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Abstract

Alphabet size of auxiliary random variables in our canonical description is derived.

Our analysis improves upon estimates known in special cases, and generalizes to an

arbitrary multiterminal setup. The salient steps include decomposition of constituent

rate polytopes into orthants, translation of a hyperplane till it becomes tangent to the

achievable region at an extreme point, and derivation of minimum auxiliary alphabet

sizes based on Caratheodory’s theorem.

1 Introduction

The central question in Shannon theory of source coding is the characterization of achievable

regions in information-theoretic terms. Historically, simple information-theoretic (so-called

‘single-letter’) descriptions were shown to completely characterize the achievable regions of

certain problems, such as Shannon’s lossless and lossy coding problems [1, 2], the Slepian-

Wolf problem [3], the Wyner-Ahlswede-Körner problem [4, 5], the Wyner-Ziv problem [6],

and the Berger-Yeung problem [7]. Specifically, coincident inner and outer bounds have been

found for the aforementioned problems. However, in certain other source coding problems,

including the Berger-Tung and the partial side information problems [8, 9], coincident inner

and outer bounds have not been found. In this paper, we shall consider a general class of

inner bounds, which we call canonical, and which may or may not be tight [10]. For example,
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our bound coincides with known descriptions in aforementioned solved problems, as well

as with Berger-Tung bound known for the Berger-Tung and the partial side information

problems. Further, unlike earlier attempts at unification, such as by Csiszár and Körner

[11], and Han and Kobayashi [12], our canonical bound brings both lossless and lossy coding

under the same framework. Moreover, our bound is tight for (hence solves) a large class

of multiterminal problems [13], generalizing the longstanding single-helper problem [11].

However, at present we shall not focus on conditions for tightness. Instead we shall analyze

an aspect that has historically received very little attention. Note that our inner bounds

involve certain auxiliary variables {Zk} with alphabets {Zk} (the notation is made precise

subsequently). Alphabet sizes {|Zk|} play an important role in practical computation, and

hence understanding of the inner bounds (see, e.g., [14, 15]). The available results generally

estimate |Zk| ≤ |Xk|+constant, where Xk is the given alphabet of the source Xk associated

with the auxiliary variable Zk, and the constant is one or greater. In this paper, we shall

derive a tight bound |Zk| ≤ |Xk| of such alphabets, thereby, facilitating computation.

As alluded earlier, in different contexts |Zk| has been estimated within a constant factor

of |Xk|. For example, we know |Zk| ≤ |Xk| + 2 for the Wyner-Ahlswede-Körner problem

[4, 5], |Zk| ≤ |Xk|+ 1 the Wyner-Ziv problem [6], and |Zk| ≤ |Xk|+ 2 for the Berger-Yeung

problem [7]. In those problems, there is only one auxiliary variable, and a rate-distortion

orthant is varied to create the desired inner bound (which equals the achievable region). In

contrast, the Berger-Tung region involves two auxiliary variables, and is created by varying

a convex core region, which is more complicated than an orthant [8]. So far, there exists no

rigorous analysis of the alphabet size in this case, but estimates vary between |Zk| ≤ |Xk|+1

and |Zk| ≤ |Xk| + 2. In an earlier paper [13], we gave an estimate of |Zk| ≤ |Xk| +M for

the generalM-terminal single-helper problem, where the convex core region is a complicated

polytope.

In this backdrop, Gu and Effros estimated |Zk| ≤ |Xk| for the Wyner-Ahlswede-Körner

problem using a linear programing argument [14]. Later in [15], the same result was extended

to the Wyner-Ziv problem, and to the partial side information problem [9]. The above result

was crucially dependent on the fact that the convex core region that sweep out the overall

inner bound is an orthant. In contrast, we shall prove the alphabet size |Zk| ≤ |Xk| for any

arbitrary problem, where the core region is always a polytope. Specifically, we decompose

the polytope into constituent orthants, and make an orthant-based argument. The above

decomposition, apart from being central to the problem at hand, enhances the geometric

understanding of source coding. The main difficulty here lies in identifying the extreme

points exhaustively, thereby identifying the constituent orthants. We show that there are
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M ! such orthants for an M-source problem. In order to prove this result, we develop an

intricate chain of information theoretic results. Further, the orthant-based reasoning borrows

an essential notion from a linear-programing-based argument. In particular, we consider only

extreme points, which are reached by translating any hyperplane, with its direction fixed,

away from the origin towards the achievable region. Our final argument about the alphabet

size follows the line of Wyner and Ziv based on a version of Caratheodory’s theorem [6].

2 Canonical Inner Bound

Consider joint source distribution p(x{1,...,M}, s, v) governing source variables X{1,...,M}, de-

coder side information S, and target variable V for lossy reconstruction/estimation. Also

consider L bounded distortion measures dl : V × V̂l → [0, dlmax] (1 ≤ l ≤ L), each with a

possibly distinct reconstruction alphabet V̂l. In this setting, the canonical inner bound A∗
1

is defined as follows.

Definition 2.1 Define A∗
1 as the set of (M + L)-vectors (R{1,...,M}, D{1,...,L}) satisfying the

following conditions:

1. auxiliary random variables Z{1,...,M} (taking values in respective finite alphabets Z{1,...M})

exist such that Zm = Xm, 1 ≤ m ≤ J , and (X{1,...,M}, S, V, Z{J+1,...,M}) follows the joint

distribution

p(x{1,...,M}, s, v)

M
∏

k=J+1

qk(zk|xk), (2.1)

for some test channels {qk(zk|xk)}
M
k=J+1;

2. (rate conditions)

I(XI ;ZI |ZIc , S) ≤
∑

i∈I

Ri, (2.2)

where Ic = {1, 2, ...,M} \ I, and condition (2.2) holds for all I ⊆ {1, ...,M} \ ∅;

3. (distortion conditions) mappings ψl : X1×...×XJ×ZJ+1×...×ZM×S → V̂l, 1 ≤ l ≤ L,

exist such that

Edl(V, ψl(X{1,...,J}, Z{J+1,...,M}, S)) ≤ Dl. (2.3)
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Lemma 2.2 Every extreme point of A∗
1 corresponds to some choice of auxiliary variables

Z{J+1,...,M} with alphabet sizes |Zk| ≤ |Xk|, J + 1 ≤ k ≤M .

