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Abstract

We discuss the bounds for capacity of a binary-input
binary-output discrete memoryless communication channel.
We introduce a new lower bound that gives a very good and
elementary approximation to the capacity.

1. Introduction

In this paper we study only “simple channels,” whereby

“simple channel” we mean a binary-input binary-output dis-

crete memoryless channel [11]. The capacity (C) of a sim-

ple channel is a function of two variables: the “noise” terms

a and b. The graph of C is a surface in R
3. Analysis of this

surface and its level sets gives us guidance as to the best

ways to manipulate capacity by adjusting the noise terms,

the idea being to manipulate capacity while having minimal

impact upon system performance. To simplify terminology

for the rest of the paper unless stated otherwise, “channel”

will mean “simple channel.”

Capacity is expressed as a function of the noise terms

a and b. Unfortunately, this expression is non-linear and

logarithmic in nature and thus does not readily lend itself

to obvious “rules of thumb” describing how the noise terms

affect the capacity. We seek a simple approximation for

capacity in terms of noise that can guide attempts to alter

noise on channels, and hence, capacity.

We bound capacity from above and below by uncompli-

cated functions of the determinant of the channel matrix.

We use our lower bound as an approximation to the capac-

ity. This simple formulation of the approximate capacity

is readily useful for analysis of channel behavior and holds

promise for approximations to multiple bit channels.

The lower bound for capacity developed in this paper

is approximately .72(a − b)2, a vast simplification of the

actual capacity, which is log2

(
2

āh(b)−b̄h(a)
a−b + 2

bh(a)−ah(b)
a−b

)
,

where ā = 1−a, and b̄ = 1−b. Our lower bound gives small

error for most values of a and b. We also give a simple proof

of the known [2] result that |a − b| is an upper bound for

capacity and discuss the implications of our approximations

to capacity.

M =
(

a 1 − a
b 1 − b

) ι1
a ��

1−a
��������������� o1

ι2

b ��������������� 1−b �� o2

(1)

Figure 1. Channel matrix , det M = a − b.

2. Mutual Information and Capacity

The input symbols to the channel are {ι1, ι2}, and the

output symbols are {o1, o2}. Since all symbols take the

same time to go through the channel, all information the-

oretic measurements are in units of bits per channel usage

(symbol).

The channel matrix represents the conditional proba-

bility relationships between the input and output symbols.

That is, a = P (o1|ι1), 1−a = P (o2|ι1), b = P (o1|ι2), and

1−b = P (o2|ι2). The input probabilities are represented by

the random variable X , P (X = ιi) = xi, i = 1, 2, which

we simplify to P (ι1) = x1 and P (ι2) = x2. Similarly,

we have the random variable Y such that P (o1) = y1 and

P (o2) = y2. This is illustrated in Fig. 1 . We summarize

the probabilities as follows: �y = �x ·
(

a 1 − a
b 1 − b

)
. Letting

x = x1 and using the fact that x1 + x2 = 1 = y1 + y2, we

have that y1 = (a − b)x + b and y2 = 1 − y1. To calcu-

late the capacity we want to maximize the mutual informa-

tion: I = H(Y ) − H(Y |X), over all possible distributions

(x1, x2).
Since with a and b fixed, we can view I as a function of

one variable x, the maximization problem reduces to maxi-

mizing the function I : [0, 1] → R given by:

I(x) = h
(
f(x)

)−xh(a)− (1−x)h(b), where h : [0, 1] →
R is the binary entropy function1

h(x) = −x log x − (1 − x) log (1 − x) (2)

and f : [0, 1] → [0, 1] ⊆ R is f(x) = (a − b)x + b.

Of course, we can also let a and b vary and view I(x) as

a function of three variables Ix(a, b). For fixed a and b,

C = C(a, b) = maxx I(x) = maxx Ix(a, b), where C is

the capacity ([11]) as a function of a and b.

1The use of “log” is for the base two logarithm, whereas as “ln” is of

course the natural logarithm. The binary entropy function is defined for

x ∈ [0, 1], with h(0) = h(1) := 0.
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Figure 2. Capacity as a function of a and b.

Figure 3. Capacity level sets a against b.

It can be shown (see Silverman [13, Eq. 5], Ash [1, Eq.

