
Secrecy Capacity Region of Gaussian Broadcast
Channel

Ghadamali Bagherikaram, Abolfazl S. Motahari, Amir K. Khandani
Coding and Signal Transmission Laboratory,

Department of Electrical and Computer Engineering,
University of Waterloo, Waterloo, Ontario, N2L 3G1

Emails: {gbagheri,abolfazl,khandani}@cst.uwaterloo.ca

1 Abstract—In this paper, we first consider a scenario where
a source node wishes to broadcast two confidential messages
for two respective receivers, while a wire-taper also receives the
transmitted signal. We assume that the signals are transmitted
over additive white Gaussian noise channels. We characterize the
secrecy capacity region of this channel. Our achievable coding
scheme is based on superposition coding and the random binning.
We refer to this scheme as Secret Superposition Coding. The
converse proof combines the converse proof for the conventional
Gaussian broadcast channel and the perfect secrecy constraint.
This capacity region matches the capacity region of the broadcast
channel without security constraint. It also matches the secrecy
capacity of the wire-tap channel. Based on the rate characteri-
zation of the secure Gaussian broadcast channel, we then use
a multilevel coding approach for the slowly fading wire-tap.
We assume that the transmitter only knows the eavesdropper’s
channel. In this approach, source node sends secure layered
coding and the receiver viewed as a continuum ordered users. We
derive optimum power allocation for the layers which maximizes
the total average rate.

I. INTRODUCTION

The notion of information theoretic secrecy in communi-
cation systems was first introduced by Shannon in [1]. The
information theoretic secrecy requires that the received signal
of the eavesdropper not provide even a single bit information
about the transmitted messages. Wyner in [2] considered
a scenario in which a wire-tapper receives the transmitted
signal over a degraded channel with respect to the legitimate
receiver’s channel. He further assumed that the wire-tapper
has no computational limitations and knows the codebook
used by the transmitter. He measured the level of ignorance
at the eavesdropper by its equivocation and characterized
the capacity-equivocation region. Interestingly, a non-negative
perfect secrecy capacity is always achievable for this scenario.

Csiszar and Korner in [3], extended the Wyner’s work to
the general (non-degraded) broadcast channel with confidential
messages. They considered transmitting confidential informa-
tion to the legitimate receiver while transmitting common
information to both the legitimate receiver and the wire-
tapper. They established a capacity-equivocation region of this
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channel.
We recently studied a secure broadcast channel in [4],

where the source node transmits two independent messages
for two respective receivers in the presence of an additional
illegitimate receiver. In this work, we characterized the secrecy
capacity region of the degraded broadcast channel and showed
that secret superposition coding is optimal. In this scheme,
finding the optimal distribution when the channels are Gaus-
sian involves solving a functional, nonconvex optimization
problem. Usually nontrivial techniques and strong inequalities
are used to solve optimization problems of this sort. Indeed,
for the single user case, Leung-Yan-Cheong in [5] successfully
evaluated the capacity expression of the wire-tap channel by
using the entropy power inequality. Alternatively, it can also be
evaluated using a classical result from the Estimation Theory
and the relationship between mutual information and minimum
mean-squared error estimation.

The secrecy capacity of the conventional wire-tap channel
is studied in [6], [7], when the channels are slowly fading. In
these works, it is assumed that the fading is quasi-static and
the transmitter is not aware of the fading gains. The outage
probability is defined in these works. In an outage strategy,
the transmission rate is fixed and the information is secure
and reliably detected when the instantaneous main channel
is stronger than the instantaneous eavesdropper’s channel.
The term outage capacity refers to the maximum achievable
average rate. In [8] a broadcast strategy for the slowly fading
Gaussian point-to-point channel is introduced. In this strategy,
the transmitter uses a layered coding scheme and the receiver
is viewed as a continuum of ordered users.