The main goal of this paper is to prove Lemma 2.2. The proof is difficult because A∗
1

has a complicated geometry. First of all, consider specific auxiliary variables Z{J+1,...,M}.

Then choosing coordinate planes yi = Ri = 0, 1 ≤ i ≤ M , and yM+l = Dl = 0, 1 ≤ l ≤ L,

note that distortion equations (2.3) are all parallel to coordinate planes, and hence form an

orthant, whose analysis is tractable. On the other hand, the rate equations (2.2) are not all

parallel to coordinate planes, leading to a complicated region. In this backdrop, in Sec. 3 we

consider the distortion-extracted rate region given by (2.2), and find a decomposition into

finite number of orthants. Based on such decomposition, in Sec. 4 we write A∗
1 as a finite

union of component regions that are formed by orthants. Finally, using such component

regions, the extreme points in Lemma 2.2 are characterized in Sec. 5 with the help of certain

linear combination properties.

3 Geometry of Distortion-Extracted Rate Region

We first consider the rate region formed by rate conditions (2.2). More generally, consider

random variables (X{1,...,M}, S, Z{1,...,M}) following the joint distribution

p(x{1,...,M}, s)

M
∏

k=1

qk(zk|xk). (3.1)

In this section, we fix p(x{1,...,M}, s) as well as all qk(zk|xk), 1 ≤ k ≤ M . Further, define B∗

as the set of rate M-vectors R{1,...,M} satisfying

I(XI ;ZI |ZIc , S) ≤
∑

i∈I

Ri, (3.2)

where condition (3.2) holds for all I ⊆ {1, ...,M} \ ∅. We call B∗ the distortion-extracted

rate region because it is delinked from distortion measures. Of course, we also do not impose

the original restrictions Zm = Xm, 1 ≤ m ≤ J . Next we find the extreme points of B∗. In

our analysis, we shall assume that there is no degeneracy, i.e., any extraneous Markov chain

property, not dictated by the form (3.1) of joint distribution p, does not hold. Note that the

nondegeneracy requirement is mild, and met if all random variables under consideration are

statistically dependent.
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3.1 Number of Extreme Points: Upper Bound

Lemma 3.1 Suppose there exists rate M-vector R{1,...,M} such that

I (XI ;ZI |ZIc, S) =
∑

i∈I

Ri (3.3)

I (XI′;ZI′|ZI′c , S) =
∑

i∈I′

Ri (3.4)

simultaneously hold for some distinct sets I, I ′ ⊆ {1, ...,M}\∅. Then either I ⊂ I ′ or I ′ ⊂ I.

The proof is involved, and makes use of a series of new information-theoretic relations

involving (X{1,...,M}, S, Z{1,...,M}). It is given in Appendix A.

Lemma 3.2 B∗ has at most M ! extreme points.

Proof: At each extreme point of B∗,M of the 2M−1 constraints given by (3.2) are active.

Therefore, in view of Lemma 3.1, the number of extreme points of B∗ is upper bounded by

the number of possible ways one can have

I(1) ⊂ I(2) ⊂ ... ⊂ I(m) ⊂ I(m+1) ⊂ ... ⊂ I(M−1) ⊂ I(M),

where I(m) ⊆ {1, ...,M} with cardinality |I(m)| = m, 1 ≤ m ≤ M . To begin with, we have

the only choice I(M) = {1, ...,M}. However, given any I(m+1) (1 ≤ m < M), one can choose

I(m) by discarding one of the m + 1 elements of I(m+1). Hence one can choose the entire

sequence of sets {I(m)}Mm=1 in M × (M − 1)× ...× 2 =M ! possible ways. Hence the result.

�

Remark 3.3 The above argument does not clarify whether allM ! points under consideration

are distinct. Hence we can claim only an upper bound.

3.2 Number of Extreme Points: Lower Bound

Lemma 3.4 The rate M-vector R{1,...,M} such that

Ri = I(Xi;Zi|Z{1,...,i−1}, S), 1 ≤ i ≤M, (3.5)

is an extreme point of B∗.
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Remark 3.5 By Lemma A.7 and (3.5), we have

I (XI ;ZI |ZIc , S) ≤
∑

i∈I

I
(

Xi;Zi|Z{1,...,i−1}, S
)

=
∑

i∈I

Ri (3.6)

for all I ⊆ {1, ...,M} \ ∅. Thus, by (3.2), R{1,...,M} ∈ B∗.

Proof: It is enough to show that the given R{1,...,M} makes M constraints, given in (3.2),

active. From (3.5), we can write

M
∑

i=m

I(Xi;Zi|ZI{1,...,i−1}
, S) =

M
∑

i=m

Ri (3.7)

for each 1 ≤ m ≤M . Further, by Corollary A.6, (3.7) is same as

I
(

X{m,...,M};Z{m,...,M}|Z{1,...,m−1}, S
)

=
M
∑

i=m

Ri, 1 ≤ m ≤M, (3.8)

which makes M constraints, given in (3.2), active. This completes the proof. �

Now the indices {1, ...,M} in (3.5) can be permuted to obtain M ! extreme points. Im-

portantly, these extreme points are all distinct due to the nondegeneracy assumption.

Corollary 3.6 B∗ has at least M ! extreme points.

Remark 3.7 By Lemma 3.2 and Corollary 3.6, B∗ has exactly M ! extreme points, each of

which takes the form (3.5) except that the indices {1, ...,M} undergo suitable permutation.