3.3.5], or [9, 10]) that capacity C : I2 → [0, 1], where

I2 = [0, 1] × [0, 1], as function of a and b is:

C(a, b) = āh(b)−b̄h(a)
a−b + log

(
1 + 2

h(a)−h(b)
a−b

)
= log

(
2

āh(b)−b̄h(a)
a−b + 2

bh(a)−ah(b)
a−b

) (3)

where C(a, a) := 0.

The above Eq. 3 shows that capacity is symmetric [13]

about the diagonal line {a, a} ⊂ I2 and the anti-diagonal

line {a, 1 − a} ⊂ I2. We easily see, except for the points

{a, a}, that C is a smooth function of a and b since it is

made up of elementary functions. To show that C is contin-

uous on all of I2 is not difficult.

We divide the unit square I2, with the line b = a re-

moved, into four regions as shown in Fig. 4. Note, behavior

around (e.g. (.8, .1)) a point depends on how the neighbor-

hood intersects different regions. Region 1 consists of the

points {(a, b) : b < a, b < 1 − a}, Region 2 is {(a, b) : b <
a, b > 1 − a}, Region 3 is {(a, b) : b > a, b > 1 − a}, and

Region 4 is {(a, b) : b > a, b < 1 − a}. As noted above by

using Eq. 3 it is obvious that capacity is symmetric in the

four different regions; that is C(a, b) = C(1 − b, 1 − a) =
C(1 − a, 1 − b) = C(b, a).

As in [10] we call the union of Region 1, Region 2, and

{(1, 1 − a) : a ∈ (.5, 1]}, the positive channels (b < a).

That is, the positive channels are all channels “under” the

main diagonal a = b. The union of Region 3, Region 4, and

{(1, 1 − a) : a ∈ [0, .5)}, is called the negative channels

Figure 4. Capacity quadrants of I2.

Figure 5. Top |a − b|, bottom is capacity.

(b > a), that is; all channels “above” the main diagonal.

The channels of the form {(a, b) : a = b} are called the

zero channels. As discussed in [10], this terminology is also

used to keep the behavior of the determinant (which is a−b)

of the channel matrix Eq. 1 in mind.

3. Capacity Upper Bound

C(a, b) denotes the capacity of the channel (a, b) and it

was first shown in [2, Cor. 5.4], via convexity arguments,

that C(a, b) ≤ |a − b|, with equality only for zero channels

and the channels (1, 0) and (0, 1). From Helgert (1967) [3]

we can trivially show the weaker result C(a, b) ≤ |a − b|.
To show that C(a, b) < |a − b|, except for zero channels

and the channels (1, 0) and (0, 1), requires [2, Cor. 5.4]2.

Theorem 3.1 : For a (2,2) channel with transition matrix
M , C ≤ |det(M)|.

This result was first conjectured by the authors of [10].

As noted above, we offer an alternate proof to the version

given in [2] that follows as a trivial corollary from Helgert’s

earlier result. Of course, it is not surprising that both [3]

2The proofs for many of the stated results in [2] are in

the appendix of a report version of the paper available at

http://www.win.tue.nl/∼kostas/publications.html.
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and [2] rely upon convexity arguments. Also keep in mind

that [2] deals with much more than Thm. 3.1. To prove

Thm. 3.1, we use the following result of Helgert (in the

statement of Helgert’s theorem the term channel no longer

means simple channel):

Theorem 3.2 (Helgert [3]): Let P be a m × n stochastic
matrix with entries pi,j of rank ρ characterizing a discrete,
memoryless channel whose capacity is CP . Then,
CP ≤ (1 − Δ) log2 ρ, where Δ =

∑n
j=1 mini(pi,j) .

Proof sketch of Thm. 3.2: Details in [3]. The proof uses

Shannon’s [12] result that if a channel matrix P can be

written as the convex sum of other channel matrices, then

the capacity of P is less than, or equal to, the convex sum

of the capacity of the other channel matrices. �

Proof of Thm. 3.1: If the (2,2) channel is a zero channel,

then ρ = 1; therefore log2 ρ = 0. Since a = b, the mu-

tual information I = H(Y ) − H(Y |X) is easily seen to

be identically equal to zero (independent of the probability

mass function of X); therefore C = 0 and C =det(M).
Now we use Helgert’s result —

If the (2,2) channel is positive then Δ = b + (1− a) and

ρ = 2. Therefore C ≤ a − b = det(M).
If the (2,2) channel is negative then Δ = a + (1 − b)

and ρ = 2. Therefore C ≤ b − a = −det(M). �

In Fig. 5 we see how |det M | graphically behaves as

a strict upper bound for capacity, except for zero channels

and the two channels with capacity one. Looking at Fig. 5

it seems as if |det M | would be a good approximation to

capacity. More careful scrutiny of Fig. 5 (also see Fig. 6)

reveals that for a given capacity, the level sets of the approx-

imation and the actual capacity are far apart. In the section

that follows, we present a lower bound for capacity that also

acts as a good approximation of capacity.