In this paper, we first consider a natural extension of the
Gaussian wire-tap channel to the multi-user case. In this
scenario, a source node wishes to broadcast two confidential
messages for two respective receivers, while a wire-taper also
receives the transmitted signal. All broadcast channels are
assumed to be AWGN. We establish the secrecy capacity
region of this channel. Our achievable coding scheme is
based on superposition of Gaussian codebooks and the random
binning. We refer to this scheme as Secret Superposition Cod-
ing. This capacity region matches the capacity region of the
Gaussian broadcast channel without any security constraint.
It also matches the secrecy capacity of the Gaussian wire-
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Fig. 1. Gaussian Broadcast Channel with Confidential Messages

tap channel. Based on the rate characterization of the secure
broadcast channel, we then use broadcast strategy for the slow
fading wire-tap channel when the transmitter only knows the
eavesdropper’s channel. In broadcast strategy, source node
sends secure layered coding and the receiver viewed as a
continuum ordered users. We derive optimum power allocation
for the layers which maximizes the total average rate.

The rest of the paper is organized as follows. In section II we
introduce some preliminaries. In section III, we establish the
secrecy capacity region of the Gaussian broadcast channel. In
section IV, we introduce the secret multilevel coding approach
for the slowly fading wire-tap channel. We derive the optimum
power allocation for this scheme which maximize the total
average rate over all fading realizations. In Section V, we
conclude the paper.

II. PRELIMINARIES

In this paper, random variables are denoted by capital letters
(e.g. X) and their realizations are denoted by corresponding
lower case letters (e.g. x). The finite alphabet of a random
variable is denoted by a script letter (e.g. X ) and its probability
distribution is denoted by P (x). The vectors will be written
as xn = (x1, x2, ..., xn), where subscripted letters denote
the components and superscripted letters denote the vector.
Bold capital letters represent matrices (e.g. A). The notation
xi−1 denotes the vector (x1, x2, ..., xi−1) and the notation x̃i

denotes the vector (xi, xi+1, ..., xn). A similar notation will
be used for random variables and random vectors.

Consider a Gaussian Broadcast Channel with Confidential
Messages (G-BCCM) as depicted in Fig.1. The transmitter
wishes to send two independent messages (W1,W2) to the
respective receivers in n uses of the channel while insuring
perfect secrecy. At the time i, the signals received by the
destinations and the eavesdropper are given by

Y1i = Xi + N1i (1)
Y2i = Xi + N2i

Zi = Xi + N3i

where N1i, N2i and N3i represent the i.i.d additive Gaussian
noises with zero mean variances of σ2

1 , σ2
2 and σ2

3 at the
destinations and the eavesdropper respectively. We assume that

σ2
1 ≤ σ2

2 ≤ σ2
3 . A ((2nR1 , 2nR2), n) code for a broadcast

channel with confidential messages consists of a stochastic
encoder

f : ({1, 2, ..., 2nR1} × {1, 2, ..., 2nR2}) → Xn, (2)

and two decoders,

g1 : Yn
1 → {1, 2, ..., 2nR1} (3)

and

g2 : Yn
2 → {1, 2, ..., 2nR2}. (4)

The average probability of error is defined as the probability
that the decoded messages are not equal to the transmitted
messages; that is,

P (n)
e = P (g1(Y n

1 ) 6= W1 ∪ g2(Y n
2 ) 6= W2). (5)

The secrecy levels of confidential messages W1 and W2 are
measured at the eavesdropper in terms of equivocation rates
which are defined as follows.

Definition 1 The equivocation rates Re1, Re2 and Re12 for
the broadcast channel with confidential messages are:

Re1 =
1
n

H(W1|Zn), (6)

Re2 =
1
n

H(W2|Zn),

Re12 =
1
n

H(W1,W2|Zn).

The perfect secrecy rates R1 and R2 are the amount of
information that can be sent to the legitimate receivers not
only reliably but also confidentially.

Definition 2 A secrecy rate pair (R1, R2) is said to be
achievable if for any ε > 0, ε1 > 0, ε2 > 0, ε3 > 0, there
exists a sequence of ((2nR1 , 2nR2), n) codes, such that for
sufficiently large n, we have:

P (n)
e ≤ ε, (7)
Re1≥ R1 − ε1, (8)
Re2≥ R2 − ε2, (9)

Re12≥ R1 + R2 − ε3. (10)

In the above definition, the first condition concerns the reli-
ability, while the other conditions guarantee perfect secrecy
for each individual message and both messages as well. The
capacity region is defined as follows.

Definition 3 The capacity region of the broadcast channel
with confidential messages is the closure of the set of all
achievable rate pairs (R1, R2).