(As it is, (3.5) corresponds to identity permutation.)

4 Decomposition of A∗
1

Now we move on to the rate-distortion region A∗
1. Specifically, consider subset A∗

1({qk})

of A∗
1 defined by (2.1)–(2.3) for given conditional distributions qk(zk|xk), J + 1 ≤ k ≤ M .

Of course, A∗
1 =

⋃

A∗
1({qk}), where the union is taken over all {qk}. Note that, like A∗

1,

A∗
1({qk}) is a subset of the (M + L)-dimensional real space. However, although A∗

1 is not

necessarily convex, each A∗
1({qk}) is convex. Further, every extreme point ofA∗

1 is an extreme

point of some A∗
1({qk}). Finally, notice that the projection of A∗

1({qk}) onto the space of M

rate coordinates is the same as B∗ with the choice Zm = Xm, 1 ≤ m ≤ J (which does not
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violate our degeneracy assumption), whereas the projection onto the space of L distortion

coordinates is simply a suitable orthant. Therefore, by Remark 3.7, A∗
1({qk}) possesses M !

extreme points, one of which, denoted (R0
{1,...,M}({qk}), D

0
{1,...,L}({qk})), is specified by (from

(3.5) and (2.3))

R0
i ({qk}) = I(Xi;Zi|Z{1,...,i−1}, S), 1 ≤ i ≤M (4.1)

D0
l ({qk}) = min

ψl

Edl(V, ψl(Z{1,...,M}, S)), 1 ≤ l ≤ L, (4.2)

where Zm = Xm, 1 ≤ m ≤ J . In general, any extreme point (Rπ
{1,...,M}({qk}), D

π
{1,...,L}({qk}))

is generated by a suitable permutation (bijection) P π : {1, ...,M} → {1, ...,M}, where

π takes M ! values, say, {0, ...,M ! − 1} (we set P 0 to be the identity permutation). In

other words, in (4.1) and (4.2), each occurrence of index i is replaced by Pπ(i). As regards

dependence on π, vectors Rπ
{1,...,M}({qk}) are all distinct (as mentioned earlier), whereas

vectors Dπ
{1,...,L}({qk}) are all identical.

At this point, denote the orthant specified by (Rπ
{1,...,M}({qk}), D

π
{1,...,L}({qk})) as

A∗
1;π({qk}) = {(R{1,...,M}, D{1,...,L}) : R

π
i ({qk}) ≤ Ri, 1 ≤ i ≤M ;Dπ

l ({qk}) ≤ Dl, 1 ≤ l ≤ L}

(4.3)

for 0 ≤ π ≤M !− 1, and all possible {qk}. Clearly,

A∗
1({qk}) = conv

(

M !−1
⋃

π=0

A∗
1;π({qk})

)

,

where conv(·) indicates ‘convex hull of’. Consequently, we have

conv(A∗
1) = conv





⋃

{qk}

A∗
1({qk})



 = conv





⋃

{qk}

M !−1
⋃

π=0

A∗
1;π({qk})



 . (4.4)

Now, interchanging the union operations in the last term in (4.4), and defining

A∗
1;π =

⋃

{qk}

A∗
1;π({qk}), (4.5)

we obtain

conv(A∗
1) = conv

(

M !−1
⋃

π=0

A∗
1;π

)

. (4.6)

In view of (4.6), every extreme point of A∗
1 is an extreme point of some A∗

1;π. Consequently,

in order to establish Lemma 2.2, it is enough to show the following.
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Lemma 4.1 Every extreme point of A∗
1;π (0 ≤ π ≤ M ! − 1) corresponds to some choice of

auxiliary variables Z{J+1,...,M} with alphabet sizes |Zk| ≤ |Xk|, J + 1 ≤ k ≤M .

The rest of the note is devoted to the proof of Lemma 4.1. In particular, we shall prove

the result only for π = 0. Our analysis extends to other values of π in a straightforward

manner. At present, consider the real (M +L)-space, and let yi = 0, 1 ≤ i ≤M +L, be the

coordinate planes. In this space, an (M + L− 1)-hyperplane

M+L
∑

i=1

aiyi = c (4.7)

is specified by the direction cosine vector (a1, ..., aM+L) subject to
∑M+L

i=1 a2i = 1, and the

intercept c. At this point, identifying yi = Ri, 1 ≤ i ≤ M , and yM+l = Dl, 1 ≤ l ≤ L, note

that A∗
1;0 lies in the nonnegative orthant. Further, every extreme point of A∗

1;0 has a tangent

hyperplane of the form (4.7), whose direction cosines and intercept are nonnegative (ai ≥ 0,

1 ≤ i ≤M +L; c ≥ 0). Conversely, for any (a1, ..., aM+L) with ai ≥ 0, 1 ≤ i ≤M +L, there

exists c ≥ 0 such that the hyperplane (4.7) is tangent to A∗
1;0 at some extreme point. Hence

we obtain the following result.

Corollary 4.2 The set of extreme points of A∗
1;0 is given by

{

arg min
(R{1,...,M},D{1,...,L})∈A

∗
1;0

(

M
∑

i=1

aiRi +

L
∑

l=1

aM+lDl

)

:

M+L
∑

i=1

a2i = 1; ai ≥ 0, 1 ≤ i ≤M + L

}

.

(4.8)

By (4.3) and (4.5), every minimizer in (4.8) is of the form (R0
{1,...,M}({qk}), D

0
{1,...,L}({qk}))

for some {qk}. Further, using Zm = Xm, 1 ≤ m ≤ J , in (4.1), notice that R0
{1,...,J}({qk})

does not depend on ({qk}). Hence we set a1 = ... = aJ = 0 without loss of generality (and

scale the remaining direction cosines appropriately) to obtain the following.