4. Taylor Approximations and Lower Bound
If the level sets of capacity were straight lines, then the

analysis of how noise affects capacity would be easier, and

we could easily make accurate approximations to the be-

havior of capacity as a function of the noise terms a and b.

But, as we see in Fig. 3, they are not straight lines. The

level sets (or curves) are slightly curved and symmetrical

about both the main diagonal (the line b = a) and the anti-

diagonal (the line b = 1 − a). Attempting to calculate the

parameterization of the level sets, or even derivatives of the

capacity function itself, is quite difficult. There does not

seem to be any nice closed form results for the various ge-

ometric terms of interest. We cannot rely on pictures and

say, “Well the level sets are almost straight lines, so let us

approximate them and the capacity function by something

easy!” However, we can attempt to find an approximation of

Figure 6. Plot of |det M | − C, with level sets

the capacity that has straight line level sets, based on sound

theoretical reasoning.

We note that Majani [6] has done work on approxima-

tions to capacity, and in fact we are motivated by his use

of the Taylor approximation of the binary entropy func-

tion. However, the emphasis in [6] was viewing capacity

as a function of the input probability x. We wish to em-

phasize the effects of the noise terms a and b, rather than

x. Since the binary entropy function (Eq. (2)) is symmetric

about 1/2 we define a new function t(x) = h(x + .5), x ∈
[−.5, .5]. We have the Maclaurin series of t(x)

t(x) = t(0) + t′(0)(x) + t′′(0)
(x)2

2!
+ · · · (4)

For simplicity, we switch to natural logarithms with

he(x) = −x lnx−(1−x) ln (1 − x) and te(x) = he(x+.5)
(5)

We easily see that h′
e(x) = ln

(
1−x

x

)
and h′′

e (x) = −1
x(1−x) .

Therefore, t′e(x) = ln
(

.5−x

.5+x

)
and t′′e (x) = −1

(.5+x)(.5−x) ,

and t′e(0) = 0, t′′e (0) = −4.

Approximate te(x) by 2nd order Maclaurin polynomial

he(x + .5) = te(x) ≈ ln(2) − 2x2 (6)

Switching to the base two logarithm gives us

h(x + .5) = t(x) ≈ 1 − 2
ln(2)

x2 = 1 − 2 log(e)x2 (7)

Combining the fact that, by definition of capacity as a

supremum, I(.5) ≤ C, with the lower bound given below

of Majani [6, 7] we have that

.9421C ≈ .5
e−1 log(e)

C ≤ I(.5) ≤ C (8)

Therefore, we can reasonably approximate C by I(.5) =
h

(
a+b
2

) − 1
2 (h(a) + h(b)).
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Figure 7. Top is capacity, bottom QT approx.

For any fixed point (a0, b0) ∈ I2, we see that there is

a unique straight line of slope 1 through (a0, b0) given by

b = a − k, where k = a0 − b0. We see that I2 is foliated

(degeneracies at (0, 1) and (1, 0)) by the intersection of the

straight lines b = a − k, k ∈ [−1, 1] with I2. For a fixed k,

consider the leaf given by the points (a, b) ∈ I2 that satisfy

b = a − k. We now look at C(a, b) = C(a, a − k),
which we approximate by I.5(a, a − k) =
h

(
a − k

2

)− 1
2 (h(a) + h(a − k)) = h

[
a − (

1+k
2

)
+ 1

2

]−
1
2

{
h

[(
a − 1

2

)
+ 1

2

]
+ h

[
(a − (

1
2 + k

)
+ 1

2

]}
.

We now use our approximation Eq. (7).

h
[
a − (

1+k
2

)
+ 1

2

] ≈ 1 − 2 log(e)
[
a − (

1+k
2

)]2
,

h
[(

a − 1
2

)
+ 1

2

] ≈ 1 − 2 log(e)
[
a − 1

2

]2
,

h
[(

a − (
1
2 + k

))
+ 1

2

] ≈ 1 − 2 log(e)
[
a − (

1
2 + k

)]2
.

