the demand cute ' (¢;)
|on;| > ¢ and fort > t, we have that: for the current network price;. The admission decision for a

new connection is:
|b(t)om;| < 5|6m| < &(n)eloni| < &(n)(on;)?
_ If U/~'(q;) > p; — admit connection

and this mequallty proves thatlln equation (19), we hevec If U1 (q:) — discard connection (21)
0 for |6n;| > e andt¢ > to. This shows that eventuallyn; !
will reach the setdén;| < e and since this is true for arbitrary A queueing model similar to the one in [1], [4] can be
e, we have thatn; — 0. B developed for this system.if(t) = (n1(¢),...,ny(t)) are the



number of connections of each user, then) is a continuous

User 1

time Markov chain with transition rates:
qn,n-‘rel = )\il{Ug—l (4 (n))>ps (n)} (223.) USJ ) . 1
qn,n—eq, = [iniZ; (n) (22b)

Fig. 1. Linear network used in simulations.

where as in Section 1I-Bj;(n) andg;(n) are the connection
rates and route prices in equilibrium of the congestion rmnt
Problem 2, ang;(n) = n;i;(n) is the aggregate rate of user 20
1. 181
With this policy, stability is not an issue anymore: under e
mild restrictions on utilities, the admission control peets
the process:(t) from escaping towards infinity. We state the
following result under the assumptions of Theorem 3. The e
proof is omitted for brevity. of
Proposition 4: Consider a single bottleneck of capacity 4
2
0

C, shared byN users with identical TCP demand curves
satisfyingU/.p(x) — oo whenz — 0. Then the trajectories

of the Markov chain described by (22) converge to a bounded
setN.

The remaining issue is establishing the fairness of the 700
proposed admission control. The results of section Il ssgge
that our proposal should enable a fair allocation of resesirc
according to Problem 1. In the next section we show
simulations to support this conclusion.

. . . .
20 40 60 80 100
time (s)

o

User 1
User 2| |

600

p, (kbps)

Remarks on implementation
A denial of admission for a new TCP flow can me performed
by the ingress router, by simply discarding TCP packets with
the SY N flag activated that come from a certain user. The % 20 40 60 80 100
decision would be made following a utility function, which mee
we can regard as a service-level agreement (SLA) between
a customer and the network. To enforce this policy, the edge
router must know the user aggregate rate and congestiaa prfgg. 2. Admission control in a linear network providing menin fairness.
Both of these impose some inevitable overhead on the router,
at a per-user level. Scenario 1.In our first example we set the first link capacity
We can also think of the ingress router of an operator wheie C; = 500kbps, the second link taCy; = 400kbps, and the
the “user” is an aggregate of users, served by a common Slg¥plution of the system is simulated during0s. The arrival
the proposal can be more attractive, and equilibria withdarintensities of each user ad¢ = 2 connections/second, and the

numbers of TCP flows become more natural. mean workloads aré/u;, = 500kbit ~ 60Kbytes, making
each link in the network congested.
IV. SIMULATIONS: STOCHASTIC LOAD WITH We approximate max-min fairness by choosing user utilities
ADMISSION CONTROL AND CONGESTION CONTROL in the a-family with o« = 5. For the underlying congestion

In order to test the admission control, we developed c&)rr\]trollers, we choose = 2 to emlulate TCE-Re|r10 behavioI:,
simulation tool based on JAVA that generates connections I?U't constahnts as In [ﬁl] mversfe%/ pr?]portlona to RTT. The
each user following a Poisson process of intensity Each 0N9 route has twice the RTT of the shorter routes.

arriving connection has an exponentially distributed ioad 1€ results in Figure 2 show that the user in the long
with mean1 /u;. The connections present in the system at akgute is allowed a greater number of flows, to compensate its
TT, and that aggregate loads of users 1 and 3 are almost

time perform a dual congestion control algorithm, simulat : ; > Cl .
P g g equalized inp; = 200kbps which is the fair share under

through an Euler discretization of the differential eqoas. i fai ins th o idth of
This determines the rate allocated to each connection,rend 'f'@X"M!N AIMESS. User 2 _obtalns_ the remaining bandwidth o
link 1, that is300kbps. As its link is less congested, the user

workload is consumed according to this time-varying rate. X i . -
s a lower congestion price, and therefore its connection

We selected two simulation scenarios based on the lin : . o X .
network shown in Figure 1 run faster, which explains why admission control is letting
less connections from this user enter the network.
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80

60
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Fig. 3. Protection of non-greedy users in a linear network.

V. CONCLUSIONS AND FUTURE WORK

The mathematics of Internet resource allocation made large
strides with the introduction of microeconomic models [6],
suggesting there could be a meeting point of the engineering
side of congestion control and the economic side of user
incentives. Still, the two areas have remained largely rs¢pa

This paper contributes to bridging the gap by modelling user
behavior in terms of the aggregate rate of all its connestion
and controlling this aggregate through a combination of rat
control of each connection, and admission control of the-num
ber of connections. Based on fluid-flow models, we developed
a control law for the number of flows, which combined with
standard TCP congestion control, has as equilibrium pbmt t
solution to an optimal user-level resource allocation. \&keeh
shown some theoretical results on the stability of this poin

The continuous control law guides us to propose an admis-
sion control policy for discrete flows, which leads to a Marko
chain model for the number of flows in the network. In contrast
to [1], [4], this procedure guarantees stability of the roatw
for any external demand. Simulation evidence indicates thi
law approaches the optimal conditions of the fluid model; we
are working on establishing this fact analytically.

An interesting extension we are currently pursuing is the
combination of the flow dynamics with multipath routing. A
multipath ingress router can not only decide whether to &dmi
a connection or not, but also through which of the activeesut

Scenario 2.We consider now the same linear network, byf, senq it, based on the cheapest congestion price. Praliynin

in a situation where there are heavy and non heavy users.
this we mean that some users demand an average\gad

&Ndence shows this reaches the optimal rates of the mthitipa
network utility maximization problem.

which is below the fair share they would obtain by solving

Problem 1.
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