Corollary 4.3 The set of extreme points of A∗
1;0 is given by the set of rate-distortion vectors

(R0
{1,...,M}({qk}), D

0
{1,...,L}({qk})) such that {qk} minimizes

M
∑

i=J+1

aiR
0
i ({qk}) +

L
∑

l=1

aM+lD
0
l ({qk}), (4.9)

and direction cosine vector a{J+1,...,M+L} varies through admissible values.
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Note that Lemma 4.1 follows for π = 0 (corresponding to identity permutation P 0), if

we lose no generality by restricting to minimizers {qk} of (4.9) that satisfy |Zk| ≤ |Xk|,

J + 1 ≤ k ≤ M . We shall show that the last condition indeed holds as a consequence of

certain linear combination properties.

5 Linear Combination Properties

5.1 Change of Variables

For J + 1 ≤ k ≤ M , denote marginal distributions of Xk and Zk by pk(xk) and p′k(zk),

respectively, and conditional distribution of Xk given Zk by q′k(xk|zk). Note that pk(xk) is

specified by marginalizing the source distribution p(x{1,...,M}, s, v). Further, by Bayes’ rule,

we have pk(xk)qk(zk|xk) = p′k(zk)q
′
k(xk|zk). Of course, one completely specifies both p′k and

q′k by specifying qk. At the same time, rather than varying qk, we can equivalently vary the

pair (p′k, q
′
k) subject to the admissibility condition

pk(xk) =
∑

zk∈Zk

p′k(zk)q
′
k(xk|zk). (5.1)

Apart from the above specific notation, we shall denote by ‘r’ generic distributions. For

example, r(y, u|w) indicates the joint distribution of (Y, U) conditioned on W .

At this point, consider identity permutation P 0 of {1, ...,M}, and, correspondingly, the

set A∗
1;0({p

′
k, q

′
k}). Here, we recall that variation of {qk}, and variation of {p′k, q

′
k} subject

to (5.1) are equivalent, and, in a slight abuse of notation, denote by A∗
1;0({p

′
k, q

′
k}) the set

function of {p′k, q
′
k} equalling A∗

1;π({qk}). Subsequently, we shall make analogous change of

variables without explicit mention. Using Zm = Xm, 1 ≤ m ≤ J , in (4.1) and (4.2), we have

R0
i ({p

′
k, q

′
k}) = H(Xi|X{1,...,i−1}, S), 1 ≤ i ≤ J (5.2)

R0
i ({p

′
k, q

′
k}) = I(Xi;Zi|X{1,...,J}, Z{J+1,...,i−1}, S), J + 1 ≤ i ≤M (5.3)

D0
l ({p

′
k, q

′
k}) = min

ψl

Edl(V, ψl(X{1,...,J}, Z{J+1,...,M}, S)), 1 ≤ l ≤ L. (5.4)

As mentioned earlier, and by (5.2), R0
{1,...,J}({p

′
k, q

′
k}) does not depend on ({p′k, q

′
k}). How-

ever, the remaining rate and distortion components, given by (5.3) and (5.4), do exhibit

dependence on ({p′k, q
′
k}).

Next we isolate the dependence of individual rate as well as distortion component on in-

dividual pair (p′k, q
′
k), while keeping the rest of the pairs fixed. We highlight the dependence

9



on (p′k, q
′
k) by dropping the rest of the pairs {(p′κ, q

′
κ)}κ 6=k from the argument. Specifically,

we show that each R0
i (p

′
k, q

′
k) (k ≤ i ≤M) and each D0

l (p
′
k, q

′
k) (1 ≤ l ≤ L) is a linear combi-

nation of functionals of q′k(·|zk)’s weighted by p′k(zk)’s. Here q
′
k(·|zk) denotes the probability

vector {q′k(xk|zk)}xk∈Xk
for a given zk ∈ Zk.

5.2 Rate Components

Consider J + 1 ≤ k ≤ i ≤M . From (5.3), we have

R0
i (p

′
k, q

′
k) = I(Xi;Zi|X{1,...,J}, Z{J+1,...,i−1}, S)

= H(Xi|X{1,...,J}, Z{J+1,...,i−1}, S)−H(Xi|X{1,...,J}, Z{J+1,...,i}, S). (5.5)

Further, denote by ∆Xk
the (|Xk| − 1)-dimensional probability simplex, i.e., the set of prob-

ability vectors defined on Xk.

Lemma 5.1 If J + 1 ≤ k ≤ i ≤M , then

H(Xi|X{1,...,J}, Z{J+1,...,i−1}, S) =
∑

zk∈Zk

p′k(zk)Φ
(1)
ki (q

′
k(·|zk))

for some functional Φ
(1)
ki defined on ∆Xk

.

Proof: First note that, if i = k, then the target entropy does not depend on (p′k, q
′
k),

and Φ
(1)
ki reduces to a trivial constant. A more interesting situation arises when i > k. In

this case, verify that k ∈ {J +1, ..., i− 1}. Now write U = (X{1,...,J}, Z{J+1,...,i−1}\{k}, S), and

verify that

Zk → Xk → (U,Xi) (5.6)

forms a Markov chain. Hence we obtain

H(Xi|X{1,...,J}, Z{J+1,...,i−1}, S) = H(Xi|Zk, U)

= −
∑

(xi,zk,u)

r(xi, zk, u) log
r(xi, zk, u)

r(zk, u)

= −
∑

(xi,zk,u)

∑

xk

p′k(zk)q
′
k(xk|zk)r(xi, u|xk) log

∑

xk
p′k(zk)q

′
k(xk|zk)r(xi, u|xk)

∑

xk
p′k(zk)q

′
k(xk|zk)r(u|xk)

(5.7)

= −
∑

zk

p′k(zk)
∑

(xi,u)

∑

xk

q′k(xk|zk)r(xi, u|xk) log

∑

xk
q′k(xk|zk)r(xi, u|xk)

∑

xk
q′k(xk|zk)r(u|xk)

(5.8)

=
∑

zk

p′k(zk)Φ
(1)
ki (q

′
k(·|zk)). (5.9)
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Here (5.7) follows by noting Markov chain (5.6), and writing

r(zk, xi, u) =
∑

xk

r(zk, xk, xi, u) =
∑

xk

p′k(zk)q
′
k(xk|zk)r(xi, u|xk)

r(zk, u) =
∑

xk

p′k(zk)q
′
k(xk|zk)r(u|xk).