So now approximate I.5(a, a − k) ≈
log(e)

{
−2

[
a − (

1+k
2

)]2
+

[
a − 1

2

]2 +
[
a − (

1
2 + k

)]2}
.

Since the term in braces reduces to k2

2 we have that:

I.5(a, a − k) ≈ log(e)
2

k2 =
k2

2 ln(2)
≈ .72 k2 (9)

Given any point (a, b), we can always write it as

(a, a − (a − b)), so I.5(a, b) ≈ .72(a − b)2, and

C(a, b) ≈ (a − b)2

2 ln(2)
≈ .72(a − b)2 (10)

Recall that the determinant of the channel matrix is a − b.

We call the above
(a−b)2

2 ln(2) = log(e)
2 (a − b)2 the Quasi-

Taylor approximation, or simply the QT approximation, of

capacity C(a, b).
Graphically in Fig. 7, we can see that

(a−b)2

2 ln(2) is a lower

bound for C(a, b), but we need to prove it. Fig. 8 shows

how small the difference C(a, b) − (a−b)2

2 ln(2) is for most val-

ues of (a, b). We start by considering how the QT approx-

imation compares to the capacity on the anti-diagonal (the

binary symmetric channels, (a, 1 − a), a ∈ [0, 1]).

Figure 8. Scaled C-QT approx. with level sets

Lemma 4.1 On the anti-diagonal {(a, 1 − a) : a ∈ [0, 1]}
the capacity is greater than or equal to the QT approxima-
tion with equality only at the point (.5, .5), where the ca-
pacity is zero.

Proof: First we consider the lower right hand part of the

anti-diagonal: {(a, 1−a) : a ∈ [.5, 1]}. Due to the symme-

try of the channel matrix the capacity on the anti-diagonal

is achieved ([1]) at I.5 and the capacity is C(a, 1−a) = 1−
h(a). We will compare 1 − h(a) to

(a−(1−a))2

2 ln(2) = (2a−1)2

2 ln(2) .

Let f(a) = [1−h(a)]− [ (2a−1)2

2 ln(2) ] = [1− he(a)
ln(2) ]− [ (2a−1)2

2 ln(2) ],
then f ′(a) = 1

ln(2)

{− ln(1−a
a ) − 4a + 2

}
. Since f(.5) =

0 we wish to show that f ′(a) > 0 for a > .5 . If we

can show that f ′(a) �= 0, a ∈ (.5, 1), that will suffice to

show that f ′(a) > 0 for a > .5, since f(1) ≈ .28 . If

f ′(a) = 0, a ∈ (.5, 1), then there is some a0 ∈ (.5, 1) such

that ln(1−a0
a0

) = 2−4ao. We claim this is not possible since

2−4a > ln(1−a
a ), a ∈ (.5, 1). In the interval [.5, 1], 2−4a

ranges from 0 down to −2, via a straight line. On the other

hand ln(1−a
a ) starts at 0 and logarithmically descends to

−∞ as a ranges over [.5, 1). Therefore, we will show that

2− 4a and ln(1−a
a ) do not intersect on (.5, 1), and if that is

true, we will have shown that 2−4a > ln(1−a
a ), a ∈ (.5, 1).

We show that 2 − 4a and ln(1−a
a ) do not intersect by con-

sidering η(a) = 2 − 4a − ln(1−a
a ) . We show that η(x) is

increasing and since η(.5) = 0 and lima→1 η(a) = ∞ that

suffices to show that 2− 4a and ln(1−a
a ) do not intersect in

the region in question. We have that η′(a) = −4 + 1
a(1−a) .

If η′(a) = 0, we have that 4a2 − 4a + 1 = 0, which has a

double root at a = .5. Therefore, η′(a) �= 0 for a ∈ (.5, 1),
therefore η′(a) is positive, so η(x) is increasing in the re-

gion in question.

Now, by the symmetry of capacity with respect to pos-

itive and negative channels (swap a with 1 − a), we can

extend this argument to the other part of the anti-diagonal

{(a, 1 − a) : a ∈ [0, .5]}. �

4
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Corollary 4.1 The lower bound (a−b)2

2 ln(2) for capacity along
the anti-diagonal is the best lower bound that is a constant
multiple of (a−b)2 in the sense that the lower bound agrees
for the zero capacity channel (.5, .5) and that the lower
bound is strictly less than capacity for non-zero channels
along the anti-diagonal.