III. GAUSSIAN BROADCAST CHANNEL WITH
CONFIDENTIAL MESSAGES

In this section we consider the Gaussian broadcast channel
with confidential messages. In [4] we proved the following
theorem for the degraded BCCM

Theorem 1 The capacity region for transmitting independent
secret information over the degraded broadcast channel is the
convex hull of the closure of all (R1, R2) satisfying

R1≤ I(X; Y1|U)− I(X; Z|U), (11)
R2≤ I(U ; Y2)− I(U ; Z). (12)

for some joint distribution P (u)P (x|u)P (y1, y2, z|x).

Note that evaluating (11) and (12) for the fading channels in-
volves solving a functional, nonconvex optimization problem.
Usually nontrivial techniques and strong inequalities is used
to solve the optimization problems of this type. Indeed, for
the single user case, Leung-Yan-Cheong in [3] successfully
evaluated the capacity expression of wire-tap channel by using
the entropy power inequality. Alternatively, it can also be
evaluated using a classical result from estimation theory and
the relationship between mutual information and minimum
mean-squared error estimation. On the other hand, the entropy
power inequality is sufficient to establish the converse proof
of a gaussian broadcast channel without secrecy constraint.
Unfortunately, the traditional entropy power inequality does
not extend to the secret multi user case. Here, by using the
generalized version of the entropy power inequality, we show
that secret superposition coding with Gaussian codebook is
optimal.

At time i the received signals are modeled as (1). Assume
that transmitted power is limited to E[X2] ≤ P . Since the
channels are degraded, at time i, Y1i = Xi + N1i, Y2i =
Y1i + N

′
2i and Zi = Y2i + N

′
3i, where N1i are i.i.d N (0, σ2

1),
N
′
2i are i.i.d N (0, σ2

2−σ2
1), and N

′
3i’s are i.i.d N (0, σ2

3−σ2
2).

The following theorem illustrates the secrecy capacity region
of our channel.

Theorem 2 The secrecy capacity region of the Gaussian
broadcast channel with confidential messages is given by the
set of rates pairs (R1, R2) such that

R1≤ C

(
αP

σ2
1

)
− C

(
αP

σ2
3

)
, (13)

R2≤ C

(
(1− α)P
αP + σ2

2

)
− C

(
(1− α)P
αP + σ2

3

)
.

for some α ∈ [0, 1] and C(x) = 1
2 log(1 + x).

Proof:
Achievability: Let U ∼ N (0, (1−α)P ) and X

′ ∼ N (0, αP )
be independent and X = U + X

′ ∼ N (0, P ). Therefore,
the amount of I(X; Y1|U), I(X;Z|U), I(U ; Z) and I(U ; Y2)
can be easily evaluated. Now consider the following secure
superposition coding scheme:

1) Codebook Generation: Generate 2nI(U ;Y2) i.i.d Gaussian
codewords un with average power (1 − α)P and randomly
distribute these codewords into 2nR2 bins. Then index each
bin by w2 ∈ {1, 2, ..., 2nR2}. Generate an independent set of
2nI(X

′
;Y1) i.i.d Gaussian codewords x

′n with average power
αP . Then, Randomly distribute them into 2nR1 bins. Index
each bin by w1 ∈ {1, 2, ..., 2nR1}.

2) Encoding: To send messages w1 and w2, the transmitter
randomly chooses one of the codewords in bin w2, (say un)
and one of the codewords in bin w1 (say x

′n ). Then, simply
transmits xn = un + x

′n.
3) Decoding: The received signal at the legitimate receivers

are yn
1 and yn

2 respectively. Receiver D2 determines the unique
un such that (un, yn

2 ) are jointly typical and declares the index
of the bin containing un as the message received. If there is
none of such or more than of one such, an error is declared.
Receiver D1 uses successive cancelation method; first decodes
un and subtracts off yn

1 and then looks for the unique x
′n such

that (x
′n, yn

1 ) are jointly typical and declares the indexes of
the bin containing x

′n as the message received.
The error probability analysis and equivocation calculation

is given in [1] and may therefor be omitted here.
Converse: R2 is bounded as follows (See [1] for details):

nR2 ≤ I(Y n
2 ; Un|Z) = h(Y n

2 |Zn)− h(Y n
2 |Un, Zn) (14)

where h is differential entropy. The classical entropy power
inequality states that:

2
2
n h(Y n

2 +N
′n
3 ) ≥ 2

2
n h(Y n

2 ) + 2
2
n h(Nn′

3 )

Therefore, h(Y2|Z) can be written as follows:

h(Y n
2 |Zn) = h(Zn|Y n

2 ) + h(Y n
2 )− h(Zn)

=
n

2
log 2πe(σ2

3 − σ2
2) + h(Y n

2 )

− h(Y n
2 + Nn′

3 )

≤ n

2
log 2πe(σ2

3 − σ2
2) + h(Y n

2 )

− n

2
log(2

2
n h(Y n

2 ) + 2πe(σ2
3 − σ2

2))

On the other hand, for any fixed a ∈ R, the function

f(t, a) = t− n

2
log(2

2
n t + a)

is concave in t and has a global maximum at t = tmax. Thus,
h(Y n

2 |Zn) is maximized when Y n
2 (or equivalently Xn) has

Gaussian distribution. Hence,

h(Y n
2 |Zn) ≤ n

2
log 2πe(σ2

3 − σ2
2) +

n

2
log 2πe(P + σ2

2)

− n

2
log 2πe(P + σ2

3)

=
n

2
log

(
2πe(σ2

3 − σ2
2)(P + σ2

2)
P + σ2

3

)
(15)

Now consider the term h(Y n
2 |Un, Zn). This term is lower

bounded with h(Y n
2 |Un, Xn, Zn) = n

2 log 2πe(σ2
2) which is



greater than n
2 log 2πe(σ2

2(σ2
3−σ2

2)

σ2
3

). Hence,

n

2
log 2πe(

σ2
2(σ2

3 − σ2
2)

σ2
3

) ≤ h(Y n
2 |Un, Zn) ≤ h(Y n

2 |Zn) (16)

Inequalities (15) and (16) imply that there exists an α ∈ [0, 1]
such that

h(Y n
2 |Un, Zn) =

n

2
log

(
2πe(σ2

3 − σ2
2)(αP + σ2

2)
αP + σ2

3

)
(17)

Substituting (17) and (15) into (14) yields the desired bound

nR2 ≤ h(Y n
2 |Zn)− h(Y n

2 |Un, Zn)

≤ n

2
log

(
(P + σ2

2)(αP + σ2
3)

(P + σ2
3)(αP + σ2

2)

)

= nC

(
(1− α)P
αP + σ2

2

)
− nC

(
(1− α)P
αP + σ2

3

)
(18)

Note that the left side of (17), can be written as
h(Y n

2 , Zn|Un)− h(Zn|Un) which implies that

h(Y n
2 |Un)− h(Zn|Un) =

n

2
log

(
αP + σ2

2

αP + σ2
3

)
(19)

Since σ2
1 ≤ σ2

2 ≤ σ2
3 , there exists a 0 ≤ β ≤ 1 such that σ2

2 =
βσ2

1+(1−β)σ2
3 or equivalently Y n

2 = AY n
1 +AZn where, A =√

βIn and A =
√

1− βIn . According to the entropy power
inequality and the fact that h(AXn) = h(Xn)+ log(det(A)),
we have

n

2
log

(
β2

2
n h(Y n

1 |Un) + (1− β)2
2
n h(Zn|Uv)

)
− h(Zn|Un)

≤ n

2
log

(
αP + σ2

2

αP + σ2
3

)
(20)

After some manipulation on (20), we have

h(Y n
1 |Un)− h(Zn|Un)

≤ n

2
log

(
αP + σ2

2 + (β − 1)(αP + σ2
3)

β(αP + σ2
3)

)

=
n

2
log

(
αP + σ2

1

αP + σ2
3

)
(21)

The rate R1 is bounded as follows

nR1 ≤ I(Xn;Y n
1 |Un)− I(Xn;Zn) + I(Un; Zn)(22)

= h(Y n
1 |Un)− h(Y n

1 |Xn, Un) + h(Zn|Xn)
− h(Zn|Un)

= h(Y n
1 |Un)− h(Zn|Un) +

n

2
log(

σ2
3

σ2
1

)

(a)