Further, (5.8) follows by rearranging, and by canceling out p′k(zk) from the numerator and

denominator of the argument of ‘log’. Finally, (5.9) follows by defining the functional

Φ
(1)
ki (t) = −

∑

(xi,u)

∑

xk

t(xk)r(xi, u|xk) log

∑

xk
t(xk)r(xi, u|xk)

∑

xk
t(xk)r(u|xk)

,

where t = {t(xk) : xk ∈ Xk} is any probability vector on Xk. �

Adopting a similar approach, we also obtain the following.

Lemma 5.2 If J + 1 ≤ k ≤ i ≤M , then

H(Xi|X{1,...,J}, Z{J+1,...,i}, S) =
∑

zk∈Zk

p′k(zk)Φ
(2)
ki (q

′
k(·|zk))

for some functional Φ
(2)
ki defined on ∆Xk

.

Noting (5.5), combining Lemmas 5.1 and 5.2, and writing Φki = Φ
(1)
ki − Φ

(2)
ki , we obtain

the following corollary.

Corollary 5.3 If J + 1 ≤ k ≤ i ≤M , then

R0
i (p

′
k, q

′
k) =

∑

zk∈Zk

p′k(zk)Φki(q
′
k(·|zk))

for some functional Φki defined on ∆Xk
.

5.3 Distortion Components

Lemma 5.4 For J + 1 ≤ k ≤M , and 1 ≤ l ≤ L, we have

D0
l (p

′
k, q

′
k) =

∑

zk∈Zk

p′k(zk)Ψkl(q
′
k(·|zk))

for some functional Ψkl defined on ∆Xk
.
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Proof: Write U = (X{1,...,J}, Z{J+1,...,M}\{k}, S), and verify that

Zk → Xk → (U, V ) (5.10)

forms a Markov chain. Hence from (5.4), we obtain

D0
l (p

′
k, q

′
k) = min

ψl

Edl(V, ψl(U,Zk))

= min
ψl

∑

(v,u,zk)

r(u, v, zk)dl(v, ψl(u, zk))

= min
ψl

∑

(v,u,zk)

∑

xk

p′k(zk)q
′
k(xk|zk)r(u, v|xk)dl(v, ψl(u, zk)) (5.11)

=
∑

zk

p′k(zk)
∑

u

min
v̂l





∑

(v,xk)

q′k(xk|zk)r(u, v|xk)dl(v, v̂l)



 (5.12)

=
∑

zk

p′k(zk)Ψkl(q
′
k(·|zk)). (5.13)

Here (5.11) follows by noting Markov chain (5.10), and writing

r(u, v, zk) =
∑

xk

r(u, v, xk, zk) =
∑

xk

p′k(zk)q
′
k(xk|zk)r(u, v|xk).

Further, (5.12) follows by rearranging. Finally, (5.13) follows by defining the functional

Ψkl(t) =
∑

u

min
v̂l





∑

(v,xk)

t(xk)r(u, v|xk)dl(v, v̂l)



 ,

where t = {t(xk) : xk ∈ Xk} is any probability vector on Xk. �

5.4 Minimization of Linear Combination

At this time, consider the setting of Corollary 4.3, i.e., a1 = ... = aJ = 0.

Lemma 5.5 Pick any J +1 ≤ k ≤M , and fix admissible a{J+1,...,M+L} and {(p′κ, q
′
κ)}κ 6=k in

an arbitrary manner. Then there exists a minimizer (p′k, q
′
k) of the problem

min
(p′

k
, q

′

k
) subject to (5.1)

M
∑

i=J+1

aiR
0
i (p

′
k, q

′
k) +

L
∑

l=1

aM+lD
0
l (p

′
k, q

′
k)

such that p′k(zk) is defined on alphabet Zk with size |Zk| ≤ |Xk| (and hence q′k(xk|zk) is

specified by at most |Xk| probability vectors defined on Xk).

12



Proof: Given a{J+1,...,M+L} and {(p′κ, q
′
κ)}κ 6=k, consider

ω =

M
∑

i=J+1

aiR
0
i (p

′
k, q

′
k) +

L
∑

l=1

aM+lD
0
l (p

′
k, q

′
k),

and denote by Ω the set of admissible values of ω. Further, denote ω∗ = minω∈Ω ω. Now, by

Corollary 5.3 and Lemma 5.4, we have

ω =
∑

zk∈Zk

p′k(zk)Θ(q′k(·|zk)), (5.14)

where Θ(t) =
∑M

i=J+1 aiΦki(t)+
∑L

l=1 aM+lΨkl(t) is defined on ∆Xk
. Note that Θ is continuous

and bounded, and the (|Xk| − 1)-dimensional probability simplex ∆Xk
is compact. Now

consider the mapping t→ (t,Θ(t)), and denote by S the image of ∆Xk
under this mapping.

Of course, S is connected and compact, and S has dimensionality |Xk|. Therefore, by

Fenchel-Eggleston strengthening of Caratheodory’s theorem, any point in conv(S) is a linear

combination of at most |Xk| points in S. Further, in view of (5.1) and (5.14), any pair (pk, ω)

belongs to conv(S). In particular, set Ω of admissible ω, where source distribution pk is fixed

by problem statement, is given by

Ω = {ω : (pk, ω) ∈ conv(S)}.