Proof: If there is a better lower bound it can be written

as (.5 + ε) (a−b)2

ln(2) , ε > 0. If we were to form η′(a) as in

the proof of the above lemma it would now be −4 + δ +
1

a(1−a) , δ > 0 which would have a root greater than .5. This

cannot be, so we cannot allow ε > 0. (Note: It is interesting

to plot the difference of 1 − h(a) and (.5 + ε) (a−b)2

ln(2) , ε > 0
to see how small ε will subtly cause the difference to be

negative near .5.) �
Now we look at the leaves (lines) of constant chan-

nel matrix determinant that intersect with Regions 1 & 2,

the positive channels. So we consider points of the form

{(a, a − k)}. Since C(a, a − k) ≥ I.5(a, a − k), if we

can show that I.5(a, a − k) is greater than the QT ap-

proximation on lines of constant determinant (that intersect

Regions 1& 2) then we will have also shown that capac-

ity is greater than the QT approximation on the leaves of

constant capacity. From before we know that I.5(a, a −
k) = h

(
a − k

2

)− 1
2 (h(a) + h(a − k)). The leaves of con-

stant capacity that interesect Regions 1 & 2 are given by

{(a, a− k) : a ∈ [k, 1], k ∈ (0, 1)}. Note, for k = 0, which

is not a positive channel, we are on the line of zero capac-

ity and capacity agrees with the QT approximation. For

k = 1, which is a positive channel, we are on the degenerate

leaf consisting of the single point (1, 0), here the capacity is

one, which is obviously greater than the QT approximation.

What happens on {(a, a − k) : a ∈ [k, 1], k ∈ (0, 1)}? In

fact we restrict ourselves to Region 2 since capacity is sym-

metric on the leaves about the anti-diagonal. So we only

look at {(a, a − k) : a ∈ [ 1+k
2 , 1], k ∈ (0, 1)}. (By our dis-

cussion of symmetry before we know for a point in Region

2, C( 1+k
2 + ε, 1+k

2 + ε − k) = C( 1+k
2 + ε, 1−k

2 + ε) =
C(1− ( 1−k

2 + ε), 1− ( 1+k
2 + ε)) = C( 1+k

2 − ε, 1−k
2 − ε) =

C( 1+k
2 − ε, 1+k

2 − ε − k), which is the symmetric point in

Region 1, and both are on the same leaf of constant k.)

Theorem 4.1 The QT approximation is a lower bound for
the capacity, which is strict for non-zero capacity channels.

Corollary 4.2 (a−b)2

2 ln(2) ≤ C(a, b) ≤ |a − b|

Proof (Thm. 4.1 and Cor. 4.2): We fix k and restrict

ourselves to Region 2, that is the segment

{(a, a − k) : a ∈ [ 1+k
2 , 1], k ∈ (0, 1)}. Con-

sider g(a) := I.5(a, a − k). We have g′(a) =
log(e)

{
ln

(
1−a+k/2

a−k/2

)
− 1

2

[
ln

(
1−a

a

)
+ ln

(
1−a+k

a−k

)]}
=

(0,0)

(0,k)

(0,1)(1−k,1) (1,1)

(1,1−k)

(1,0)(k,0)

Figure 9. Upper line of slope 1: See Cor. 4.2

1
ln(2)

{
1
2 ln

(
1−a+k/2

a−k/2

)2

− 1
2

[
ln

(
1−a

a

)
+ ln

(
1−a+k

a−k

)]}

So 2 ln(2)·g′(a) = ln
(

1−a+k/2
a−k/2

)2

−ln
(

(1−a)(1−a+k)
a(a−k)

)
=

ln
( 1−a+k/2

a−k/2 )2

( (1−a)(1−a+k)
a(a−k) )

= ln

„
1−2a+a2−ak+k+(k2/4)

a2−ak+(k2/4)

«
“

1−2a+a2−ak+k

a2−ak

” .

Let A = 1 − 2a + a2 − ak + k, B = a2 − ak, and

C = k2/4. So,

2 ln(2) · g′(a) = ln

(
A+C
B+C

)
(

A
B

) = ln
(

AB + BC

AB + AC

)

Consider B−A = {2a−(1+k) : a ∈ ( 1+k
2 , 1], k ∈ (0, 1)}.