≤ n

2
log

(
αP + σ2

1

αP + σ2
3

σ2
3

σ2
1

)

= nC

(
αP

σ2
1

)
− nC

(
αP

σ2
3

)

where (a) follows from (21).
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Fig. 2. Gaussian Wire-tap Channel

IV. A MULTILEVEL CODING APPROACH TO THE SLOWLY
FADING WIRE-TAP CHANNEL

As an application of the previous section, we describe a
strategy for a slowly fading wire-tap channel in this sec-
tion. We use the secure degraded broadcast channel from
the previous section to develop this broadcast strategy. This
strategy assumes an infinite number of ordered receivers
which are related to different channel realizations. First, some
preliminaries and definitions are given, and then the multilevel
coding approach is described. Here, we follow the steps of the
broadcast strategy for the slowly fading point-to-point channel
of [8].

A. Channel Model

Consider a wire-tap channel as depicted in Fig.2. The
transmitter wishes to communicate with the destination in the
presence of an eavesdropper. At time i, the signal received by
the destination and the eavesdropper are given as follows

Yi = hMXi + N1i (23)
Zi = hEXi + N2i

where Xi is the transmitted symbol and hM , hE are the
fading coefficients from the source to legitimate receiver and
to the eavesdropper respectively. The fading power gains of the
main and eavesdropper’s channels are denoted by s = |hM |2
and s

′
= |hE |2 respectively. N1i, N2i are the additive noise

samples, which are Gaussian i.i.d with zero mean and unit
variance. We assume that the main channel is slowly fading
and the eavesdropper’s channel is fixed. We also assume that
the transmitter knows only channel state information of the
eavesdropper channel. For each realization of hM there is an
achievable rate. Since the transmitter has no information about
the main channel and the channel is slowly fading then the
system is non-ergodic. Here, we are interested in the average
rate for various independent transmission blocks. The average
shall be calculated over the distribution of hM .

B. The Secret Multilevel Coding Approach

An equivalent broadcast channel for our channel is depicted
in Fig.3. In this Figure, the transmitter sends an infinite
number of secure layers of coded information. The receiver is
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equivalent to a continuum of ordered users. For each channel
realization hk

M with the fading power gain sk,the information
rate is R(sk). We drop the superscript k, and denote the
realization of the random variable S of fading power by s.
Therefore, the transmitter views the main channel as secure
degraded Gaussian broadcast channel with infinite number of
receivers. The result of the previous section for two receiver
can easily extended to arbitrary number of users. According
to theorem 2, the incremental differential secure rate is then
given by

dR(s)=

1
2

[
log

(
1 +

sρ(s)ds

1 + sI(s)

)
− log

(
1 +

s
′
ρ(s)ds

1 + s′I(s)

)]+

where ρ(s)ds is the transmit power of a layer parameterized
by s, intended for receiver s. As an approximation, the log
function may be discardedx. The function I(s) represents the
interference noise of the receivers indexed by u > s which
cannot be canceled at receiver s. The interference at receiver
s is, therefore, given by

I(s) =
∫ ∞

s

ρ(u)d(u) (24)

The total transmitted power is the summation of the power
assigned to the layers

P = I(0) =
∫ ∞

0

ρ(u)d(u) (25)

The total achievable rate for a fading realization s is an
integration of the incremental rates over all receivers which
successfully can decode the respective layer

R(s) =
1
2

∫ s

0

[
uρ(u)du

1 + uI(u)
− s

′
ρ(u)du

1 + s′I(u)

]+

(26)

Our goal is to maximize the total average rate over all fading
realizations with respect to the power distribution ρ(s) (or
equivalently, with respect to I(u), u ≥ 0) under the power

constraint of 25. The optimization problem can be written as

Rmax= max
I(u)

∫ ∞

0

R(u)f(u)du (27)

s.t

P= I(0) =
∫ ∞

0

ρ(u)d(u)

where f(u) is the probability distribution function (pdf) of
the fading power S. Nothing that the cumulative distribution
function (cdf) is F (u) =

∫ u

0
f(a)da, the optimization problem

can be written as

Rmax=
1
2

max
I(u)

∫ ∞

0

(1− F (u))G(u)du (28)

s.t

P= I(0) =
∫ ∞

0

ρ(u)d(u)

where G(u) =
[

u
1+uI(u) − s

′

1+s′I(u)