In other words, every admissible ω ∈ Ω, including ω∗, can be expressed as in (5.14) with

|Zk| ≤ |Xk|. This completes the proof. �

Corollary 5.6 For any admissible a{J+1,...,M+L}, there exists a minimizer {p′k, q
′
k} of the

problem

min
{p′

k
, q

′

k
} subject to (5.1)

M
∑

i=J+1

aiR
0
i ({p

′
k, q

′
k}) +

L
∑

l=1

aM+lD
0
l ({p

′
k, q

′
k})

such that each p′k(zk) (J + 1 ≤ k ≤M) is defined on alphabet Zk with size |Zk| ≤ |Xk| (and

hence each q′k(xk|zk) is specified by at most |Xk| probability vectors defined on Xk).

Proof: We shall prove the result by contradiction. Suppose there exists admissible

a{J+1,...,M+L} such that a minimizer {p′k, q
′
k} with |Zk| ≤ |Xk|, J+1 ≤ k ≤M , does not exist.

Pick such a{J+1,...,M+L}, and compute the minimum value φ of the objective function. By

supposition, any corresponding minimizer {p′k, q
′
k} has |Zi| > |Xi| for some J + 1 ≤ i ≤ M .

We now undertake a procedure such that the minimum value does not increase at any stage.

Specifically, choose k = J + 1, and keep {(p′κ, q
′
κ)}κ 6=k fixed. By Lemma 5.5, the objective

13



function is no greater than φ for some new choice (p′k, q
′
k) with |Zk| ≤ |Xk|. Update (p′k, q

′
k)

to this new choice. Next choose k = J + 2, keep {(p′κ, q
′
κ)}κ 6=k fixed, and update (p′k, q

′
k) (in

view of Lemma 5.5) such that the objective function is no greater than φ, yet |Zk| ≤ |Xk|.

Continue this procedure till k = M . Finally, we have a new {(p′k, q
′
k)} with |Zk| ≤ |Xk|,

J + 1 ≤ k ≤ M , such that the corresponding objective function is no greater than φ. This

is a contradiction. �

Proofs of Lemmas 4.1 and 2.2: Note that {qk} is completely determined by {p′k, q
′
k}

by Bayes’ rule

qk(zk|xk) = p′k(zk)q
′
k(xk|zk)/pk(xk),

because pk(xk) is specified by the problem statement. Therefore, by Corollary 5.6, we lose no

generality by restricting to minimizers {qk} of (4.9) that satisfy |Zk| ≤ |Xk|, J +1 ≤ k ≤M .

Hence Lemma 4.1 follows for π = 0 (corresponding to identity permutation P 0). Further, a

similar analysis straightforwardly establishes Lemma 4.1 for each 1 ≤ π ≤ M ! − 1. Finally,

in view of (4.6), Lemma 2.2 follows. �

A Proof of Lemma 3.1

Lemma A.1 Suppose sets I, I ′ ⊆ {1, ...,M} \ ∅ are disjoint. Then

I
(

XI ;ZI |Z(I∪I′)c , S
)

= I (XI ;ZI |ZIc, S) + I
(

ZI ;ZI′|Z(I∪I′)c , S
)

. (A.1)

Proof: First expand

I
(

ZI ;XI , ZI′|Z(I∪I′)c , S
)

= I
(

ZI ;ZI′|Z(I∪I′)c , S
)

+ I (ZI ;XI |ZIc , S) , (A.2)

applying the chain rule of mutual entropy. Expand the same quantity again, now applying

the chain rule in a different order:

I
(

ZI ;XI , ZI′|Z(I∪I′)c , S
)

= I
(

ZI ;XI |Z(I∪I′)c , S
)

+ I
(

ZI ;ZI′|XI , Z(I∪I′)c , S
)

. (A.3)

Note that ZI → (XI , Z(I∪I′)c , S) → ZI′ forms a Markov chain (since I and I ′ are distinct),

i.e.,

I
(

ZI ;ZI′|XI , Z(I∪I′)c , S
)

= 0

in (A.3). Hence, equating the right-hand sides of (A.2) and (A.3), and rearranging, we obtain

(A.1). �
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Lemma A.2 Suppose sets I, I ′ ⊆ {1, ...,M} \ ∅ are disjoint. Then

I
(

XI∪I′;ZI∪I′|Z(I∪I′)c , S
)

= I
(

XI ;ZI |Z(I∪I′)c , S
)

+ I (XI′;ZI′|ZI′c , S) . (A.4)

Proof: For any quadruple (U1, U2, V1, V2) of random variables, we can write

I(U1, U2;V1, V2) = I(U1, U2;V1) + I(U1, U2;V2|V1)

= I(U1;V1) + I(U2;V1|U1) + I(U2;V2|V1) + I(U1;V2|V1, U2) (A.5)

by repeatedly applying the chain rule of mutual information. Identifying (U1, U2, V1, V2) with

(XI , XI′, ZI , ZI′), and applying formula (A.5) (while maintaining conditioning on (Z(I∪I′)c , S)

throughout), we obtain

I
(

XI∪I′;ZI∪I′|Z(I∪I′)c , S
)

= I
(

XI ;ZI |Z(I∪I′)c , S
)

+ I
(

XI′;ZI |XI , Z(I∪I′)c , S
)

+ I (XI′ ;ZI′|ZI′c , S) + I (XI ;ZI′|XI′, ZI′c , S) . (A.6)

In (A.6), I
(

XI′;ZI |XI , Z(I∪I′)c , S
)

= 0 and I (XI ;ZI′|XI′, ZI′c , S) = 0, respectively, because

ZI → (XI , Z(I∪I′)c , S) → XI′ and ZI′ → (XI′ , ZI′c , S) → XI form Markov chains (since I

and I ′ are distinct). Hence the result. �

More generally, any Î ⊆ {1, ...,M} \ ∅ can play the role of {1, ...,M} in the statement of