We see that B > A, hence
(

AB+BC
AB+AC

)
> 1, and hence

g′(a) > 0, for {a ∈ ( 1+k
2 , 1] : k ∈ (0, 1)}. So, on a line

of constant determinant k, restricted to Region 2, we see

that I.5 is increasing from its value on the main diagonal

( 1+k
2 , 1−k

2 ) to its value at (1, 1−k). Similarly, we also have

that it is decreasing along the same line restricted to Region

1 from its value at (k, 0) to its value on the main diagonal

( 1+k
2 , 1−k

2 ). Therefore, I.5, restricted to a line of positive

determinant, achieves a minimum along the anti-diagonal.

Since, by Lemma 3.1, I.5 is greater than the QT approxi-

mation on the anti-diagonal, we have that I.5 is greater than

the QT approximation (which is constant) on a line on posi-

tive capacity. Of course, on the line of zero determinant the

capacity and QT approximation are both equal to zero.

Now consider line Ln(k) of negative channels with de-

terminant −k = a − b < 0. Let a − b = −k and con-

sider the line Lp(k) positive channels with determinant k.

These positive channels are of the form (a, a−k), a ∈ [k, 1]
and are the locus of points in I2 such that b = a − k,

whereas the associated negative channels are of the form

(a, a + k), a ∈ [0, 1 − k] and are the locus of points in I2

such that b = a − (−k).
We can express Lp(k) as ( 1+k

2 ±ε, 1−k
2 ±ε), ε ∈ [0, 1−k

2 ].
Similarly, Ln(k) is ( 1−k

2 ± ε, 1+k
2 ± ε), ε ∈ [0, 1−k

2 ].
By symmetry between Regions 1 and 3, and Regions 2

and 4, we have that the C( 1+k
2 ± ε, 1−k

2 ± ε) = C( 1−k
2 ±

ε, 1+k
2 ± ε). Since k2 = (−k)2 the QT approximation on

Ln(k) is the same as the QT approximation on Lp(k) in a

point by point manner with respect to ε. �
It is important to note that in [8, Lemma 3.7] it was

5
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Figure 10. Capacity & two bounds

shown that capacity is lower bounded by
(a−b)2

e2 ln(2) ≈ .2(a −
b)2, so [8] was the first to use a multiple of (a − b)2 as a

lower bound for capacity. Our result improves upon this ex-

isting result, providing the “best” possible constant multiple

of the square of the determinant; even better from a practi-

cal standpoint, our result closely approximates capacity for

moderate values of a and b.

Note, in this section we could have presented a “slicker”

way by just looking at the Taylor series of the binary entropy

function about 1/2. However, in this conference paper we

chose to present a more intuitive development, more in line

with how we came about the result. As much as it pains the

author, we put the mantra of pure mathematics on the back

burner in this present exposition of the result.

5. Applications and Future Work
When a covert channel exists in a computer system, one

may wish to introduce noise to decrease the capacity of the

covert channel. However, noise should be introduced in a

pragmatic manner so as to have as little ill-effect upon sys-

tem performance as possible (this philosophy was demon-

strated in [4, 5]). Alternatively, we may be faced with a

situation in which noise may be abated at some cost in or-

der to improve a channel. If the channel is too weak for

our purposes, we may wish to reduce noise in order to im-

prove performance. The approximation presented here may

be used to guide us to a low cost improvement to produce

an adequate channel.

Given a channel (a, b) we may wish to disturb this chan-

nel to a new channel (a′, b′) with a lesser (or greater) capac-

ity while minimizing some metric between the two chan-

nels. For the standard L2 metric the behavior of the level

sets influences the choice of the modified channel (a′, b′).
The level sets of the capacity function are curved and the

optimal modification is not obvious and, for us at least, can

only be determined by numerical means. However, if we

replace capacity with our QT bound, we see that we are

now dealing with level sets that are parallel straight lines

of slope one. The most “bang for the buck” in changing ca-

pacity is obtained by following straight lines (slope negative

one) that are orthogonal to the level sets. It is interesting to

compare this to the algebraic structures developed in [10].

We also plan to extend our analysis to more complicated

channels and use the results in a geometric analysis of chan-

nel capacity and behavior. We have hope for this approach

since Majani’s result can be extended somewhat to more

complicated channels than what we used in this paper.
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