]+

ρ(u). Note that ρ(u) =

−I
′
(u). The functional of (28), therefore, can be written as

J(x, I(x), I
′
(x)) = (29)

−(1− F (x))

[
x

1 + xI(x)
− s

′

1 + s′I(x)

]+

I
′
(x)

The necessary condition for maximization of a integral of J
over x is

JI − d

dx
JI′ = 0 (30)

where JI means derivation of function J with respect to I and
similarly JI′ is the derivation of J with respect to I

′
. After

some mathematic, The optimum I(x) is given by

I(x) =

{
1−F (x)−(x−s

′
)f(x)

s′ (1−F (x))+x(x−s′ )f(x)
, max{s′ , x0} ≤ x ≤ x1;

0, else.

where x0 is determined by I(x0) = P , and x1 by I(x1) = 0.
As a special case, consider the Rayleigh flat fading channel.

The random variable S is exponentially distributed with

f(s) = e−s, F (s) = 1− e−s, s ≥ 0 (31)

Substituting of f(s) and F (s) into the optimum I(s) and
taking the derivative with respect to the fading power s yields
to the following optimum transmitter power policy

ρ(s)=

− d

ds
I(s) =

{
−s2+2(s

′
+1)s−s

′2

(s2−s′s+s′ )2
, max{s′ , s0} ≤ s ≤ s1;

0, else.

where s0 is the solution of the equation I(s0) = P , which is

s0 =
−1 + Ps

′
+

√
P 2s′2 + 2P (1− 2P )s′ + 4P + 1

2P

and s1 is determined by I(s1) = 0, which is

s1 = 1 + s
′



V. CONCLUSION

A generalization of the Gaussian wire-tap channel to the
case of two receivers and one eavesdropper is considered. We
established the perfect secrecy capacity region for this channel.
The achievability coding scheme is a secret superposition
scheme where randomization in the first layer helps the secrecy
of the second layer. The converse proof combines the converse
proof for the Gaussian broadcast channel without security
constraint and the perfect secrecy constraint. We proved that
the secret superposition scheme with Gaussian codebook is
optimal in G-BCCs. The converse proof is based on the the
entropy power inequality. Based on the rate characterization
of the secure Gaussian broadcast channel, a multilevel coding
approach for the slowly fading wire-tap is used. We assumed
that the transmitter only knows the eavesdropper’s channel. In
this approach, source node sends secure layered coding and
the receiver viewed as a continuum ordered users. We derived
optimum power allocation for the layers which maximizes the
total average

REFERENCES

[1] C. E. Shannon, “Communication Theory of Secrecy Systems”, Bell
System Technical Journal, vol. 28, pp. 656-715, October. 1949.

[2] A. Wyner, “The Wire-tap Channel”,Bell System Technical Journal, vol.
54, pp. 13551387, 1975

[3] I. Csiszar and J. Korner, “Broadcast Channels with Confidential Mes-
sages”, IEEE Trans. Inform. Theory, vol. 24, no. 3, pp. 339348, May
1978.

[4] G. Bagherikaram, A. S. Motahari and A. K. Khandani, “The Secrecy Rate
Region of the Broadcast Channel”, Allerton Conference on Communica-
tions, Control and Computing,, September 2008.

[5] S. K. Leung-Yan-Cheong and M. E. Hellman, “Gaussian Wiretap Chan-
nel”, IEEE Trans. Inform. Theory, vol. 24, no. 4, pp. 451456, July 1978.

[6] P. Parada and R. Blahut, “Secrecy Capacity of SIMO and Slow Fading
Channels”, Proc. IEEE Int. Symp. Information Theory, Adelaide, Aus-
tralia, Sep. 2005, pp. 21522155.

[7] J. Barros and M. R. D. Rodrigues, “Secrecy Capacity of Wireless
Channels”, Proc. IEEE Int. Symp. Information Theory, Seattle, WA, July
2006, pp. 356360.

[8] S. Shamai and A. Steiner, “A Broadcast Approach for a Single-User
Slowly Fading MIMO Channel”, IEEE Trans. Inform. Theory, vol. 49,
no. 10, pp. 26172635, October 2003.