Lemma A.2 so that I ′c can be replaced by Î \ I ′ and (I ∪ I ′)c by Î \ (I ∪ I ′). In that case,

Lemma A.2 immediately takes the following form:

Corollary A.3 Suppose sets I, I ′ ⊆ Î are disjoint, where Î ⊆ {1, ...,M} \ ∅. Then

I
(

XI∪I′;ZI∪I′|ZÎ\(I∪I′), S
)

= I
(

XI ;ZI |ZÎ\(I∪I′), S
)

+ I
(

XI′;ZI′|ZÎ\I′ , S
)

. (A.7)

Now consider arbitrary I ⊆ {1, ...,M} \ ∅ with cardinality |I| = m, and denote its

elements by i(1 : m). Further, setting Î = {1, ...,M}, and letting ({i(1)}, I \{i(1)}) play the

role of (I, I ′) in (A.7), we have

I (XI ;ZI |ZIc , S) = I
(

Xi(1);Zi(1)|ZIc , S
)

+ I
(

XI\{i(1)};ZI\{i(1)}|Z(I\{i(1)})c , S
)

. (A.8)

Next set Î = I \ {i(1)} = {i(2 : m)}, let ({i(2)}, I \ {i(1 : 2)}) play the role of (I, I ′) in

(A.7), and continue so as to obtain

I (XI ;ZI |ZIc , S) =
m
∑

j=1

I
(

Xi(j);Zi(j)|Z(I\{i(1:j−1)})c , S
)

. (A.9)

Noting (I \ {i(1 : j − 1)})c = {1, ...,M} \ {i(j : m)} in (A.9), we have the following result.

15



Corollary A.4 Suppose set I ⊆ {1, ...,M} \ ∅ has cardinality |I| = m (1 ≤ m ≤ M), and

denote elements of I by i(j), 1 ≤ j ≤ m. Then

I (XI ;ZI |ZIc, S) =

m
∑

j=1

I
(

Xi(j);Zi(j)|Z{1,...,M}\{i(j:m)}, S
)

. (A.10)

Further, suppose Î = {1, ..., m} for some 2 ≤ m ≤ M . For the choice I = {1, ..., m− 1}

and I ′ = {m}, (A.7) becomes

I
(

X{1,...,m};Z{1,...,m}|S
)

= I
(

X{1,...,m−1};Z{1,...,m−1}|S
)

+ I
(

Ym;Zm|Z{1,...,m−1}, S
)

, (A.11)

which provides a useful chain rule. Applying this repeatedly, we obtain the following.

Corollary A.5 For any 1 ≤ m ≤M ,

I
(

X{1,...,m};Z{1,...,m}|S
)

=

m
∑

i=1

I
(

Xi;Zi|Z{1,...,i−1}, S
)

. (A.12)

In fact, Corollary A.5 can be further generalized as follows. For any 1 ≤ m < M , set

Î = {1, ...,M}, I = {1, ..., m} and I ′ = {m+ 1, ...,M} in Lemma A.3 to obtain

I
(

X{1,...,M};Z{1,...,M}|S
)

= I
(

X{1,...,m};Z{1,...,m}|S
)

+ I
(

X{m+1,...,M};Z{m+1,...,M}|Z{1,...,m}, S
)

.

(A.13)

Expanding I
(

X{1,...,M};Z{1,...,M}|S
)

and I
(

X{1,...,m};Z{1,...,m}|S
)

using Corollary A.5, from

(A.13) we obtain the following.

Corollary A.6 For any 1 ≤ m < M ,

I
(

X{m+1,...,M};Z{m+1,...,M}|Z{1,...,m}, S
)

=

M
∑

i=m+1

I
(

Xi;Zi|Z{1,...,i−1}, S
)

. (A.14)

Lemma A.7 For any set I ⊆ {1, ...,M} \ ∅,

I (XI ;ZI |ZIc, S) ≤
∑

i∈I

I
(

Xi;Zi|Z{1,...,i−1}, S
)

. (A.15)

Proof: Denote m = |I|, and let the elements i(1), i(2), ..., i(m) of I be arranged in

ascending order. Consequently, note

{1, ..., i(j)− 1} ⊆ {1, ...,M} \ {i(j : m)}, 1 ≤ j ≤ m. (A.16)
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Therefore, we have

{1, ...,M} \ {i(j : m)} = {1, ..., i(j)− 1} ∪ Ĩ(j), (A.17)

where

Ĩ(j) = ({1, ...,M} \ {i(j : m)}) \ {1, ..., i(j)− 1}, 1 ≤ j ≤ m.

In view of (A.17), we can write

I
(

Xi(j);Zi(j)|Z{1,...,M}\{i(j:m)}, S
)

= I
(

Xi(j);Zi(j)|Z{1,...,i(j)−1}, ZĨ(j), S
)

= H
(

Zi(j)|Z{1,...,i(j)−1}, ZĨ(j), S
)

−H
(

Zi(j)|Xi(j), Z{1,...,i(j)−1}, ZĨ(j), S
)

= H
(

Zi(j)|Z{1,...,i(j)−1}, ZĨ(j), S
)

−H
(

Zi(j)|Xi(j), Z{1,...,i(j)−1}, S
)

(A.18)

≤ H
(

Zi(j)|Z{1,...,i(j)−1}, S
)

−H
(

Zi(j)|Xi(j), Z{1,...,i(j)−1}, S
)

(A.19)

= I
(

Xi(j);Zi(j)|Z{1,...,i(j)−1}, S
)

. (A.20)

Here (A.18) follows by noting

H
(

Zi(j)|Xi(j), Z{1,...,i(j)−1}, ZĨ(j), S
)

= H
(

Zi(j)|Xi(j)

)

= H
(

Zi(j)|Xi(j), Z{1,...,i(j)−1}, S
)

due to the fact that Zi(j) → Xi(j) → (Z{1,...,i(j)−1}, ZĨ(j), S) forms a Markov chain. Further,

(A.19) follows because conditioning reduces entropy. Now summing (A.20) over 1 ≤ j ≤ m,

we obtain

m
∑

j=1

I
(

Xi(j);Zi(j)|Z{1,...,M}\{i(j:m)}, S
)

≤
m
∑

j=1

I
(

Xi(j);Zi(j)|Z{1,...,i(j)−1}, S
)

. (A.21)

By Corollary A.4, the left-hand side of (A.21) equals I (XI ;ZI |ZIc, S). Also, note that the

right-hand side of (A.21) is same as the right-hand side of (A.15). Hence (A.21) is the desired

result. �

Proof of Lemma 3.1: It is enough to show the following: if we have I \ I ′ 6= ∅

as well as I ′ \ I 6= ∅, then there exists no rate M-vector R{1,...,M} ∈ B∗ such that (3.3)

and (3.4) hold simultaneously. To prove this, first we assume that (3.3) and (3.4) hold for

some R{1,...,M} ∈ B∗ and some (I, I ′) with the aforementioned property, and then detect a

contradiction.

First consider the case where I and I ′ are disjoint. Using (A.1) in (A.4), we obtain

I
(

XI∪I′;ZI∪I′|Z(I∪I′)c , S
)

= I (XI ;ZI |ZIc , S) + I (XI′;ZI′|ZI′c , S)

+I
(

ZI ;ZI′|Z(I∪I′)c , S
)

. (A.22)
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Now, adding (3.3) and (3.4) and comparing with (A.22), we have

∑

i∈I∪I′

Ri = I
(

XI∪I′ ;ZI∪I′|Z(I∪I′)c , S
)

− I
(

ZI ;ZI′|Z(I∪I′)c , S
)

< I
(

XI∪I′ ;ZI∪I′|Z(I∪I′)c , S
)

, (A.23)

because (ZI , (Z(I∪I′)c , S), ZI′) does not form a Markov chain. Note that (A.23) contradicts

condition (3.2) with I ∪ I ′ playing the role of I.

Next consider the case where I ∩ I ′ = Ĩ 6= {}. Writing I = (I \ Ĩ) ∪ Ĩ, from (3.3), we

have

∑

i∈I\Ĩ

Ri +
∑

i∈Ĩ

Ri = I (XI ;ZI |ZIc , S) = I
(

X(I\Ĩ)∪Ĩ ;Z(I\Ĩ)∪Ĩ |Z((I\Ĩ)∪Ĩ)c , S
)

= I
(

XI\Ĩ ;ZI\Ĩ |Z(I\Ĩ)
c , S
)

+ I (XĨ ;ZĨ |ZĨc, S) + I
(

ZI\Ĩ ;ZĨ |ZIc , S
)

(A.24)

in the same manner as (A.22) with (I \ Ĩ , Ĩ) playing the role of (I, I ′). Further, from (3.2),

note that
∑

i∈Ĩ

Ri ≥ I (XĨ ;ZĨ |ZĨc, S) . (A.25)

Using (A.25) in (A.24), we have

∑

i∈I\Ĩ

Ri =
∑

i∈I\I′

Ri ≤ I
(

XI\Ĩ ;ZI\Ĩ |Z(I\Ĩ)
c , S
)

+ I
(

ZI\Ĩ ;ZĨ |ZIc, S
)

. (A.26)

Adding (A.26) and (3.4), we obtain

∑

i∈I\I′

Ri +
∑

i∈I′

Ri =
∑

i∈I∪I′

Ri

≤ I
(

XI\Ĩ ;ZI\Ĩ |Z(I\Ĩ)
c , S
)

+ I
(

ZI\Ĩ ;ZĨ |ZIc, S
)

+ I (XI′;ZI′|ZI′c , S)

≤ I
(

XI∪I′;ZI∪I′|Z(I∪I′)c , S
)

−I
(

ZI\Ĩ ;ZI′|Z(I∪I′)c , S
)

+ I
(

ZI\Ĩ ;ZĨ |ZIc, S
)

, (A.27)

where the last step follows by comparing with (A.22), and letting (I \ Ĩ, I ′) play the role of

(I, I ′). Further, expand

I
(

ZI\Ĩ ;ZI′|Z(I∪I′)c , S
)

= H
(

ZI\Ĩ |Z(I∪I′)c , S
)

−H
(

ZI\Ĩ |ZI′∪(I∪I′)c , S
)

(A.28)

I
(

ZI\Ĩ ;ZĨ |ZIc, S
)

= H
(

ZI\Ĩ |ZIc , S
)

−H
(

ZI\Ĩ |ZĨ∪Ic , S
)

. (A.29)
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Now, note I ′ ∪ (I ∪ I ′)c = Ĩ ∪ Ic, and subtract (A.29) from (A.28) to obtain

I
(

ZI\Ĩ ;ZI′|Z(I∪I′)c , S
)

− I
(

ZI\Ĩ ;ZĨ |ZIc, S
)

= H
(

ZI\Ĩ |Z(I∪I′)c , S
)

−H
(

ZI\Ĩ |ZIc , S
)

= I
(

ZI\Ĩ ;ZI′\Ĩ |Z(I∪I′)c , S
)

(A.30)

> 0. (A.31)

Here (A.30) follows by noting Ic = (I ∪ I ′)c ∪ (I ′ \ Ĩ) with (I ∪ I ′)c and I ′ \ Ĩ disjoint.

Further, (A.31) follows due to the fact that (ZI\Ĩ , (Z(I∪I′)c , S), ZI′\Ĩ) do not form a Markov

chain. Using (A.31) in (A.27), we again obtain (A.23), which as earlier contradicts (3.2).

Hence the result. �
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